Proceedings of the Royal Society of Edinburgh, 138A, 719-724, 2008

An Ambrosetti—Prodi-type result for periodic
solutions of the telegraph equation

Cristian Bereanu*
Département de Mathématique, Université Catholique de Louvain,
1348 Louvain-la-Neuve, Belgium (bereanu@math.ucl.ac.be)

(MS received 3 January 2007; accepted 4 April 2007)

Using Leray—Schauder degree theory, a theorem of upper and lower solutions and a
strong maximum principle for the telegraph equation we prove an
Ambrosetti-Prodi-type result for periodic solutions of the telegraph equation.

1. Introduction and the main result
We consider doubly periodic solutions of the nonlinear telegraph equation

Uty — Ugy +C’U,t +f(t,x,u) =S,

u(t +2m, x) = u(t,x +2m) = u(t,z), (t,z)€ R2’} Y

where ¢ > 0, f : R? = R is a continuous function 27-periodic in ¢ and z, s is a real
parameter.
Let T? be the torus defined by

* = (z2) *(2)

A point of T? is denoted by (£, ), where (,) is a point of R? and # = t + 277,
Z = x + 2nZ. Doubly periodic functions will be identified with functions defined on
the torus. In particular,

LP(T?),C(T?),C>(T?),...

denote the spaces of doubly periodic functions with the indicated degree of regu-
larity. The norm in LP(T?) is denoted by || - ||, and the maximum norm in C(T?)
is denoted by || - ||eo. B, denotes the open ball of centre 0 and radius 7 in C(T?).
By a solution of (1.1) we mean a function u € C(T?) satisfying

/ (Pt — Qpa — COt) +/ (f(t,z,u) —s)p =0 forall ¢ € C(T?).
T2 T2
Suppose that the function f satisfies the following assumptions.
(f1) f(t,z,u2) — f(t,x,u1) < v(c)(ug — uq) for all (t,z) € R? and every uj, us
with u; < ug. The constant v(c¢) will be specified later.
*Dedicated to Jean Mawhin on his 65th birthday.

(© 2008 The Royal Society of Edinburgh
719



720 C. Bereanu
(f2) f(t,z,u) = oo if |u| — oo uniformly in (¢, z) € R2.
We are now in a position to state the main result of the paper.

THEOREM 1.1. If f satisfies conditions (f1) and (f2), then there exists s; € R such
that problem (1.1) has zero, at least one or at least two solutions according to s < s,
§=S81 or s> Sj.

An Ambrosetti-Prodi-type result has been also proved in [2]. More precisely, in [2]
the function f has the particular form f(¢,z,u) = g(u)—h(t, z), where h € L*(T?) is
such that fTQ h=0and g: R — R is a continuous function satisfying the following
conditions.

(gl) There exist a,b € R such that
lg(w)| < alu]+b for all u € R.
(g2) There exists 0 < a < 1 such that
.
2rC

where C' is the norm of some linear operator.

lg(u) — g(v)] < |lu—wv| forall u,v € R,

(g3) g(u) — oo if Ju| — oo.

The above conditions are essential in order to use a Lyapunov—Schmidt procedure.
To prove theorem 1.1, we adapt a method in [1] (see also [4]) to the present situa-
tion. The main tool which will be used in this paper is the Leray—Schauder degree
together with a theorem of upper and lower solutions and a strong maximum prin-
ciple for the telegraph equation proved in [5]. For a short history of the Ambrosetti—
Prodi problem, see the introduction in [4]. Note that the Leray—Schauder degree
theory, a theorem of upper and lower solutions and a strong maximum principle for
the telegraph equation have been already used in order to give a multiplicity result
for the forced sine-Gordon equation with periodic boundary conditions [6].

2. Auxiliary results

Consider the set
I ={m?:meN}.

The following result plays an important role in the fixed-point reformulation of the
problem (1.1).

