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Abstract

The aim of this paper is to give a formulation of the dynamics of nonlinear RLC circuits as a
geometric Birkhoffian system and to discuss in this context the concepts of regularity, conservativeness,
dissipativeness. An RLC circuit, with no assumptions placed on its topology, will be described by a family
of Birkhoffian systems, parameterized by a finite number of real constants which correspond to initial values
of certain state variables of the circuit. The configuration space and a special Pfaffian form, called the
Birkhoffian, are obtained from the constitutive relations of the resistors, inductors and capacitors involved
and from Kirchhoff’s laws. Under certain assumptions on the voltage—current characteristic for resistors, it
is shown that a Birkhoffian system associated with an RLC circuit is dissipative. For RLC networks which
contain a number of pure capacitor loops or pure resistor loops the Birkhoffian associated is never regular. A
procedure for reducing the original configuration space to a lower dimensional one, thereby regularizing the
Birkhoffian, it is also presented. In order to illustrate the results, specific examples are discussed in detail.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Lagrangian and Hamiltonian mechanics continue to attract a large amount of attention in the
literature, because many mechanical and electromechanical systems may be modelled within
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these frameworks. During the past ten years, a far-reaching generalization of the Hamiltonian
framework has been developed in a series of papers. This generalization, which is based on the
geometric notion of generalized Dirac structure, gives rise to implicit Hamiltonian systems (see
for example papers by Maschke and van der Schaft [10], van der Schaft [12]). In the papers by
Yoshimura and Marsden [15] the concept of Dirac structures and the variational principle are
used to define and develop the basic properties of implicit Lagrangian systems.

An alternative approach to the study of dynamical systems which appears to cover a wide class
of systems, among them the nonholonomic systems, the degenerate systems and the dissipative
ones, is the Birkhoffian formalism, a global formalism of the dynamics of implicit systems of
second-order ordinary differential equations on a manifold. The classical book by Birkhoff [2]
contains in Chapter I many interesting ideas about classical dynamics from the viewpoint of
differential geometry. In order to present these ideas in a coordinate free fashion, one considers
the formalism of 2-jets (see for example Kobayashi and Oliva [7]). The space of configurations
is a smooth m-dimensional differentiable connected manifold and the covariant character of the
Birkhoff generalized forces is obtained by introducing the notion of elementary work, called
the Birkhoffian, a special Pfaffian form defined on the 2-jets manifold. The dynamical system
associated with this Pfaffian form is a subset of the 2-jets manifold which defines an implicit
second-order ordinary differential system. The notion of the Birkhoffian allows one to formulate
the concepts of reciprocity, regularity, affine structure in the accelerations, conservativeness, in
an intrinsic way.

The electrical circuits theory benefits from many tools developed in mathematics. In order

to study the dynamics of LC and RLC electrical circuits, various Lagrangian and Hamiltonian
formulations have been considered in the literature (see for example [3,4,9,10,12,13], and the
references therein). To describe LC circuit equations, Hamiltonian formulations have been used
more often. In [9], the dynamics of a nonlinear LC circuit is shown to be of Hamiltonian nature
with respect to a certain Poisson bracket which may be degenerate, that is, nonsymplectic.
The dynamics of “complete” RLC networks was described by Brayton and Moser [4] in terms
of a function of inductor currents and capacitor voltages, called the mixed potential function.
However, for all those formulations, a certain topological assumption on the electrical circuit
appears to be crucial, that is, the circuit is supposed to contain neither loops of capacitors nor
cutsets of inductors. In [10,12] and [3] the Poisson bracket is replaced by the more general notion
of a Dirac structure on a vector space, leading to implicit Hamiltonian systems. In this formalism,
it is possible to include LC networks which do not obey the topological assumption mentioned
before. In [15] an example of an LC circuit in the context of implicit Lagrangian systems is given
for a degenerate Lagrangian system with holonomic constraints.
The potential relevance of the Birkhoffian formalism in the context of electrical circuits is
discussed by Ionescu and Scheurle [8], where a formulation of general nonlinear LC circuits
within the framework of Birkhoffian dynamical systems on manifolds is presented. In [8] specific
examples of electrical networks are discussed in this framework. These are networks which
contain closed loops formed by capacitors, as well as inductor cutsets, and also LC networks
which contain independent voltage sources as well as independent current sources.

In the paper at hand we present a formulation of the dynamics of nonlinear RLC electrical
circuits within the framework of Birkhoffian systems. On the basis of Kirchhoff’s laws and the
constitutive relations for the resistors, inductors, capacitors involved, we get for a nonlinear RLC
circuit, a whole family of configuration spaces and special Pfaffian forms, called Birkhoffians.
The configuration spaces are parameterized by a finite number of real constants which correspond
to initial values of certain state variables of the circuit. In particular, we can allow pure capacitor
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loops as well as pure inductor cutsets. Under certain assumptions on the voltage—current
characteristic for resistors, it is shown that a Birkhoffian system associated with an RLC circuit
is dissipative.

The paper is organized as follows. In Section 2, we recall the basics of Birkhoffian systems
(see [2]) presented from the viewpoint of differential geometry using the formalism of jets
(see [7]). In particular, we introduce the notion of a dissipative Birkhoffian system, in order
to be able to treat the case of RLC networks in the next section. In Section 3, our Birkhoffian
formulation of the dynamic equations of a nonlinear RLC circuit is given. Properties of the
corresponding Birkhoffian such as its regularity and its dissipativeness are also discussed in this
section. For electrical RLC networks which contain a number of only capacitor loops or only
resistor loops, we present a systematic procedure for reducing the original configuration space
to a lower dimensional one, thereby regularizing the Birkhoffian. On the reduced configuration
space the reduced Birkhoffian will still be dissipative. Finally, in Section 4 we consider two
specific examples. These examples are intended to serve our purpose of demonstrating the power
of the Birkhoffian approach.

2. Birkhoffian systems

For a smooth m-dimensional differentiable connected manifold M, we consider the tangent
bundles (TM, wy, M) and (TTM, wrp, TM). Let g = (ql, qz, ..., q™) be alocal coordinate
system on M. This induces natural local coordinate systems on 7M and 7T M, denoted by
(q, q), respectively (¢, ¢, dg, dg). The 2-jets manifold J>(M) is a 3m-dimensional submanifold
of TT M defined by

JAM) =z € TTM | Ty (2) = wrm (2)) @2.1)

where Ty : TTM — TM is the tangent map of my. We write m; = wrml 2o =
TrrM|Jz(M). (JZ(M), wj, T M), called the 2-jet bundle (see [7]), is an affine bundle modelled on
the vertical vector bundle (V(M), mrmlvmy, TM), V(M) = UveTM Vy (M), where V,(M) =
{z € T,TM|(Tmp)y(z) = 0}. In [1,11] this bundle is denoted by T2(M) and called a second-
order tangent bundle. In natural local coordinates, the equality in (2.1) yields (g, 4. ¢, dg| j2(57))

as a local coordinate system on J2(M). We set § = dg| 72(m)- Thus, a local coordinate system ¢

on M induces the natural local coordinate system (g, ¢, §) on J>(M). For further details on this
affine bundle see [1,7,11].

A Birkhoffian corresponding to the configuration manifold M is a smooth 1-form w on J2(M)
such that, for any x € M, we have

i*o=0 (22)

where iy @ B7l(x) — J*(M) is the embedding of the submanifold 8~!(x) into J2(M),
B = 1y omry. From this definition it follows that, in the natural local coordinate system (g, ¢, §)
of J2(M), a Birkhoffian w is given by

=Y 0;(q.q.5)dq’ 2.3)
=1

with certain functions Q; : J 2(M) - R.
The pair (M, w) is said to be a Birkhoff system (see [7]).
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The differential system associated with a Birkhoffian  (see [7]) is the set (maybe empty) D(w),
given by

D(w) = [z e 2(M)|o(z) = 0} . (2.4)

The manifold M is the space of configurations of D(w), and D(w) is said to have m ‘degrees
of freedom’. The Q; are the ‘generalized external forces’ associated with the local coordinate
system (g). In the natural local coordinate system, D(w) is characterized by the following
implicit system of second-order ODE’s

0i(q,q,4) =0 forall j=1,m. 2.5)

We conclude that the Birkhoffian formalism is a global formalism for the dynamics of implicit
systems of second-order differential equations on a manifold.

