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ABSTRACT

Motivated by a conjecture of Steinhaus, we consider the mapping F, associating to each point x of a
convex hypersurface the set of all points at maximal intrinsic distance from x. We first provide two large
classes of hypersurfaces with the mapping F single-valued and involutive. Afterwards we show that a
convex body is smooth and has constant width if its double has the above properties of F, and we prove
a partial converse to this result. Additional conditions are given, to characterize the (doubly covered)
balls.

1. INTRODUCTION

A convex hypersurface is the boundary of a convex body (i.e., compact convex set
with interior points) in the Euclidean space JRd+I, or a doubly covered convex body
in JRd; in the last case we call it degenerate. The intrinsic metric p of a convex
hypersurface S is defined, for any two points x, y in S, as the length p (x, y) of a
segment (i.e., shortest path on the hypersurface) from x to y. For any point XES
let Px denote the distance function from x, given by Px (y) = p (x, y) for all YES,
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and let Fx be the set of all farthest points from x (i.e., global maxima of Px). For
simplicity, we shall not distinguish between the set Fx = {y} and the point y, and
we shall write F, = y, when the case occurs.

Our paper concerns the following question ofH. Steinhaus (see Section A35, (ii)
in [3]): is the sphere characterized by the property that the mapping F, associating
to any point x on the convex surface S the set Fx offarthest points from x, is
single-valued, 1-1 and symmetrical?

It is well known that our mapping F is upper semicontinuous. We call F injective
if F, n Fy = 0 for any pair of distinct points x, yES, and we call F surjective if
for every point yES there is some point XES with y E Fx . When we say that F is
bijective, we implicitly state that F is single-valued.

While the employment of the mapping F led to a beautiful topological character­
ization of the spheres [4], the above - most natural - attempt to use F for a metrical
characterization of the spheres was not successful.

A class R of centrally-symmetric surfaces of revolution was provided by the
third author in [10], to negatively answer Steinhaus' question. He also asked for
alternative descriptions of the set H, of all convex (hyper)surfaces for which F is a
single-valued involution (F 0 F = ids). We shall call the elements of'li,referring
to the sphere, antipodal convex (hyper)surfaces.

Put I = {S convex: rad(S) = diam(S)}, where rad(S) is the intrinsic radius of S,
rad(S) = minXES p(x, Fx ).

All surfaces in the class I are antipodal, because ReI c H [13]. We show, with
our Theorem 2, that the inclusion ReI is strict. Other examples are provided in
[6], by showing that all right circular cylinders of small height also belong to I \ R.

The second author [8] proved that no tetrahedron is antipodal, leaving open the
existence problem for antipodal polyhedral convex surfaces.

Yet all these considerations were done for surfaces in lR3. The aim of this work is
to study antipodal convex hypersurfaces in lRd+!, for any integer d ~ 2.

In the first part of the paper, Theorem 1 generalizes the set R to higher
dimensions (see Section 3 for the precise definition), while Theorem 2 provides
a new class of examples, by considering the union of two caps of d-dimensional
semispheres of (not necessarily) different radii. We prove that all these hypersur­
faces belong to I n H.

In the last part we restrict our study to the set D of all degenerate convex
hypersurfaces. We show in Theorem 3 that every hypersurface in H n D is
the double of a smooth convex body of constant width. Theorem 4 provides a
partial converse to Theorem 3; roughly speaking, it states that every double of a
C2-differentiable convex body of constant width has a neighbourhood of its ridge,
the restriction of F to which has the properties of Steinhaus.

Theorems 5-7 partly confirm Steinhaus' guess, by proving that it is possible to
characterize the balls (eventhough not the spheres) by the use of the mapping F.
More precisely, a degenerate convex hypersurface D is a doubly covered ball
if D is centrally symmetric and the corresponding mapping F is an involutive
bijection (Theorem 5), respectively if D is two-dimensional and F is an isometry
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(Theorem 6), and the only degenerate convex hypersurfaces in I are the doubly
covered balls (Theorem 7).

We refer to the survey article [1 I] for general properties of, and references on,
farthest point sets on convex surfaces.

The diameter of a convex hypersurface S is diamS = sUPxeS Px (Fx ).

The width w(u) of the convex body K C JRd (or of its boundary) in the direction
u E Sd-l is the distance between the two supporting hyperplanes of K orthogonal
to u. (Here, Sd-l denotes the unit sphere in JRd.) K is said to be of constant width
if w(u) == w for all u E Sd-l. See [2] for a survey on this topic.