LEMMA 2.1 (Ortega and Robles-Pérez [5]). Assume that X ¢ I' and h € C(T?).
There then exists u € C(T?), a unique solution of the linear problem

/‘m@,—%z—wfﬁwyz//m for all g € C>=(T?). (2.1)
T2 T2
This solution satisfies the estimate

[ullso < Chl[Rl]1, (2.2)



Ambrosetti—Prodi-type result for the telegraph equation 721

where C1 is a constant that depends only on ¢ and A. Moreover, the linear operator
Ry : C(T?) — C(T?) defined by Rx(h) = u is a compact operator.

If X =0 and [, h =0, then (2.1) has a unique solution u € C(T?) such that
Jp2 w =0, which satisfies (2.2).

The following result is a strong maximum principle for periodic solutions of the
telegraph equation.

LEMMA 2.2 (Ortega and Robles-Pérez [5]). There exists a function v : (0,00) —
(0,00) such that, for —\ € (0,v(c)] and h € C(T?) with

h >0, h >0,
T2
we have
Ry(h)(t,z) >0 for all (t,x) € R?.
Moreover, the function v satisfies

2 2
1
CZ<V(C)<CI ,

v(c) =0 as c— 0.

A function o € C(T?) is a lower solution of (1.1) if the following inequality holds
/ Pyt — Ppa — CPt) +/ (f(t,r,0) —s)¢ <0 forall p € OF°(T?).  (2.3)
T2 T2

An upper solution 3 € C(T?) is a function that satisfies the reversed inequality.

LEMMA 2.3 (Ortega and Robles-Pérez [5]). Assume that f satisfies condition (f1)
and that (1.1) has a lower solution o € C(T?) and an upper solution 3 € C(T?)
satisfying

alt,z) < B(t,z)  for all (t,z) € R

Then (1.1) has a solution u € C(T?) such that

a(t,z) <u(t,x) < B(t,x) for all (t,z) € R

3. A fixed-point reformulation and a prior: estimations
Consider the nonlinear operator N, : C(T?) — C(T?) defined by
Ny(u)(t,z) = s — f(t,z,u(t,z)) for all (t,z) € R

The operator N, is continuous and takes bounded sets into bounded sets. Let
G(s,-) : C(T?) — C(T?) be the operator

G(s,") = R_, o[Ns + vI].

Henceforth, v = v(c) and ¢ > 0 is fixed. Using the compactness of the linear
operator R_,, it is not difficult to see that the homotopy G is compact on [a, b] x {2
whenever a,b € R and 2 is an open bounded set in C(T?). On the other hand,
using lemma 2.1 we deduce the following lemma.
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LEMMA 3.1. A function u € C(T?) is a solution of (1.1) if and only if u is a fized
point of G(s,-), that is u = G(s,u).

The following lemma gives an a priori bound for the possible solutions of (1.1)
for s in compact intervals.

LEMMA 3.2. If f satisfies condition (f2), then for each b > 0 there exists p = p(b)
such that any possible solution u of (1.1) with |s| < b satisfies ||ullc < p-

Proof. Let |s| < b and u € C(T?) be a solution of (1.1). Using (f2) we deduce that
f is bounded from below. This implies that there exists § > 0 such that

|f(t,z,u)| < f(t,z,u) +6 for all (t,z,u) € R3,
which, together with
/ (f(t,z,u) —s) =0, (3.1)
T2
implies that
/Tz ()| < dn2(s + 6). (3.2)

Using (3.1) it follows that, for h = Ny(u), (2.1) has a unique solution @ € C(T?)
such that [, @ = 0 and

fille < 1 [ 1ft2,0) = . (33)
Using (3.2), (3.3) and the fact that |s| < b, we deduce that
]| oo < C147%(2b 4+ 6). (3.4)

On the other hand, it is clear that we have the decomposition

L 1 .
uu+u(47r2/[r2u>+u. (3.5)

Using (f2), (3.1), (3.4) and (3.5) it follows that there exists a constant Cy such that
la] < Cs. (3.6)
Now (3.4)—(3.6) give the conclusion. O

4. Proof of the main result

Let S; = {s € R: (1.1) has at least j solutions}, j > 1.