Let us now associate a vector field with a Birkhoffian w.

A vector field Y on the manifold TM is a smooth function ¥ : TM — TTM such that
ity oY = id. Any vector field Y on T M is called a second-order vector field on TM if and only
if Ty (Yy) =vforallve TM.

A cross section X of the affine bundle (J2(M), 77, T M), that is, a smooth function X : TM —
J2(M) such that 77 o X = id, can be identified with a special vector field on T M, namely, the
second-order vector field on 7'M associated with X . Indeed, because (J2(M), 7, T M) is a sub-
bundle of (TTM, nirpr, TM) as well as of (TTM, Tmy, T M), its sections can be regarded as
sections of these two tangent bundles. Thus, using the canonical embedding i : J>(M) — TTM,
X can be identified with Y, thatis, Y =i o X.

In natural local coordinates, a second-order vector field can be represented as

Y= Z[q St q)—] 2:6)

A Birkhoffian vector field associated with a Birkhoffian w of M (see [7]) is a smooth second-
order vector fieldon TM,Y =i o X, with X : TM — J?(M), such that In X C D(w), that is

X*o = 0. 2.7)

In the natural local coordinate system, a Birkhoffian vector field is given by the expression (2.6),

such that Q(q. 4.4 (q.¢)) = 0.
A Birkhoffian w is regular if and only if

00; . ..
det [F(q, q, q)} #0 (2.8)
q i,j=1,...m
for all (g, g, ), and for each (q, g), there exists § such that Q;(q,¢,4) =0,j=1,...,m
If a Birkhoffian w of M is regular, then it satisfies the principle of determinism, that is, there
exists a unique Birkhoffian vector field ¥ = i o X associated with @ such that Im X = D(w)
(see [7]).

A Birkhoffian w of the configuration space M is called conservative if and only if there exists
a smooth function E,, : TM — R such that

(X*w)Y =dE,(Y) 2.9

for all second-order vector fields Y =i o X (see [7]).
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Eq. (2.9) is equivalent, in the natural local coordinate system, to the identity (see [2], p. 16, Eq.
)

Z . A[0E,.; OE,.;

. . . .J_ C()-/ (()../
X;Q](qq,q)q —Z[—aqjq + 557 } (2.10)
j:

j=1
E, is constant on T M if and only if dE,(Y) = O for all second-order vector fields ¥ on TM
(see [7)).
If w is conservative and Y is a Birkhoffian vector field, then (2.9) becomes

dE,(Y) =0. (2.11)

This means that E,, is constant along the trajectories of Y.
We now introduce the concept of a dissipative Birkhoffian.

A vertical 1-form on T M (see for example [14]) is a 1-form ¥ on T M such that ¥(VV) = 0,
for all V vector fields on M, where V'V is the vertical lift of the vector field V to T M. The local
expression of a vertical 1-form is

U= "(q,4)dg’. (2.12)

j=1

A 1-form D on T M is called dissipative if and only if D is vertical and D(Y) > O, for all Y
second-order vector fields on T M. Allowing for (2.12), the local expression of D is

m
D= "Dj(g.q)dq’ (2.13)
j=1

and from (2.13), (2.6), the inequality D(Y) > 0 becomes
m .
> Dj(q.9)¢’ >o. (2.14)
j=1

A Birkhoffian w of the configuration space M is called dissipative if and only if there exists a
smooth function Eg, : TM — R such that

(X*0)Y = dEq, (Y) + D(Y) (2.15)

for all second-order vector fields Y =i o X on TM, D being a dissipative 1-form on 7M.

Eq. (2.15) is equivalent, in a local coordinate system, to the identity

L o\ [0Ey, .. OFEq, . ,
e o s o si L Ty ava
/;Qj(qq,q)q —;[ 2gi 4+ 550+ Dia. i } (2.16)

In view of (2.14), we obtain from (2.15),

(X*0)Y > dEg, (Y) 2.17)
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for all second-order vector fields Y = i o X. That is equivalent, in local coordinates, to the
dissipation inequality

3Ew.- dEy,, ..;
ZQ(qq g’ >Z[ : ﬁq’] 2.18)

If w is a dissipative Birkhoffian and Y is the Birkhoffian vector field, then (2.17) becomes
dEo,(Y) <O. (2.19)

This means that Ey is nonincreasing along the trajectories of Y.
If the dissipative 1-form on 7'M has the particular expression

m
D= ) Dij(@)3’dq’ (2.20)
i,j=1

when we calculate the function D(Y) on T M, we obtain the so-called Rayleigh dissipation
function R : TM — R

R(g.9) = ) Dij(@)q'q’. 2.21)
i,j=1

3. RLC circuit dynamics

A simple electrical circuit provides us with an oriented connected graph, that is, a collection
of points, called nodes, and a set of connecting lines or arcs, called branches, such that in each
branch a direction is given and there is at least one path between any two nodes. A path is
a sequence of branches such that the origin of the next branch coincides with the end of the
previous one. The graph will be assumed to be planar, that is, it can be drawn in a plane without
branches crossing. For the graph theoretic terminology, see for example [6].

Let b be the total number of branches in the graph, n be one less than the number of nodes
and m be the cardinality of a selection of loops that cover the whole graph. Here, a loop is a path
such that the first and last node coincide and that does not use the same branch more than once.
By Euler’s polyhedron formula, b = m + n.

We choose a reference node and a current direction in each /-branch of the graph,/ =1, ..., b.
We also consider a covering of the graph with m loops, and a current direction in each j-loop,
j =1,..., m. We assume that the associated graph has at least one loop, meaning that m > 0.

A graph can be described by matrices: a (bn)-matrix B € My, (R), rank(B) = n, called the
incidence matrix and a (bm)-matrix A € My, (R), rank(A) = m, called the loop matrix. These
matrices contain only 0, 1, —1. An element of the matrix B is 0 if a branch b is not incident with
anode n, —1 if branch b enters node n and 1 if branch b leaves node n, respectively. An element
of the matrix A is 0 if a branch b does not belong to a loop m, 1 if branch b belongs to loop
m and their directions agree and —1 if branch b belongs to loop m and their directions oppose,
respectively. For the fundamentals of electrical circuit theory, see for example [5].

The states of the circuit have two components, the currents through the branches, denoted by
1 € R?, and the voltages across the branches, denoted by v € R”. Using the matrices A and B,
Kirchhoft’s current law and Kirchhoff’s voltage law can be expressed by the equations
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BT1=0 (KCL) (3.1
ATy =0 (KVL). (3.2)

Tellegen’s theorem establishes a relation between the matrices AT and BT: the kernel of the
matrix BT is orthogonal to the kernel of the matrix AT (see, e.g., [4] page 5).

The next step is to introduce the branch elements in a simple electrical circuit. The branches
of the graph associated with a RLC electrical circuit can be classified into three categories:
resistive branches, inductor branches, and capacitor branches. Let r denote the number of
resistive branches, k the number of inductor branches and p the number of capacitor branches,
respectively. We assume that just one electrical device is associated with each branch, then, we
have b = r + k + p. Thus, we can write I = (Ij1], I(a), la) € R" x R* x R” ~ R®, where
111> L), lo are the currents through the resistors, the inductors, the capacitors, respectively, and
v = (I}, V@), va) € R" x R x R? ~ R?, where V[I']» V(a)> Vo describe the voltage drops
across the resistors, the inductors, the capacitors, respectively.