According to [9], a convex body K is called smooth if all its boundary points are
regular. The double D of K is called smooth if K is smooth, and ofdifferentiable
class cr ifbdK, the boundary of K, is so.

For a, b, c E JRd+l , the notations abc, [ab], [abc] and lIa -bll stand for the 2-plane
spanned by the points a, b, and c, the line-segment determined by a and b, the
Euclidean triangle determined by a, band c, and the length of [ab], respectively.
We denote by (el, ... , ed+') the canonical basis ofJRd+1, and the jth component of
wE JRd+1 by wj .

The length of the curve f is denoted by I (f).

2 HYPERSURFACES OF REVOLUTION

The goal of this section is to give some more notations and an auxiliary result for
later use.

We describe any hypersurface of revolution S as

S = {(x, y) E JRd X JR: (lIxll, y) E f},

where f is a curve in JR~o x JR running from (0, a) to (0, b), where a < b and all
intermediate points of r lie in JR>o x JR. Then the south and north pole pole of S
are a = (0, a) E JRd x JR and v = (0, b) E JRd X JR, respectively.

Each point p =1= a, v in the hypersurface of revolution S lies on a unique meridian
Mp, defined as the component of S n pav \ {a, v} containing p. Denote by M;; the
opposite meridian to M p (or to p) in the plane pav, the image of Mp under the
antipodal map in the first d coordinates.

Consider now a continuous map ¢: [0, a] C JR --* [0, +oo[ such that ¢(s) > °
for all s E [0, a[ and ¢(a) == 0, and denote by S¢ the hypersurface of revolution
generated as above by the curve f consisting of the union of the graphs of ¢ and

-¢. Alternatively, the symmetrical graph G¢ of ¢, G¢ ~f {(so 0, ,0. ±¢(s»): s E

[O,a]}, is included in the (Xj,xd+d-plane P == (q: X2(q) == = Xd(q) == O} c
JRd+l. Denote by A the unit (d - 2)-sphere of the (X2, ... , Xd )-space p.l. When
(A, a) varies in A x [- I' I]' G¢ generates the hypersurface S¢ given by

X(s,A,a) ==ssinae, +scosaA±¢(s)ed+['

The points a == (0, ... ,0, -¢(D» and v = (0, ... ,0, ¢(o» are respectively the south
and the north pole of S¢.
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We shall repeatedly make use of the following simple result.

Lemma 1. The diameter diam(S) of any hypersurface of revolution S is equal
to the length of any meridian of s. If the distance between two points p, q on
the hypersurface ofrevolution S is equal to diam(S) then Fp = q and p, q lie on
opposite meridians. In particular, ifS is centrally symmetric then the points are
symmetric to each other.

Proof. The diameter ofa hypersurface of revolution S is at least equal to the length
of one of its meridians, because any meridian is a segment between the poles of S.

Let p, q be two points in S such that pep, q) = diam(S), M p the meridian through
p, and Z EM;; determined by p(q, v) =p(z, v). We have

diam(S) = pcP, q)

(1) ~ min{p(p,v) + p(v, q), pcp,0") + p(O", q)}

= min{p(p,v) + p(v, z), pep, 0") + p(O", z)}

(2) ~ ~(l(Mp) + l(M;;») =l(Mp) ~ diam(S),

which implies that diam(S) =pep, q) =I(Mp) =I(M) for any meridian M.
The the equality case in (2) implies

pcp, v) + p(v, z) = pep, 0") + p(O",z) = diam(S).

By the equality case in (1), the two components of (Mp U Mq ) \ {p, q} are segments.
Let q' be the point symmetric to q with respect to vo"p. Then the two components

of (Mp UMq,) \ {p, q/} are segments too. Since segments do not bifurcate, Mq = M;
andq =z. 0

3. A CLASS OF ANTIPODAL HYPERSURFACES

In this section we provide a class R of antipodal hypersurfaces, by generalizing in
arbitrary dimension the last theorem in [10].

Let </>: [0, a] -4JR be a concave nonincreasing function such that

0=</>(0) <</>(0) <a.

We assume that the function ljr:[0, a] -4 JR, given by ljr(s) = s2 + </>2(s), is strictly
increasing.

Let R be the set of all hypersurfaces S¢ obtained from the above functions </> by
rotating in JRd+! their symmetrical graphs G¢ C X!OXd+! about the axis JRed+!; i.e.,
for</> as above, s E [0, a], AE A, and a E [-~, ~], S¢ is given by

Xes, A, a) = ssina e! + scosa).. ± </>(s) ed+!'