(a) Sy # @. Take

> t,x,0
" )

and use (f2) to find R% > 0 such that

min f(t,xz, R}) > s*.
(t,z)ER? f( +)

Then a = 0 is a lower solution and 3 = R’ is an upper solution of (1.1) with s = s*
such that o < 8. Using lemma 2.3 it follows that s* € S;.
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(b) If § € S; and s > 3§, then s € Sy. Let @ be a solution of (1.1) with s = §, and

let s > 5. Then @ is a lower solution for (1.1). Take Ry > maxg2 @ such that
min t,x,Ry) > s.
(t,2)ER?2 f( ) +)

Then a = @ is a lower solution and 8 = R, is an upper solution of (1.1) such that
a < fB. From lemma 2.3, s € 5.

(¢) s1 = inf S is finite and S; D (s1,00). Let s € R and suppose that (1.1) has
a solution u. Then (3.1) holds, implying that s > infgs f > —oco. To obtain the
second part of claim (c), we apply (b).

(d) S D (s1,00). Let s3 < s1 < s9. For each s € R, let G(s,-) be the fixed-point
operator in C(T?) associated with problem (1.1) and defined in lemma 3.1. Using
lemma 3.2 we find p such that each possible zero of I — G(s,-) with s € [s3, s3]
satisfies ||ullcoc < p. Consequently, the invariance property of the Leray—Schauder
degree implies that

dis(I —G(s,-), By, 0]

is well defined and does not depend upon s € [s3, s2] (see [3]).

However, using (c), we see that u — G(s3,u) # 0 for all uw € C(T?). This implies
that dis[I — G(ss,-), By, 0] = 0, so that dis[I — G(s2,-), B,,0] = 0 and, by the
excision property of Leray—Schauder degree [3],

dps[I — G(s2,-),By,0] =0 if o/ > p. (4.1)

Let § € (s1,s2) and @ be a solution of (1.1) with s = § (using (c)). Using (f2), it
follows that there exists a constant § > maxg2 @ such that

(t%?Rz f(t,z, ) > so. (4.2)

Consider the open bounded convex set in C(T?) defined by
Qapg={uecC(T?:a<u<p}

Let u € 245 and v = G(s2,u). Consider w = 3 — v. Hence, w = R_,(h), where
h € C(T?) is defined as

h(t,z) = vf — vu(t,z) — sy + f(t,z,u(t,z)) for all (t,z) € R?.

Note that (f1), (4.2) and v < 3 imply that h > 0 on R% Using lemma 2.2, we
deduce that w > 0 on R2, that is v < # on R%. Analogously, we can prove that
@ < v on R% Consequently, v € 2; 5 and

9(32, Qﬂﬁ) C Qﬁﬁ.

This implies that
dLs[[—g(Sg,-),Qg’g,O] =1. (43)

Hence, the existence property of Leray—Schauder degree [3] implies that G(ss,-)
has a fixed point in {2; g which is also a solution of (1.1) with s = so (lemma 3.1).
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On the other hand, the additivity property of Leray—Schauder degree [3], (4.1) and
(4.3) imply, for p’ sufficiently large, that

dLS[I - g(SQa ')a Bp' \ Qﬁ,ﬁv O} = dLS[I - g(327 ')7 Bp’a O]a
_dLS[I - g(SQ; ')7 Qﬁ,ﬁvo} = _dLS[I - g(827 ')7 'Qﬂ,ﬁv()] = _17

and (1.1) with s = s, has a second solution in B, \ £2; 3.

(e) s1 € S7. Let (7x) be a sequence in (s1,+00) converging to s1, and let uy be a
solution of (1.1) with s = 7, given by (c¢). Using lemma 3.1, we deduce that

ug = G(Tk, ug)- (4.4)

From lemma 3.2, there exists p > 0 such that ||ugljcc < p for all k& > 1. The
compactness of G implies that, up to a subsequence, the right-hand member of (4.4)
converges in C(T?), and hence (uy) converges to some u € C(T?) such that u =
G(s1,u), i.e. to a solution of (1.1) with s = s;.
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