Each capacitor is supposed to be charge controlled. For the nonlinear capacitors we assume

Vg =Cy(Qy), a=1,...,p (3.3)

where the functions C, : R — R\{0} are smooth and invertible, and the Q,’s denote the
charges of the capacitors. The current through a capacitor is given by the time derivative of the
corresponding charge

dQ
Iy = dt“, a=1,....p (3.4)

where ¢ is the time variable.
Each inductor is supposed to be current controlled. For the nonlinear inductors we assume

dr
ua=La(1a)d—t“, a=1,...,k (3.5)

where L, : R — R\{0} are smooth invertible functions.

There are several types of nonlinear resistors, among them current controlled resistors and
voltage controlled resistors. Generally, their constitutive relations are defined by some continuous
functions of 1 and v, that is,

frapr,vp) =0, I'=1,...,r.
3.1. Current controlled resistors

We first consider the case where the nonlinear resistors are current controlled, that is, the
constitutive relations are given by

vp=Rp(p), I'=1,...,r 3.6)

where R : R — R are smooth functions. In order to obtain a dissipative Birkhoffian, we
assume that, for all x #£ 0,

Rr(x)x >0, VvVI'=1,...,r 3.7

that is, for each nonlinear resistor, the graph of the function R lies in the union of the first and
the third quadrant.
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For linear resistors the relations (3.6) can be written in the form
vr =Rplp 3.8)

where R > 0 are real constants.
Taking into account (3.3)—(3.6), the Eqgs. (3.1) and (3.2) become

(3.9)

di
Al La(Ia)d_: =0.

Ca(Qa)

In the following we give a Birkhoffian formulation for the network described by the system of
equations (3.9), using the same procedure as in [8]. That is, using the first set of equations (3.9),
we are going to define a family of m-dimensional affinelinear configuration spaces M. C R”
parameterized by a constant vector ¢ in R". This vector is related to the initial values of the
Q-variables at some instant of time. A Birkhoffian w. on the configuration space M. arises from
a linear combination of the second set of equations (3.9). Thus, (M., w.) will be a family of
Birkhoff systems that describe the RLC network considered.

We notice that the first set of equations (3.9) remains exactly the same for linear and nonlinear
electrical devices. Thus, for obtaining the configuration space, it is not important whether the
devices are linear or nonlinear.

Let H : R® — R" be the linear map that, with respect to a coordinate system (xl, ..., xb ) on
R’ is given by

Hx',...,.x"=BT| : |. (3.10)
b
Then, H~'(c), with ¢ a constant vector in R”, is an affine—linear subspace in R”. Its dimension
ism = b — n, because rank(B) = n.
We define M. as

M. = H '(c). (3.11)

We denote local coordinates on M, by ¢ = (q', ..., ¢™). Then, the natural coordinate system
on the 2-jets bundle J?(M,) is given by (¢, 4, §).

We will now represent the Birkhoffian in a specific coordinate system on M,:

In the vector spaces R, R¥, we identify points and vectors

_don 4w
Todr YT A

with (Qir)) r=1....r» (Q))a=1,...k coordinate systems on R" and, respectively, on R¥. Taking
into account (3.12) and the fact that the matrix BT is a constant matrix, we integrate the first set

(3.12)



D. Ionescu / Journal of Geometry and Physics 56 (2006) 2545-2572 2553
of equations (3.9) to arrive at
Qr
BTl Qo | =¢ (3.13)
Qo

with ¢ a constant vector in R”.
Likewise we consider coordinates in R? ~ R” x R¥ x R”

=y =y, A Thi=Qay, - xR = Qs
=y, o xb = Qp- (3.14)
From (3.10) and (3.11), we see that we can define coordinates on M, by solving the equations
(3.13) in terms of an appropriate set of m of the Q-variables, say ¢ = (ql, ..., q™). In other
words, we express any of the x-variables as a function of ¢ = (¢!, ..., ¢™), namely,
m .
= Z./\/'quf +const, I'=1,...,r
j=1

m
x“:Z/\/’l‘-lqj—i—const, a=r+1,....r+k
Jj=1

m
x* =Y N¥q/ +const, a=r+k+1,....b (3.15)

with certain constants J\/jF , ./\/]4, J\/]‘?‘. Here we can think of the constants const as being initial
values of the x-variables at some instant of time.
From (3.4), (3.12), (3.14) and differentiating (3.15) we get

1=Njg (3.16)

with the matrix of constants A € 9y, (R), for some ¢ € R™.

Using Tellegen’s theorem and a fundamental theorem of linear algebra, we now find a relation
between the matrices N and A.

By a fundamental theorem of linear algebra we have

(Ker(AT))* = Im(A) (3.17)

where A € My, (R), Ker(AT) := {x € R? | ATx = 0} is the kernel of AT, Im(A) := {x € R? |
Ay = x, for some y € R™} is the image of A and * denotes the orthogonal complement in R”
of the respective vector subspace.
For the incidence matrix B € 9;,(R) and the loop matrix A € 9, (R), which satisfy
Kirchhoft’s law (3.1) and (3.2), Tellegen’s theorem can be written as

Ker(BT) = (Ker(AT))*. (3.18)

From the first set of equations in (3.9), and by construction of the matrix A/ in (3.16), we have

Ker(BT) = Im(\). (3.19)
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Therefore, using (3.17)—(3.19), we obtain Im(A) = Im(/N). Then, another application of (3.17)
yields

Ker(AT) = Ker(WT). (3.20)

Taking into account (3.20), we see that there exists a nonsingular matrix € € 2, (R) satisfying
T=NT. (3.21)

The matrix € provides a relation between the vector of the m independent loop currents and the
coordinate vector g introduced on M,.

Taking into account (3.20), we define the Birkhoffian w. of M, such that the differential system
(2.5) is the linear combination of the second set of equations in (3.9) obtained by replacing AT
with the matrix N'V. Thus, in terms of q-coordinates as chosen before, the expressions of the
components Q(q,q, 4) are

0j4,.9.9)=Fj(@4+Hj(¢)+Gjlg), j=1....m (3.22)
where
r+k m )
Fi@§ = ) NfLiy (ZN“ ’) (Z/M)
amr+1r+k - | i=1
= > Y NNLar @) (3.23)
i=1a=r+1
Hi(@) =Y N/ Rp (Zqu") =Y NRr@ (3.24)
I'=1 =1 I'=1

b m b
Gi@)= ) NiCart (Z/\f,“q’+const>= Y NiCark(@). (325

a=r+k+1 =1 a=r+k+1

We note that the Birkhoffian (3.22) is not conservative. We easily see that there does not exist a
function E,, such that (2.10) is fulfilled for the Birkhoffian (3.22), since

IBq! ;é aqlaql

For an RLC electrical network with nonlinear resistors, described by (3.6) and (3.7),
nonlinear inductors and capacitors described by (3.5), respectively (3.3), we claim that the
Birkhoffian (3.22) is a dissipative Birkhoffian.

Indeed, in the view of the assumption (3.7), the vertical 1-form D on T M given by

D =) Hj(¢)dg’ (3.26)
=1

with H;(q) in (3.24), is dissipative, that is,

Y Hi(@)q =) |:RF (Z/\/quﬂ (Zqu/’) > 0. (3.27)
j=1 r=1 j=1 j=1
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We showed in [8] that the following smooth function Ep, on T M

r+k m
-y 3 Z (— 1)1+1// LD @GgNeg

a=r+11=1i1<--<ij=1

+0 = DI @Az - N“dq” -dg

b m m
+ 2> X <1>’“// CUL (@NE - NEdg™ - dg™ (3.28)

a=r+k+1 =1 ij<--<ij=1

satisfies the identity

m

S [F5@ii + 65( )]-/=i 9k, .; , 0o, . (3.29)
2 @i+ 6 @)l =) | Gord + o | .