For the proof of Theorem I we need to define, for each concave function </> as
above, a new function 1]: [-0,0] -4 JR by 1](±s) = </>(s). Let S;;; C JRd+! be the
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hypersurface defined by the rotation of the graph of '1 about the axis JRel; that is,
for t E [-a, a], fL E A and f3 E [- ~, ~], S; is given by

Y(t, fL. (3) = t e, + ¢ (I t I) cos {3 fL + ¢ (I t I) sin {3 ed+1.

Lemma 2. The hypersurfaces S¢ and S; are convex, S; is included in convS¢

and S; () S¢ = S'" () P.

Proof. Let C¢ denote the set ofall (x, y) E JRd X JR such that Iyl- ¢(lIxll) ,,;; 0, that
is, the basin f,,;; °of the function f: (x, y) t-+ IYI- ¢(llxll). Clearly S¢ = bdC¢.

The function Y t-+ Iy I is convex, and therefore the function (x, Y) t-+ 1Y1 is convex.
The function x t-+ IIxll is convex and the function -¢ is nondecreasing and convex,
hence the composition x t-+ -¢ (11x II) is convex, and thus the function (x. y) t-+

-¢(lIxll) is convex. As the sum oftwo convex functions is convex, the function f is
convex, and because the subgraph ofany convex function is a convex set, it follows
that the set C¢ is convex, and therefore S'" = bdC¢ is a convex hypersurface. The
proof that S; is a convex hypersurface is analogous.

The hypersurface S; is the set of all (u, v, y) E JR X JRd-l X JR such that u =

±¢-'(II(v, Y)II), or equivalently ¢(Iu1)2 = IIvll2 + y2. Because the function 1/1 is
strictly increasing, we have

¢(II(u, v)II)2 + u2 + IIvll2 = ¢(II(u, v)II)2 + II(u, v)11 2

~ ¢(luI)2 + u2 = IIvll2 + i + u2
,

with equality if and only if v = 0. This is equivalent to ¢(II(u, v)II)2 ~ y2 with
equality if and only if v = 0, that is, (u, v, y) E C¢ and (u, v, y) E S'" if and only if
v =°if and only if (u, v, y) E S¢ () P. 0

The next well-known lemma can be found for example, in [1], p. 80. Let K be a
convex body in JRd+ 1 and x a point in JRd+ 1 \ intK. The metric projection of x onto
K is the unique point in K closest to x.

Lemma 3. Let K be a convex body in JRd+l and r a curve in JRd+l \ intK. Then
the length ofr is at least as long as its metric projection onto K.

The following result extends to arbitrary dimension Theorem 2 in [10]; the proof
we present here is not verbatim the same as the proof given in [10], although it
contains the same steps.

Theorem 1. ReI () H.

Proof. Consider a hypersurface S¢ in R and a point p E S¢.
We first prove that if p lies on the equator, that is, pd+l = 0, then pep, -p) =

diam(S¢).
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Because ofthe rotational symmetry, we may assume that pEP, that is, pi = 0 for
all 2 ~ j ~ d. In combination with pd+! = 0 this means that p is a pole of S:;;, and

therefore Ps- (p, - p) = diam(S:;;) = l(Mp ) = diam(S</» according to Lemma 1. On
</J

the other hand, if r is any segment in S</> from p to - p and r~ its metric projection
onto convS:;;, which lands in S:;;, then
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4 ANOTHER CLASS OF ANTIPODAL HYPERSURFACES
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Steinhaus' conditions mentioned in Introduction. We consider the union oftwo caps
of d-dimensional semispheres of (possibly not) different radii, and prove that it
belongs to I n H. Our argument also holds for the limit case where one of the caps
is a disk.

In order to prove the main result of this section, we shall use the following fact
of elementary analysis.

Lemma 4. Let Y be a connected topological space, I and interval in JR, and for
each y E Y, let fy :1--+ JR be such that:

(i) For each y E Y the function fy is not constant, and either increasing or
decreasing on I,
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Proof. Let y+ and Y- denote the set of all y E Y such that fy is increasing and fy
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proves that y+ is an open subset of Y. Similarly we obtain that Y- is an open
subset of Y, and because Y is the disjoint union of y+ and Y- and Y is connected,
it follows that Y = y+ or Y = Y- . D

Let Ld,Rj,R2 be the union of two d-dimensional spherical caps of respective radii
Rl ?" 1 and R2 ?" 1, whose common boundary is a unit (d - I)-dimensional sphere;
i.e., Ld,R],R2 is the boundary of the intersection of two balls of respective radii Rl

and R2, with centers at distance !Rr - 1 +JR~ - 1. Denote by .:J the set of all
hypersurfaces Ld,R] ,R2'

Theorem 2. .:J c I n H.