According to (3.29), the Birkhoffian (3.22) satisfies (2.16) with the function Ey, (q, ¢) given by
(3.28) and the dissipative 1-form D given by (3.26). O

Let us now discuss the regularity of the Birkhoffian given by (3.22).

If there exists in the network at least one loop that contains only capacitors, or only resistors,
or only resistors and capacitors, then the Birkhoffian (3.22) associated with the network is never
regular.

In [8] we have shown that if there exists at least one loop in an LC network that contains only
capacitors, then the Birkhoffian associated with the network is never regular. The Birkhoffian
associated with an RLC network which contains at least one loop formed only by resistors or
only by resistors and capacitors is never regular as well. The proof is based on the fact that for
the /-loop which does not contain any inductor branches, for the column [ of the matrix A we
have

7=0, a=r+1,...,r+k. (3.30)
For the Birkhoffian (3.22), the determinant in (2.8) becomes

200, . . W
det|:a—,q,i(q,q,q)i| —det| S NONTa s @) . (3:31)
i,j=L,....m i,j=1,...m

=l a=r+1

.....

From (3.21), we get /\/j“ == Q”A“ foranya =r + 1,...,r + k and taking into account
(3.30), we have

r+k r+k
> NUNLa—r (§) = Ze:”c” [ > (A4 La- r(q'r)]

a=r+1 i1=1 a=r+1
i1 #l
m . . . . r+k N
+ ) (@‘;@{1 +¢;‘¢§1) [ 3 AtAt L, (q)] (3.32)
i1<ji a=r+1

in i
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Using basic calculus, the determinant of the matrix with the elements (3.32) is a linear
combination of determinants having at least two linearly dependent columns. This shows that
the determinant in the right-hand side of (3.31) is equal to zero. Thus, the Birkhoffian (3.22) is
not regular. O

We now discuss the question of how to proceed in the case where the Birkhoffian given by
(3.22) is not regular in the sense of definition (2.8).

If there exist in the network m1 < m loops which contain only capacitors, all the other loops
containing at least an inductor, we can regularize the Birkhoffian (3.22) via reduction of the
configuration space. The reduced configuration space M., of dimension m — my, is a linear
or a nonlinear subspace of M., depending on whether the capacitors are linear or nonlinear.
We claim that the Birkhoffian @, on the reduced configuration space M. is still a dissipative
Birkhoffian. Under certain conditions on the functions Ly, a = 1, ..., k, which characterize the
inductors, the reduced Birkhoffian . will be a regular Birkhoffian.

Without loss of generality, we can assume that there is one loop in the network that contains only
capacitors and in the coordinate system we have chosen

N=0, I'=1,...,r, N'=0, a=r+1,....r+k. (3.33)
Thus, the Birkhoffian components (3.22), with (3.23)—(3.25), are given by, j = 2, ..., m,

b
01q.4.5)= Y. N{Cori(q)

a=r+k+1
m  r+k " ) r -
0i(q.4.§) = Y > NIN'Lar (G + Y N/Rp (@
i=2 a=r+1 I'=1
+ Y NCamri(@). (3.34)
a=r+k+1

We note that, according to (3.33), ¢! does not appear in any function Rp(q) La +(q)
and the terms L,_,(¢)§' do not appear in any of the Birkhoffian components Q»(q,q,

4),-~,Qm(5]7q,CI)~ _
We define the (m — 1)-dimensional nonlinear space M. C M. by

b
M. = {q eM| Y N{Cori(q)= 0} : (3.35)
a=r+k+1
By the implicit function theorem, we obtain a local coordinate system on the reduced
configuration space M.. Taking ¢! = ¢%,...,g"' = g™, the Birkhoffian has the form
- m—1 7~ 3=j
We = Zj:l deq s
0/G.4.9) = Fj(@)q + H;(@) + G (@), where (3.36)
m—1 r+k m—1
Fi@q =3 Y NGyNiLar <Z l+1)‘1> (3.37)
i=1 a=r+1

r m—1
A= 3Nk (ZN&I#) 539)
I'=1 =1



D. Ionescu / Journal of Geometry and Physics 56 (2006) 2545-2572 2557

b m—1
Gi@= ) N1y Cark <Nf‘f(c}1,...,c}m1)+ZM‘}’+1)é[+const> (3.39)

a=r+k+1 =1

where f : U ¢ R"~! — Ris the unique function such that f(go) = qé, qé € R, and

b m—1
> M Camr (J\G"f(él, @D+ YN+ const) =0 (40
a=r+k+1 =1

forallg = (g',...,§""") € U, with U a neighborhood of Go = (g}, - -, g ")

We will now prove that the Birkhoffian (3.36) is dissipative. In order to do so, we will show that
there exists a function Eo, (g, ¢) satisfying

m—1

_ N m-] aEOw =J BEOw:‘ - oL xj
Y 0iG4. 9§ =) | —=+¢" +—4’ +D;@ 9 (3.41)
j=1 oL o9 dq

where D = Z;":_ll l_)j (q,§)dg’ is a diss_ipative 1-form on T M...
We consider the following 1-form on T M,

D= Z Z H;j(g)dg’ . (3.42)

In the view of the assumption (3.7), the vertical 1-form (3.42) on TM, is dissipative, that is,

r m—1 . m—1 .
> [RF (Z Af(§+l)§]>:| (Z N<§+1)67]> > 0. (3.43)
Jj=1 j=I1

I'=1

Therefore, (3.41) is fulfilled if Eow q, c?) can be chosen in such a way that

m—1 m—1 I [

S oI S T | 3E0w;' 3E0w-_-'
SF@i+6Gi@)d =Y | —=2q +—2§ (3.44)
j=1 j=1 9q’ 0q’

is satisfied. Because of the special form of the terms on the left side of (3.44), we may assume
that Eo (7, ¢) is a sum of a function depending only on §, and a function depending only on .
From the theory of total differentials, a necessary condition for the existence of such functions is
the fulfilment of the following relations

0Fi(G)  0FiG)

a;l a_] =0
4 _q (3.45)
9G,@ _96i@ _
ag' agl
forany j,/ =1,...,m — 1, where

m—1 r+k
Fi@ =3 > Ny NisnLar (Z z+1)‘1> (3.46)

i=1 a=r+1
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From (3.46), we get:

8.7: (q) r—+k m—1 r+k
a
-l Z J+1)N(1+1)L“ (@) + Z Z G+ (z+1)N(1+1)La r(é])q
9q a=r+l i=1 a=r+1
(3.47)
where L; ;= dL“d;n’("). Then, the left side of the first relation in (3.45) becomes
r+k _ -
Z |:( G+ N — 5+1)M(l]'+1)) La—r(q)
a=r+1
+ ( G+oNaen = Ny j+1)) (Z N(l+1)q ) L;r(é)] . (3.48)

We easily see that the expression in (3.48) is zero, thus the first relation in (3.45) is fulfilled.
From (3.39), the second relation in (3.45) reads

b

« aaf( )
Z {N +1>Ca —r—k(@) [N q (1+1)}

a=r+k+1

/ « 0F (@) ( )
Ml+l)ca r— k( )|:N f q

+NJ+1)“ =0 (3.49)
— 4Coriln) drn £ The relation (3.49) reduces to

S a8f< ) _ e ’
Z (j+1 Ot r— k(q)N q - (l+] Ot r— k(q)N

a=r+k+1

af(q) _

—=0. (3.50)

Taking into account (3.40), the above ;elation is fulfilled, for any j,/ = 1,...,m — 1. Indeed,
taking the derivatives with respect to g/ and also ¢/, in Eq. (3.40), we obtain, respectively,

3 Nurku[wm

a=r+k+1

i
Z Nl 1@ )[N“ VI (z+1)} —o. (3.51)

a=r+k+1

(1+1>] =0

df (q)

Now we multiply in (3.51) the first equation with 49 the second equation with — and

agl

we add the resulting equations to obtain the Eq. (3.50). )

Thus, we have proved the existence of a function Ey_ (g, q) such that (3.41) is fulfilled, with
the dissipative 1-form given by (3.42). Therefore, the Birkhoffian (3.36) is dissipative.