Proof. The following argument will be an exercise in trigonometrical geometry.
Denote by V the space spanned by ed+l, by H the hyperplane orthogonal to V

and by A the unit (d - I)-sphere in H.
For i = 1, 2, let Bi be a ball of radius Ri in JRd+ I whose center Wi belongs to

V, and let S, be the boundary of Bi. Assume that 1 ~ Rl ~ R2 and Sl n S2 = A,
Assume, moreover, that wf+l < °and w~+l > 0, and put Ci = {u E S,: (_I)iud+1 <

a}. Then the boundary Ld,Rj R2 of Bl n B2 is the disjoint union Cl U A U C2, Let
8, = LOw,A, where A E A. It follows from elementary calculus that

. -I 18 i =sm ­
R,

(3) w,=(O, ... ,O,(-I)ih,)

hi =JR? -1 =cot8,.

A parametrization of ct ~fCi \ V is given by

(4)
<Pi: Ax ]0, 8i[~ JRd+l

(A, e) f-+ w, + Ri (sineA - (_I)i cos eed+I)'

We call respectively A and e the longitude and the colatitude of <P, (A, e).
It is quite obvious that a meridian of Ld,Ri R2 has the length equal to

A meridian path of Ld,Rj R2 is by definition a path in the union of two opposite
meridians of Ld,RrRr

If p = <Pi (A, e) belongs to Ld,Ri R2 \ V then there exists a unique meridian

Mp through p. Denote by a(p) the point of M;; ~f M</J,(-Je,e) such that (Mp U

M;;)\{p, a(p)} consists of two equally long components. We claim that a(p) is
the only farthest point from p. To see this, it suffices to prove that the length of any
path from p to a(p) is never less than diam(Ld,R]R2) and to apply Lemma 1. By
continuity, it is sufficient to investigate the following two cases.
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Case 1. pEe:!: U a (CD. We can assume, without loss of generality, that pEe:!:
(otherwise, exchange p and a(p)). Note that p and a(p) have opposite longitudes,
and the colatitudes III of a(p) and liz of p satisfy

(5)

It follows that aCe:!:) is the set of those points in q having the colatitude in

]0, ~~ 81[.
Notice that any segment I; from p to q = a(p) intersects A C clCz n clCI at a

single point, say A. Indeed, if r, r' E A then the segment between rand r' of the
circle on Cz with center at Wz is shorter than the segment between rand r' of the
circle on CI with center at WI, which in turn is shorter than the segment between r
and r' of the great circle on A. Therefore, if we start at p E Cz and want to reach
q E CI along a segment on Ld,R!,RZ then, after reaching a point on A via a circle
segment on Cz with center at Wz, we must immediately leave A into CI and go to q
along a circle segment in CI with center at WI,

We can assume without loss of generality that

p=¢z(el,lIz),

q =¢I(-el,III),

A = (cosa, sina, 0, ... ,0),

I; is the union of two arcs of great circles so, by the cosine rule for spherical
triangles, its length is the minimum of

fR!,RZ,fl (a) = RI cos- I(cos 81 cos III + sin 81 cosa sin III)

+ Rz cos- I(cos 8z cos liz - sin8zcosasinllz).

We use (3) to compute the first derivative of fR!,RZ,fl with respect to a,

Notice that gR!,Rz,fl(X) vanishes if and only if

def 1 - (cos 81 cos III + X sin 81 sin III)z
hR!,Rz,fl(X) = , ? Ll

sm- (71

1- (cos 8z cos liz - Xsin8zsinllz)z

sinz liz

= sinz 81 cotZ III - sinz 8z cotZ liz

- (sin(281) cot III + sin(28z) cotllz)X

+ (sinZ 8z - sinz 8J)X2
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does so, hence !R,.R2./),. has at most two extrema on ]0, rr[. Therefore, if we prove
that 0 and rr are both minima for !R•• R2./),. then it follows that 1: is a meridian path.
To do this, we shall apply Lemma 4 and show the property for suitable parameters.

We claim that hRI.R2./),.(±I) =I- 0, except for RI = Rz = 1. For s = ±I,

hR] ,R2,/),. (s) = sinz 81 (cotZlh - I) - sinz 82 (cotZ(h - 1)
- s (sin(28]) cotel + sin(28z) cotfh)

= -(cotez sin 82 + s cos 8Z)2 + (Cotel sin 81 - s cos 8d2,

Since 0 < ei ~ 8i, cotO, ~ cot8i (i = 1,2). It follows that both parenthesis above
are positive and, by (5), h(s) = 0 if and only if

def !J., !J. ,
k(!J.) = cot - Sill 82 + scos 82 - cot - Sill 81 + scos 81 = O.