For the Birkhoffian (3.36), the determinant in (2.8) becomes

BQ j - Lo otk ~ -
det[?_.i’(q,q,q)} =d€t[ > NENiyLa—r () |- (3.52)
q i,j=1,..,m—1

a=r+1

.....

If the determinant in (3.52) is different from zero, then the Birkhoffian (3.36) is regular. O
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If there exist in the network mo < m loops which contain only resistors, all the other loops
containing at least an inductor, we can regularize the Birkhoffian (3.22) via reduction of the
configuration space. The reduced configuration space M, of dimension m — m» is a linear or a
nonlinear subspace of M., depending on whether the resistors are linear or nonlinear. We claim
that the Birkhoffian @, on the reduced configuration space M. is still a dissipative Birkhoffian.
Under certain conditions on the functions L,, a = 1, ..., k, which characterize the inductors,
the reduced Birkhoffian & will be a regular Birkhoffian.

Without loss of generality, we may assume that we have one loop in the network that contains
only resistors and in the coordinate system that we have chosen, the constants read as

NO=0, a=r+1,...r+k “—0, a=r+k+1,...,b. (3.53)

(D Let us first consider the case where the resistors in this loop are linear resistors, that is,
described by (3.8), all the other electrical devices in the network being nonlinear. This means
that we have

N#0, =10, N =0, T=rn+1,...,r (3.54)

where rjj, is the number of linear resistors in the network.

In this case, the expressions of the Birkhoffian components (3.22), with (3.23)—(3.25), are given
by,j=2,...,m

Hin

01(q.4.§) = ZZNI RN
I'=11=1
m r+k Tlin
0i@.q.9) =Y. Y NN'Lar @)§' +ZZNFRF-M1F Y
i=2a=r+1 I'=11=1
r b
+ Y NfRr@+ Y. NiCori(@. (3.55)
I'=rjjn+1 a=r+k+1

We note that according to (3. 53) and (3.54), ¢! does not appear in any function R r@,
Ly,—r(g), the terms L,_ ,(q)q do not appear in any of the Blrkhofﬁan components

0:(q.4.,§), ..., Om(q,q,q) and g does not appear in any function CO, r—k(q).

We define the (m — 1)-dimensional linear space Mc C M. by

Ilin
M_{qu ZZN] Rpj\/,q+c]_0} (3.56)

Ir=11=1

with ¢ a real constant.

We take ¢! == ¢2,...,4™ ! := ¢ as local coordinates on the reduced configuration space M..

Then, making use of (3.56) and of the fact that NF #0and Ry > O, forany I' =1, ..., in,

Al am—1 A
we can express ¢! as a linear combination of § , ..., qm , denoted as g(g), such that

T'lin

ZNI Rp |:N1 g(‘])+ ZN(1+1)CI :| =0. (3.57)
I'=
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Thus, the reduced Birkhoffian has the form @, = Z’;’;ll Q j dg/,

0i(G.4.9) = Fi(@q + Hj@) + Gj(G), where (3.58)
. m—1 r+k m—1 . i
Fi@q = > NiyNipnLar (ZMH)q) (3.59)
i=1 a=r+1
n lin m—1
Hj( ZNUH)RF [Nl 8@ + Z/\[(l+1)q:|
+ Z N Rr (Z Niind ) (3.60)
I'= rin+1
m—1
Z N1y Ca—r—k (Z N{’,‘H)él + const) . (3.61)
a=r+k+1 =1

The Birkhoffian given by (3.58) is still dissipative. We will see that there exists a function
Eo q, q) such that

m—1 m—1 - -

A AR AT dEo, »j , 0Eo, %j A oA AVAS
Z 0i@4.94" =) | =4 +—rd’ + DiG. g’ (3.62)
=1 =1L dq

where D = Z;-":_II ﬁj (§.§)dg/ is a dissipative 1-form on T M...

We consider the following 1-form on TM,

m—1
D=>"HjG)dg’. (3.63)
j=1

Let us check that the vertical 1-form (3.63) is dissipative, that is,

m—1 ,
> Hi@)q” > o. (3.64)
j=1

From (3.60), the left side of (3.64) can be written as the sum S + S;, where

m—1 Fin ]
Z ZN(/H) Rp [Nl 8@ + ZN(1+1)‘7 } i’ (3.65)
j=1 I'=1
r m—1 . m—1 .
S= ) [RF (Z Mﬂné'/)} (Z /\/<§+1>67/> . (3.66)
I'=rjin+1 j=1 j=1

We now multiply the Eq. (3.57) by the function g(c}). Using the resulting equation we can write
the sum in (3.65) in the form

lin

m—1 2
Si=3) Rr [Nfg@) + ;N{H)él} : (3.67)

I'=1
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Since R > 0, I' =1, ..., rin, the sum S is strictly positive.

Because all nonlinear resistors considered satisfy the condition (3.7), the sum S; in (3.66) is
strictly positive as well. Therefore, the inequality (3.64) is fulfilled and the vertical 1-form in
(3.63) is dissipative.

We now look for a function Eow @q, c.}) such that

s AR A A Ad = 3E0w aJ BEAow wJ
> [Fj(q)q+Gj(q)]q = -4+t —59 | (3.68)
=1 =L 3§

Because of the special form of the terms on the left side of (3.68), we can look for the required
functlon Eo (4, ¢) as a sum of a function only depending on ¢, and a function only depending on
q. From the theory of total differentials, a necessary condition for the existence of such functions
is the fulfilment of the following relations

0Fi@) £

3¢ 05 !
Aq Aq (3.69)
0G;j(q) _9Gi1@ _
94’ g
forany j,/ =1,...,m — 1, where
o m—1 r+k ) ¥
Fiq) = Z Z NJ+I)N(1+1) a-r (ZN(Hl)‘I) (3.70)
i=1 a=r+1

From (3.70) and (3.61) we get

3}— (6]) r—+k m—1 r+k - . .
7 AN A
= > NNy Laar @+ D° Y Ny Ny N Lo @4

a=r+1 i=1 a=r+1
(3.71)
iley (61)
Z G (l+1)Ca r—(Q) (3.72)
a=r+k+1
where = =L = ——1 We can easily check that Egs. are fulfille
here L, _, de W &= 4G £k W ily check that Egs. (3.69) are fulfilled.

Thus, we proved the existence of a function Eow q, q) such that (3.62) is fulfilled, with the
dissipative 1-form given by (3.63), that is, the Birkhoffian (3.58) is dissipative.
For the Birkhoffian (3.58), the determinant in (2.8) becomes

Qj . : = A ~ .
det|: —=L@a. ,q):| :det|: Y NGy NG Lar (d) |- (3.73)
36] i,j=1,...m—1

a=r+1

.....

If the determinant in (3.73) is different from zero, then the Birkhoffian (3.58) is regular. O

(IT) Let us now consider the case where the resistors in the loop formed only by resistors are
nonlinear devices too, that is, they are described by (3.6), with the assumption (3.7). Now, instead
of 3.54)wehave N #£0, I =1,...,r



2562 D. Ionescu / Journal of Geometry and Physics 56 (2006) 2545-2572

The component Q1(q, ¢, ¢) of the Birkhoffian takes the form

01(q.4.4) =Y N{Rp@) (3.74)

I'=1

and the other components Q»(q,q,q),..., Om(q,q,q) are the same as in (3.55) with
the terms_following ri, = 0 absent. Accordlng to (3.53), ¢! does not appear in any
function L,_ +(q), the terms Lo r(q)ql do not appear in any of the Birkhoffian components
02(q.4.,§), ..., Om(q,q,q) and g does not appear in any function Ca r—k(q).