R2 RI

Note that, by (3),

Therefore, since the function y ~ y sin ~ is increasing on )0, ~[, k'(!J.) is nonnega­
tive and it vanishes if and only if RI = Rz. Hence

lim k(!J.) ~ k(!J.) ~ k(R282).
/),,---+0

By the use of the formula cotX = i + D(X), valid for small numbers X, we can
compute the above limit

(
R2 ) 1 (RI ) 1k(!J.) = - + D(!J.) - - - + D(!J.) - + s(cos81 + cos 8z)
!J. Rz!J. RI

~ s(jl - R]"z+ /1- Ri.z).
/),,---+0

Now, if s = 1 then k(!J.) is nonnegative, and it vanishes if and only if Rz = RI = I.
If s =-I, use (5) to get

k(Rz82)=-2cos81 ~O,

so k(!J.) is nonpositive and our claim is proved.
Choose an integer m large enough to ensure that (RI, Rz, Rj 81 + Rz8z) and

YO ctg (,j2,,j2, 6':.rz) belong to Ym , where

Ym = {(PI, P2, 8): PI E [1 + ~, ml P2 E [PI, m], 8 E [~. P2 sin-I :J}.
We want to apply Lemma 4 for [a, b) = [0, rr] and Y = Ym . Suppose the

assumption of Lemma 4 is not verified; then, for each positive integer n, there
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exist X n E ]0, 1/n [ and a triple Yn = (PI, Pz, 8) E Ym such that f~ (xn) = 0 (resp.
f;n (JT - xn ) = 0). Then, by the compactness of Ym, we can extract an subsequence of
{Yn}n converging to Y E Ym' It follows that the function h y associated to fy as above
verifies hy (1) = 0 (resp. hy ( -1) = 0), in contradiction to the above claim.

Therefore, we can apply Lemma 4 to deduce that 0 and JT are both minima of I\'
for all Y in Ym if and only if they are minima of fyo- Finally, use (5) to establish this
last statement by a direct computation:

f;~ (JT) = f~~ (0) = gyO (0) > o.

Case 2. p E q \ cla(Cz). We can assume, without loss of generality, that p =
¢(el' e) and a(p) = ¢(-el, e'), where e and e' are real positive numbers such that

It follows that e and e' are not less than ~8z. Assume that e ( e' (otherwise,
exchange them).

A segment between p and p' = a (p) consists either of a meridian path included
in CI, in which case p(p, p') = diam(Ld.RIR2)' or of three arcs of circles: the first
one in CI from p to some point U E A, the second one in Cz from u to some point
u' E A, and the third one in CI from u' to p'.

Let p" = ¢ (-el, e) be the point symmetrical to p with respect to et.
We claim that the shortest path from p to p", among all paths intersecting Cz, is

the meridian path. This claim would end the proof, since it directly implies that the
meridian paths are segments between p and p'.

To prove the claim, suppose on the contrary that a shortest path ~ joining p to
p" and intersecting Cz is shorter that 2(Rz8z + RI (81 - e».

Notice that ~ is symmetrical with respect to et. Indeed, denote by ~' the path
symmetrical to ~ with respect to et, and assume ~ =1= ~' (as point sets). Take the
first point along ~, say q, in ~'net. Then the arcs of ~ and ~' from p to q have the
same length, and they are segments of our hypersurface Ld,Rl R2' If ~ and ~' would
not have opposite directions at q then the first variation formula (see Theorem 3.5
in [7]) would show the existence (around q) of a path shorter then ~, which is
impossible by our choice. So ~ and ~' have opposite directions at q, and therefore
they coincide as point sets.

We may assume that ~ consists of an arc of circle in C1 from p to u = cos a e1+
sina ez (a E ]0, fD, an arc of circle in Cz from u to u' = - cosa el + sina ez, and
an arc of circle in CI from u' to pl!. Then the length of ~ is given by

(
2COSZa)

L(a) = Rz cos- I 1 - R~

sine cosa + cose)Rr - 1
+2RI cos-I .

RI

By a straightforward computation, the first derivative of L is
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L (a) = Rz cos-I ( 1 _ 2 c:~z a )

+
2R -I sine cosa + case r;;z-;R

z
1I cos V1\.1 - 1

RI

By a straightforward computation, the first derivative of L is
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and it vanishes on ]0, 'f [ if and only if cos a is a solution of the equation

Since the product of the solutions of (6) is negative, there exists at most one local
extremum for L in ]0, 'f [, say at ao. Furthermore,

'(Jr) sine °
L "2 = Jl-cOS2 e(Rf- 1)/Rf -1< ,

whence ao is a point of maximum, and the global minimum of L on [0, 'f] is either
at°or at 'f. Now we compute

2~1 (L(O) - L(~))
coseJRf - 1= - cos-I _---'=--__

RI

_lsine+cosejRf-l R2 -I( 2)+ cos + - cos 1 - -
RI 2RI R~

= - coS-I (cose cos 8I>

+ COS-I (sine sin 81 + cosecos81)
sin 81 1 2+. cos- (1 - 2sin 82)

2sm82
1 ~n81

= -cos- (cosecos81) + 81 - e+ -.--82
sm82

R2
::s; -81 + 81 - e+ -82 ::s; 0.

RI

So, the global minimum of L is at 0, and the shortest path I; is a meridian path.
This completes the proof of Theorem 2. 0

5 DEGENERATE ANTIPODAL HYPERSURFACES

The usual definition of a convex hypersurface covers, beside the boundaries of
convex bodies, the degenerate case too. Formally, a d-dimensional degenerate
convex hypersurface D is the union of two isometric copies K and K' of a convex
body (also denoted by) K C ]Rd (d ~ 2), glued together along their boundary by
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identifying the points x E bdK and x' ~ leX) E bdK', where I : K --+ K' is the
isometry between K and K'. Call K and K' theJaces of D, and D the double of K;
the ridge oj D is rdD = K n K'. Thus, D is (seen as) limit in JRd+l ofd-dimensional
convex hypersurfaces containing rdD.

Let V denote the space of all degenerate convex hypersurfaces of some fixed
dimension.

For any point x in the double DT of an arbitrary simplex T of dimension at least
4, the set Fx is included in the vertex set ofT [5]. Since F is upper semi-continuous
and its image is closed, there exists a neighbourhood of DT in V, all of which
hypersurfaces have F properly multivalued. Moreover, the same happens for F on
most (in the sense ofBaire categories) hypersurfaces in V [12], so 1i n V is a small
subset of 'D. We refine this by Theorem 3.

The next auxiliary result, a complete proofof which can be found in [12], follows
from the first variation formula.

A point yES is called critical with respect to Px (or to x), if for any direction r
of S at y for there exists a segment from y to x whose direction at y makes an angle
a:::;n/2 with To

Lemma 5. IfyES is a local maximumJor Px then it is critical with respect to Px.

We say that a convex body K has the property oj double normals if any line
normal to K at some boundary point of K is also normal to K at the other
intersection point with the boundary of K.

The following result can be found, for example, in [2].

Lemma 6. A convex body K has constant width ifand only ifit has the property
ojdouble normals.

The next result provides a link between the intrinsic geometry of convex hyper­
surfaces and the (extrinsic) geometry of convex bodies. Compared to Theorems I
and 2, it also shows that the degeneracy is a quite strong restriction.

Theorem 3. If the double oj the convex body K C JRd has the corresponding
mapping F an involutive bijection then K is smooth and has constant width.

Proof. Denote by D the double of K and consider a point z in SK =bdK cD.
Then clearly v = Fz E SK and there are precisely two segments from v to z, one on
each face of D. By Lemma 5, v is a critical point for Pz, hence the line zv is normal
to SK at v. Since z = Fv, z is a critical point for Pv and the line vz is normal to SK
at z, so SK and consequently K has the property of double normals. Then K has
constant width, by Lemma 6.

Assume there exists a supporting cone Tx of SK, at some point XESK, which is
not a hyperplane, hence the normal cone Nx of SK at x is not reduced to a vector.
Then there exist two distinct O-extreme unit vectors Vi, v" in Nx, and two sequences
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of smooth points x~, x~ convergent to x such that the unit normal vectors nx" nx"
converge to Vi, v" respectively (see Theorem 2.2.7 in [9]). n n

Put y~ = Fx~, y~ = Fx~ and y' = lim y~, y" = lim y~. The Hausdorff dimension
of the set ofall singular points of SK is at most dimSK - 1 (see [9]), so we may take
x~, x~ such that y~, y~ are smooth, too. We get y' "I y", because the lines x~y~ and
x~y~ are normal to SK at x~, y~, and respectively x~, y~, and the limit directions
Vi and v" are distinct. On the other hand, y', y" E Fx because Yn' = Fx' , y~ = Fx'" a

n n
contradiction to the bijectivity of F which proves the smoothness of D. 0

6. DOUBLES OF CONSTANT WIDTH CONVEX BODIES

Degenerate antipodal convex hypersurfaces are smooth and have constant width, as
shown by Theorem 3. In this section we prove a partial converse of this fact.