Using (3.74), we intend to define the (m — 1)-dimensional configuration space M C M,. The
relation (3.74) is a nonlinear velocity constraint, which in general is a nonholonomic constraint.
Nevertheless, because of this constraint imposed on the system, the equations which describe the
dynamics are

02(q,4,4) =0, .. Qm(q 4, q)—O

Taking ¢! := ¢, ..., §™ ' := g™, a coordinate system on the reduced configuration space M.,

the Birkhoffian has in this case the form @ D¢ = 2’7:_1 0;dg,

. X m—1 r+k m—1 O\
0;(d.4.4) Z Z GanNGirnLa—r Z Nvnd ) a
i=1 a=r+1 =1

r .1 m—1
+ Z'/\[(I;—‘rl)RF (Nlph(q ,...,q )+Z'/V'(l+l)q

+ Z N(/+1)C06 r— k(ZNaH) ) (3.75)

a=r—+k+1

where i : U € R"~! — R s the unique function such that h(c?o) = q&, c]& € R, and

r .1 im—1 m—1 N
> N Rp (th(q ced ) E DY NG | =0 (3.76)
I'=1 =1
A ~1 am—1 : . A A1 am—1
forallg = (g ,...,qn ) € U, with U a neighborhood of gy = (g, -. .,q(r)n ). One can

prove, using the same ideas as in the previous case, that the Birkhoffian given by (3.75) is still
dissipative.

. k X .
If the determinant det [ZZ;H 'M(H-l)jv(zﬂ) (q)]i,j=l ..... - # 0, then the Birkhoffian
(3.75) isregular. O
If there exist in the network m3 < m loops which contain only resistors and capacitors,

all the other loops containing at least an inductor, we can regularize the Birkhoffian (3.22) by
introducing into each of these ms loops an inductor in series, with the inductance functions

Ly :R— R\{0},a’ =1, ..., m3, having very small values. The configuration space remains
M. of dimension m. Under certain conditions on the functions L, and on the functions L,
a = 1,...,k, which characterize the other inductors, the Birkhoffian wf.’“ on M, will be a

dissipative regular Birkhoffian.

Without loss of generality, we may assume that we have one loop in the network containing
only resistors and capacitors and in the chosen coordinate system
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Ni=0, a=r+1,....,r+k. 3.77)

The expressions (3.22) of the Birkhoffian components become, j =2, ..., m,

01,4, §) = ZM Rp@) + Z N} Cork(q)

a=r+k+1
m  r+k

0i@.q.9) =Y. > NN'La—r ()"

i=2a=r+1

+ ZNFRF @+ Z N¥Cori(q)- (3.78)

I'= a=r+k+1

We introduce into this loop an inductor in series, described by the following relation between the
current and the voltage

v =L (1)% (3.79)

where £; : R — R\{0} is a smooth invertible function. After introducing the inductor, the
number of branches of the graph associated with the circuit increases by one, that is, there will
be b+ 1 branches, and the number of nodes increases by one as well, that is, n becomes n+-1. Still
the cardinality of a selection of loops which cover the whole graph remains m. The configuration
space is the same M., with dimension m. The corresponding Birkhoffian, denoted by ¢!, has
the component Q(q, ¢, §) given by,

Q1(q.4.4) = L(G"Hi' +ZN{RF<q>+ Z N Cori(9) (3.80)

=1 a=r+k+1

and the others Q2(q, ¢, §), ..., Om(q, ¢, §) have the same form as in (3.78). This Birkhoffian
is dissipative, the expression of the function Eq, on T M, is (3.28) plus the term [ L(q Hg'ldg!.
The dissipative 1-form has the form (3.26).

Ifﬁ(q)det[zg+’;+lAf(‘;+l)Af(l+l)L (c})]”:l 0. this Birkhoffian is regular. [

3.2. Voltage controlled resistors

Let us now consider the nonlinear resistors for which the constitutive relations are given by
Ir=Rr@r), I'=1,...,r (3.81)

where R : R — R are smooth functions. In order to obtain a dissipative Birkhoffian, we also
assume that, for all x #£ 0,

Rrx)x >0, VI=1,...,r (3.82)

that is, for each nonlinear resistor, the graph of the function 2R lies in the union of the first and
the third quadrant.

Taking into account (3.3)—(3.5) and (3.81), the Egs. (3.1) and (3.2) governing the circuit have the
form
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v (3.83)
AT L)1, | =0

Ca(Qq)
Ip =Rrp).

Using the first set of equations (3.83), we define a family of m-dimensional affine—linear

configuration spaces M. C R® parameterized by a constant vector ¢ in R". This vector is
related to the initial values of the Q-variables at some instant of time. A Birkhoffian w. on the
configuration space M, arises from the second set of equations (3.83). Thus, (M., w.) will be a
Sfamily of Birkhoff systems that describe the RLC network considered.

The first set of equations (3.83) is the same as the first set of equations (3.9). Thus, using
them we can define the family M, of m-dimensional affine-linear configuration spaces (3.11).
For a coordinate system g = (q',....,q™) on M., the relations between the x-coordinates (3.14)
and the g-coordinates are given by (3.15). The matrix of constants A satisfies (3.16). Taking
into account (3.20), we define the Birkhoffian w. of M, such that the differential system (2.5)
is the linear combination of the second set of equations in (3.83) obtained by replacing AT with
the matrix /7. In terms of the g-coordinates chosen before, the components Q i(q,q,q) of the
Birkhoffian have the implicit form

p
0i(q.4.§) = Fj(@§+Gj(@)+ Y Nlvp, j=1...m
m r= (3.84)
Z/\/qu'j =NRr(r)
j=1
where the functions F;(¢)g, G j(g) are given by (3.23) and (3.25).
The Birkhoffian (3.84) is dissipative.

Indeed, with the function Eg, (g, q) given by (3.28), the identity (2.16) becomes for the
Birkhoffian (3.84),

ul TN - 8E0w - j 8EOL,) . j a I -
2.0i@ g’ =Y | 52l + i + ) N e | (3.85)
= =1L % 4 r=i

It remains to show that the vertical 1-form defined implicitly by

Dj(q,c})=Z/\/'ijp, j=1,....m
m = (3.86)
> N/ =Rrwr)

j=1
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is dissipative. From the second set of relations in (3.86), we have
m r . r
YD Njvrg =Y %Rrrvr. (3.87)
j=1TI=1 r=1

Therefore, the inequality (2.14) reads Y »_; Rr(vr)vp > 0. The last inequality is satisfied in
view of the assumption (3.82). O

As in the case of current controlled sources, the Birkhoffian (3.84) is never regular if the
network contains closed loops formed only by capacitors, or resistors, or both.

4. Examples

Example 1. This example is based on the oriented connected graph:

Fig. 1.

Wehave r = 1,k = 3, p = 3,n = 3, m = 4, b = 7. We choose the reference node
to be V4 and the current directions as indicated in Fig. 1. We cover the associated graph
with the loops Iy, I, I3, I1. Let V. = (V1, V,, V3) € R? be the vector of node voltage
values, I = (I, L), la) € R' x R?® x R? be the vector of branch current values and
v = (V[[], V@), Vo) € R! x R? x R3 be the vector of branch voltage values.

The branches in Fig. 1 are labelled as follows: the first branch is the resistive branch Ry, the
second, the third and the fourth branch are the inductive branches L, L, L3 and the last three
branches are the capacitor branches C1, Ca, C3. The incidence and loop matrices, B € 973(R)
and A € M74(R), can be written as

-1 0 1 0 0 0 -1
0 0 -1 0 0 1 -1
0 -1 0 0 1 -1 0
B=|lo -1 1|, A=lo0o o 1 o]. .1
0 1 0 11 0 0
1 0 o0 1 0 0 -1
-1 1 0 1 0 0 0

One has rank(B) = 3, rank(A) = 4.
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All the electrical devices are considered to be nonlinear and described by the relations (3.3) and
(3.5), with C1, Cp, C3 : R — R\{0}, Ly, L», L3 : R — R\{0} smooth invertible functions, and
by the relation (3.6), with R; : R — R a smooth function, such that (3.7) is satisfied, that is, for
any x # 0

Ri(x)x > 0. 4.2)

The equations (3.9) which govern the network have the form

I+ Q—Q=0

—I2) —13)+Q +Q3=0

I — Iy +13) =0

—C1(Q1) + C2(Q2) + C3(Q3) =0 “4.3)
Ly(12)i) + Ci1(Q) =0

Li(1y)iay — La(1p)i) + L3(13))iz) =0

—Ri(1f1)) — L1(11y)iay — C2(Q2) = 0.

The relations (3.12) and (3.14) read as follows for this example
I =0Qu;, lw=Qa, a=1273 4.4)
x'i=Qup, ¥ = Quy, 2 1= Q) 1t 1= Q3 ¥ = QL 20 = Qo 1T = Qs 4.5)

Using the first three equations of the system (4.3) we define the 4-dimensional affine-linear
configuration space M. In view of the notations (4.4), (4.5), we integrate these three equations
and solving them in terms of 4 variables, we obtain, for example, x2 = x! + x* + const, x°
x3 4+ x* — x7 + const, x® = x' 4+ x7 + const. Thus, a coordinate system on M, is given by

=, P=xt Po=xl, gt = 4.6)

The matrix of constants

I
Nj
N=| N
-/\[](-1 I'=1,2,a=3,4,a=5,6,7
j=1,2,34

from (3.15) is given by

0 0 1 0
0 1 10
0 0 0 1
N=]10 100
-1 1 0 1
1 010
1 0 0O

Therefore, in terms of the g-coordinates (4.6), we may define the Birkhoffian w, =

01(q.4,§)dq" + 02(q, ¢, §)dg* + 03(q. . §)dg> + Qu(q. 4, §)dg* of M, as in (3.22), with
(3.23)=(3.25), that is,
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01(4.4.§) = —Ci(—¢q" +q* + ¢ + const) + C2(q" + ¢ + const) + C3(g")
02¢.4.9) = [L1G*+3) + L3@D) ]| §* + L1 + ¢

+C (—ql + q2 + 6]4 ~+ const)
03(q.4.4) = L1(§> + 4§ + L1(G” + 4§’ + Ri(§”) + Ca2(q" + ¢° + const)
04(q.4,4) = L2(gM§* + C1(=q" + ¢* + q* + const). .7

The Birkhoffian (4.7) is dissipative and not regular.
Indeed, there exists a smooth function Eq, : TM — R of the form (3.28), that is,

Eo,(q.q) = / 1% 6@ + 3 +dg®) + / Lt dg* + / La@D)q*dg?
- [ [T ar@ + iaied - [ [T adaier
+ /51(611,q2,c14)(c1q1 —dq2+dq4)+/52(q1,q3)(dq1 +dg%
+ / Ca(g"dg! — / / &(q", 4% 4" (~dg'dg® + dg'dg* — dgdg")

- //5§(q1,q3)dqldq3—///5{’(q1,q2,q4)dq1dq2dq4 4.58)
such that (2.16) is satisfied with

D = Ri(¢)dg>. 4.9)

Because the function R; satisfies (4.2), we obtain

Di(q, )¢’ = RiGHq> >0 (4.10)
that is, (4.9) is indeed a dissipative vertical 1-form.

We are in the case where the circuit considered has one loop which contains only capacitors.
We note that for the Birkhoffian (4.7), the first row of the matrix [%]_ 1034
i,j=12.3,
30;

zeros. Therefore, det [W] iaaa 0 and the Birkhoffian (4.7) is not regular.
L, ]j=1,2,3,

Using the first relation in (4.7), we now define a three-dimensional M. C M. by

contains only

M. = {q =" q¢* ¢’ 4" e M./ Ci(q" — q* + q* + const)
+ Calg' + ¢ + const) + C3(gh) =0}. 4.11)

By the implicit function theorem, we obtain a local coordinate system on the reduced

configuration space M.. Taking §' = ¢2, 3% = ¢°, 3> = ¢*, the Birkhoffian has the form
W = Zj’:l Q;dg’, where

01G.4.9) = [L1G" +3) + Ls@H |3 + 11@" + 7
1

—C1(£@". 3% 3> — q" + 3 + const)
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- s e =1 22 1 =1 22 w2 2
02(q.49.9) = Li(g +¢)g +Li(g +q3)qg +Ri(@q)
+Co(f(G". % §) + G* + const)

—~ - e 23,23 _ _ _ _ —
03(3.4,9) = L2(@)q +C1(f@G". 3% %) — 3" + 3 + const) (4.12)

f : U c R® — R! being the unique function such that f(gy) = qé, qé € R, and

Ci(f (@ —q"' +§° +const) + Ca2(f(§) +¢* +const) + C3(f(§) = 0,YG = (¢'. 4%, ¢°) € U,
with U a neighborhood of §o = (G4, 3. G7)-

We have shown in Section 3 that in this case the reduced Birkhoffian (4.12) is dissipative and
regular.

The relations (3.45) are satisfied for this example, thus, there exists a function Eow (q, (}) such
that (3.41) is fulfilled, with the dissipative 1-form given by

D = R\ (§)dg>. (4.13)

We calculate

=1 =2 = =1 =2
20, Li(G +4 )+2La(611) Liq +q) 0
det[Ti,} I I LG +dd o | (4.14)
09 i =123 0 0 L2(§3)

Because L1, Ly, L3 : R —> R\{0}, the determinant above is different from zero, then, the
reduced Birkhoffian given by (4.12) is regular. O

If the nonlinear resistor is voltage controlled, that is,
I[l] = 9%1 (v1) (4.15)

we obtain, instead of (4.7), the following implicit Birkhoffian

01,4, §) = Ci(g" — ¢* + ¢* + const) + Ca(g" + ¢* + const) + C3(¢h)
024, 4. ) = [L1G> + %) + Ls@ ] d + L1@* + )5

—Ci(q" — ¢* + q* + const) (4.16)
03(q.4.4) = L1(G> +¢)§* + L1(§* + 44" + Ca(q" + ¢° + const) + v
04(q.4.4) = L2(¢M§* + C1(g" — ¢* + ¢* + const)
¢ = Ri().

We suppose that the nonlinear voltage controlled resistor satisfies /1 (x)x > 0, for any x # 0.
Thus, as in the case of current controlled resistors, there exists a function Eg, (g, ¢) given by
(4.8), such that (2.16) is satisfied with the dissipative implicit 1-form

D(q,¢) = vidg’,
4.17
{43 — R (v). 17

Therefore, the Birkhoffian (4.16) is dissipative. The Birkhoffian (4.16) is also not regular. O
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Example 2. This example is based on the oriented connected graph:
V) Ru"l Vi Ry Va

@ =
Vi ¢ Ve=0 R4

Fig. 2.