Theorem 4. Let K be a C2-differentiable convex body ofconstant width w, and D
the double of K. Then there exists a neighbourhood N ofthe ridge ofD such that
for all x E N, maxpx = w. Consequently, the restriction of F to N is single-valued
and involutive.

Proof. To begin with, notice that the restriction of F to S =rdD is single-valued
and involutive. Indeed, since K is of constant width, its boundary has the property
of double normals (Lemma 6), and for any double normal the distance between the
points of contact with bdK = S equals w.

Let x, x' E S be two mutually antipodal points in D, and I; one of the two
segments between them. We denote by Xt (resp. x;) the point of I; (resp. of
1(I;)) such that p(x, Xt) = t (resp. p(x' , Xt) = t). We claim that there exists a
positive number e such that for all t E [0, e], FXt = x;; moreover, there are precisely
two segments between Xt and x;, the union of which is I; U 1(I;). In particular,
maxpXt = p(Xt, x;) = w.

Assume on the contrary that for t -+ 0 there exists a segment from Xt to x; whose
length is strictly less than w. Such a segment consists of a segment rt from Xt to
some point Yt E S and a segment r; from Yt to x;. Since I; and leI;) are the only
segments between x and x', Yt goes to x (or to x') if t goes to O.

Let H be the hyperplane normal to I; through x', and rr the orthogonal projection
onto H. As a convex hypersurface, S is locally the graph of some function defined
on some neighbourhood of x' E H, namely there exists an open set U containing x
such that

{ ~ }snu= z+(w-1/r(z))-;-: ZErr(U)

Since S is C2-differentiable, there exists a positive number A such that

(7) 0::( 1/r(z) ::( A Ilx'Zf
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With ZI = Jr (YI), the distance between XI and x; is expressed by

Using the simple fact that ,Jfj + .JV ~ w if and only if w2 ? U + V and (U + V ­
w2)2 ? 4U V, we obtain by a straightforward computation that g (ZI, t) ~ w if and
only if

o~ -llx'zrlI 2 + t (w - t) + 1/1 (ZI) (w - 1/I(ZI») '

o~ -llx'ZI fw2 + 4t1/l(zl)(w -1/I(ZI) )(w - t)~h(zl, t).

From (7) we get, for t < 4~'

h(zl, t) ~ -llx'zll1 2
w2 + 4w

2
tA IIx'zII1 2

= Ilx'zll12
w2(4tA -1) < o.

It follows that g(ZI, t) > W for t small enough, which is in contradiction with
Lemma 1, and proves the claim.

Put

def { (d )}e(z) = max e>O:p z+e-,F "2 =w.
W z+e w

Suppose that there exists a sequence Zn tending to Zo such that e(Zn) is tending to
zero. The above argument shows that h(zn, e(Zn» < 0 for n large enough, which is
impossible. Hence rninzes e(z) > 0 and the proof is complete. 0

Remark. In the proof of Theorem 4 we have used the C2-differentiability only to
obtain (7). Since this inequality also holds under the weaker hypothesis that the
boundary of K has finite upper curvatures at every point (see (1] p.14 for the
definition), the statement of Theorem 4 can be accordingly strengthened.

7. THREE CHARACTERIZA nONS OF BALLS

In this section we partly confirm Steinhaus' guess, by proving with our Theorems
5-7 that it is possible to characterize the balls (eventhough not the spheres) by the
use of the mapping F.

Theorem 1 provides many hypersurfaces in H \ V with central symmetry, and
thus with the mapping F an isometry. Nevertheless, since any centrally symmetric
body of constant width is a ball (see, for example, [2]), we directly obtain from
Theorem 3 the following result.

Theorem 5. Ifthe double ofthe centrally symmetric convex body K c ]Rd has the
corresponding mapping F an involutive bijection then K is a ball.
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corresponding mapping F an involutive bijection then K is a ball.
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Theorem 6. If the double of the convex body K C IR2 has the corresponding
mapping F an isometry then K is a ball.

Proof. This follows simply from Theorem 5 and Theorem 4 in [13], stating that the
convex surface S is a centrally symmetric surface in H if and only if the associated
mapping F is an isometry. 0

Let SK denote the sphere inscribed to K; i.e., the sphere of maximal radius
included in K. We shall repeatedly and implicitly use the following simple fact
(see, for example, [14]).