Wehave r = 5,k =2, p =2,n =5 m = 4, b = 9. We choose the reference node

to be Ve and the current directions as indicated in Fig. 2. We cover the associated graph with
the loops Iy, I, I3, I4. Let V. = (V1, Vo, V3, V4, V5) € R’ be the vector of node voltage
values, I = (I[1, L), la) € R’ x R? x R? be the vector of branch current values and
v = (V[], V@), Vo) € R’ x R? x R? be the vector of branch voltage values.
The branches in Fig. 2 are labelled as follows: the first, the second and the third branch are
the linear resistive branches, Rjin,, Riin,, Riins, the fourth and the fifth branch are the nonlinear
resistive branches R4, Rs, the sixth and the seventh branch are the inductive branches L, Ly,
and the last two branches are the capacitor branches Cy, C;. The incidence and loop matrices,
B € Mos(R) and A € Moq(R), can be written as

0 -1 1 0 0 1 0 0 0
O 1 0 0 0 1 0 0 —1
0 0 -1 0 0 1 -1 0 0
0 0 0 0 -1 0 0 1 0
B=lo o -1 1 o], A=]0o 1 0 o0 (4.18)
1 1 0 0 0 0 0 0 1
0 0 0 1 0 0 -1 1 0
1 0 0 0 0 0 0 0 1
0 0 0 -1 1 0 0 1 0

One has rank(B) = 5, rank(A) = 4.

Except for the resistors in the first loop which are considered linear, all devices are nonlinear
and are described by the relation (3.3), (3.5) and (3.6). We suppose that R, R2, Rz > 0 are
distinct constants, C1, C» : R — R\{0}, L1, L, : R — R\{0}, smooth invertible functions and
R4, R5 : R — R smooth functions such that, for any x 7 0

Ri(x)x >0, Rs5(x)x > 0. 4.19)
The first set of equations (3.9) has the form
—I1+Q =0
=+ 1)+ 1) =0
Iny— I3 —I51=0 (4.20)

Ii51+12) — Q=0
—Ia+ Q2 = 0.
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The relations (3.12) and (3.14) read as follows for this example
I[p] = Q[F], I = l,...,5, Lq) = Q(a), a=1,2 (4.21)
1. 5. 6 ._ 7. 8 ._ 9 ._
X =Qup ... X =Qi, X = Q. X' ==Q), X =Q,x =Q. (4.22)

Using the equations from (4.20), we define the four-dimensional affine-linear configuration

space M.. In view of the notation (4.21) and (4.22), we integrate these five equations and

solving them in terms of four variables, we obtain, for example, x2 = x! — x% 4 const, x3 =

x! — x5 4 const, x* = x% 4+ const, x® = x8 + const, x’ = —x° + x2 + const. Thus, a coordinate
system on M, is given by

ql = xl, q2 = x5, q3 = x8, q4 = x9 (4.23)

The matrix of constants A/ from (3.15) is given by

1 0 0 O
1 0 -1 0
1 -1 0 0
0 0 o0 1
N=]0 1 0 O
0 O 1 0
0 -1 0 1
0 0 1 0
0o 0 o0 1

Therefore, in terms of the g-coordinates (4.23), we define the Birkhoffian w. = Q(q, ¢, ¢ )dq1 +

0>(q,4,§)dq> + 03(q, ¢, §)dq> + Qa(q, ¢, §)dg* of M, as in (3.22), with (3.23)~(3.25), that
is,

01,4, 4) = Ry + Ry + R3)¢' — R3¢% — Rpg®

0(q.4.§) = La(=¢* + ¢M§* — La(=¢* + ¢Mi* — R3g' + R3¢* + Rs(¢?)
03(q.4.4) = L1(¢H§* — Rog' + Rog” + C1(q?)

04(q. 4. §) = —La(—¢* + ¢M§* + La(—¢* + ¢H§* + Ra¢h) + C2(g™). (4.24)

The Birkhoffian (4.24) is dissipative and not regular.
Indeed, there exists a smooth function Eq, : TM — R of the form (3.28), that is,

Eo,(@,d) = / Li@ddg + / T2 4 (= + 4)(—dg? + dg®
- / f T4, 4= + ¢*)dg?dg* + / f T2, 4*dgdg*
+ f Ci(g)dg® + / Ca(g*)dg* (4.25)
such that (2.16) is satisfied with the dissipative 1-form defined by
D =[d'Ri+ @'~ R + @' = §DRs] dg

+[ @' = d% Rs + Rs(@D) | dg? — (@' — ¢ )Radg® + Ra(G)dg*, (4.26)
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In view of the assumptions (4.19) and of Ry, Rp, R3 > 0, we get

Di(q, 9§’ = Ri(GH% 4+ Ra(@' — 437 + R3(¢' — ¢H? + Ra(¢Hg* + Rs(§Hg* > 0.
4.27)

Therefore, the vertical 1-form in (4.26) is dissipative.
We are in the case where the circuit considered has one loop which contains only resistors. We

note that for the Birkhoffian (4.24), the first row of the matrix [%] ! contains only zeros.
i,j=

Therefore, det [z—g,’] i = 0 and the Birkhoffian (4.24) is not regular.
i,j=1,...,

Using the first relation in (4.24), we now define Mc C M, by
M, = {q =(q".q%.q>.q") € Mc/(R1 +Ra + R3)q' —R3q” — Rag® +¢1 = 0}
(4.28)

where c; is a real constant.
On the reduced configuration space M., in the coordinate system given by §' := ¢2,§° =
g3, §> := ¢*, the Birkhoffian has the form &. = Q1dg' + 02d4? + 03dg>

01@.84.8) = La(=4' +4)3' — La(=4' +8)3° + (@ +€)§' — €4+ RsG)

026,6,4) = L1@)5" — &d' + (€ + )8 + C1 (G

036,6,8) = —La(=4' + 64 +La(=4' +8)3° + Ra@) + C2G%) (4.29)
where we denote the constants as ¢ ;= —1k2__ ¢, .— __RuRs &3 = _RoR3

Ri+R2+R3’ Ri+R2+R3’ Ri+Ry+R3 "
As we have stated in Section 3, the Birkhoffian given by (4.29) is still dissipative. The function
Eow (g, ¢) has the same form (4.25) written in the coordinates ¢. The relation (3.62) is satisfied
with the dissipative 1-form defined by

A 21 Al A2 21 ~ 22 Al A2 A PN
b=[i'e+@ —iHe+Rs@)]dq" +[§°€1 =@ —d)e]dd? + RiG g,
(4.30)

The vertical 1-form above is dissipative, as can be seen as follows: For Ry > 0, Ry > 0, R3 > 0,
we get €1 > 0, € > 0, €3 > 0 and together with (4.19) these yield

A A AT x1 a1 22 22 21oa1 23 :3
DiG. 9§ =2G ¥ +¢3G —G )P+ )2 +Rs(G)§ + Ra(§)§ > 0. (431)

The Birkhoffian given by (4.29) is not regular, since the determinant

20 Lg 0 —Lg)
det[ = } = 0 L 0 |=0. (4.32)
i.j=123 |=La(q) 0O La()

This result is not unexpected because the network considered also has a loop which contains only
resistors and capacitors, formed by R4, C2, Rs, Riin;. In order to regularize the Birkhoffian (4.29),
we introduce an inductor in series into this loop, described by the following relation between the
current and the voltage: v = £1(I)%, L1 : R — R\{0} being a smooth invertible function. This
means that this loop will have one more node and one more branch. The number of branches for
the graph associated with the circuit increases by one, that is, there will be b = 10 branches, and
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the number of nodes increases by one as well, that is, we will have n = 6. But the cardinality
of a selection of loops which cover the whole graph remains m = 4. After the calculation we
arrive at the reduced configuration space deﬁned by (4.28). On the reduced configuration space
M., in the coordinate system glven by q = ¢q2,§> = ¢>, 3> = ¢*, the Birkhoffian a)e’“

has the components Q 14,4, q) Qz(q q, q) given by (4.29) and the expression for Q3 q, q, q)
becomes

03 4.9 = —La(=4' +)i’ +[£1@) + La(=§' +§)] " + Re@) + 2@,
(4.33)

We now calculate
30 L@ 0 -L@
det | —7 = 0 L1(q) 0 . (4.34)
0 lij=123 |-La@) 0 L@ +L29)
Because L1, L1, Ly : R — R\{0} the determinant above is different from zero; then, the
Birkhoffian @S* is regular. [
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