Lemma 7. Any closed halfsphere ofSK contains a point in the set SK n K.

While Theorems 1 and 2 provide many hypersurfaces in I \ V, the next result
shows that there are very few degenerate hypersurfaces in I.

Theorem 7. If the double D of the convex body K satisfies rad(D) = diam(D)
then K is a ball.

Proof. Suppose DEI n V is the double of the convex body K C IRd. Then it
is easily seen that K has constant width w = p(x, F,J, xED, and also has the
property of double normals.

Let 0 and r denote the centre and the radius of the sphere SK inscribed to K,
respectively. We claim that Fa = L(O). If so, then p(o, Fa) = 2r, hence w = 2r and
K is a ball.

To prove the claim, assume there exists a point L(Y) E (Fa \ {leO)}) n L(K).
Denote by S_ and S+ the closed semispheres of SK determined by the hyperplane
orthogonal at 0 to the line yo, such that y E S_. Clearly, y E S_ \ S+.

The point 0 belongs to Ft(y), because p(o, Fa) = p(l(y), Ft(y»). By Lemma 5,
there is some segment r from L(y) to 0 which intersects S+, say at a. Put {b} =
r n rdD, hence r = [l(y)b] U [bo] and a E [bolo

Since SKis inscribed to K, there exists a point c E S_ n K. Let H be the
hyperplane orthogonal to the line yo through c, and d the point in H n S_ n yao
determined by [ya] n [od] =1= 0.

Put {e} = [od] n [ay] and apply twice the triangle inequality, for [aeo] and [dey].
We get Iia - 011 + lIy - dll :::;; lie - all + lIa - ell + lIy - ell + lid - ell = lid - 011 +
Ily - all· Since lIa - 011 = lid - 011 = r, it follows that IIY - dll :::;; lIy - all.

We have IIL(Y) - ell = lIy - ell and therefore, by the previous inequality,

fer) = IIl(Y) - bll + lib - 011 = lIy - bll + lib - 011
~ Ily -all + Iia -011 ~ lIy -dll + lid -ajj
= lIy - ell + lie - 011 = IIL(Y) - ell + lie - 011·

The length-minimality of r implies that the inequalities above actually are all
equalities, hence Ily - dll = Ily - all, {a, d, c} C S_ n S+, and any shortest path
from l (y) to 0 intersects SKat a point in SK n K.
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Let E be the hyperellipsoid of revolution with the foci at ° and y, and with the
sum of the focal radii equal to p(o, y). It follows that E is included in K, because
all segments from L(Y) to 0 have the same length. Since E is tangent to K at c, its
normal line n at c is also normal to K. Of course, n bisects the angle Lyco. But SK
and K are tangent at c, so n is also normal to SK at c, and thus n = oc, impossible.

This completely proves the claim and the theorem. 0

8. OPEN QUESTIONS

We conclude with three questions related to our work.

I. The inclusion T c 1t holds for convex surfaces in 1R3 (see [13]); is it true in
arbitrary dimension? An affirmative answer would simplify Theorems I and 2,
and would give a further motivation for Theorem 7.

2. Theorems I and 2, and the fact that all right circular cylinders of small height
belong to Tn 1i [6], suggest the following problem.
Find all convex (hyper)surfaces of revolution in Tn 1t. Or, at least those whose
generating function ¢ (see Section 2) has piecewise constant curvature.

3. Find all smooth hypersurfaces of constant width which belong to 1t n D (see
Theorems 3, 4 and 7).
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Let E be the hyperellipsoid of revolution with the foci at 0 and y, and with the
sum of the focal radii equal to p(o, y). It follows that E is included in K, because
all segments from I (y) to 0 have the same length. Since E is tangent to K at c, its
normal line n at c is also normal to K. Of course, n bisects the angle Lyco. But SK

and K are tangent at c, so n is also normal to SK at c, and thus n = OC, impossible.
This completely proves the claim and the theorem. 0

8. OPEN QUESTIONS

We conclude with three questions related to our work.

1. The inclusion I C 'H holds for convex surfaces in JR.3 (see [13]); is it true in
arbitrary dimension? An affirmative answer would simplify Theorems 1 and 2,
and would give a further motivation for Theorem 7.

2. Theorems 1 and 2, and the fact that all right circular cylinders of small height
belong to In 'H [6], suggest the following problem.
Find all convex (hyper)surfaces of revolution in I n 'H. Or, at least those whose
generating function 4> (see Section 2) has piecewise constant curvature.

3. Find all smooth hypersurfaces of constant width which belong to 'H n 1) (see
Theorems 3, 4 and 7).
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