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1348 Louvain-la-Neuve, Belgium (bereanu@math.ucl.ac.be)

(MS received 3 January 2007; accepted 4 April 2007)

Using Leray–Schauder degree theory, a theorem of upper and lower solutions and a
strong maximum principle for the telegraph equation we prove an
Ambrosetti–Prodi-type result for periodic solutions of the telegraph equation.

1. Introduction and the main result

We consider doubly periodic solutions of the nonlinear telegraph equation

utt − uxx + cut + f(t, x, u) = s,

u(t + 2π, x) = u(t, x + 2π) = u(t, x), (t, x) ∈ R
2,

}
(1.1)

where c > 0, f : R
3 → R is a continuous function 2π-periodic in t and x, s is a real

parameter.
Let T

2 be the torus defined by

T
2 =

(
R

2πZ

)
×

(
R

2πZ

)
.

A point of T
2 is denoted by (t̂, x̂), where (t, x) is a point of R

2 and t̂ = t + 2πZ,
x̂ = x+2πZ. Doubly periodic functions will be identified with functions defined on
the torus. In particular,

Lp(T2), C(T2), C∞(T2), . . .

denote the spaces of doubly periodic functions with the indicated degree of regu-
larity. The norm in Lp(T2) is denoted by ‖ · ‖p and the maximum norm in C(T2)
is denoted by ‖ · ‖∞. Br denotes the open ball of centre 0 and radius r in C(T2).
By a solution of (1.1) we mean a function u ∈ C(T2) satisfying∫

T2
u(φtt − φxx − cφt) +

∫
T2

(f(t, x, u) − s)φ = 0 for all φ ∈ C∞(T2).

Suppose that the function f satisfies the following assumptions.

(f1) f(t, x, u2) − f(t, x, u1) � ν(c)(u2 − u1) for all (t, x) ∈ R
2 and every u1, u2

with u1 � u2. The constant ν(c) will be specified later.
∗Dedicated to Jean Mawhin on his 65th birthday.
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(f2) f(t, x, u) → ∞ if |u| → ∞ uniformly in (t, x) ∈ R
2.

We are now in a position to state the main result of the paper.

Theorem 1.1. If f satisfies conditions (f1) and (f2), then there exists s1 ∈ R such
that problem (1.1) has zero, at least one or at least two solutions according to s < s1,
s = s1 or s > s1.

An Ambrosetti–Prodi-type result has been also proved in [2]. More precisely, in [2]
the function f has the particular form f(t, x, u) = g(u)−h(t, x), where h ∈ L2(T2) is
such that

∫
T2 h = 0 and g : R → R is a continuous function satisfying the following

conditions.

(g1) There exist a, b ∈ R such that

|g(u)| � a|u| + b for all u ∈ R.

(g2) There exists 0 < α < 1 such that

|g(u) − g(v)| � α

2πC
|u − v| for all u, v ∈ R,

where C is the norm of some linear operator.

(g3) g(u) → ∞ if |u| → ∞.

The above conditions are essential in order to use a Lyapunov–Schmidt procedure.
To prove theorem 1.1, we adapt a method in [1] (see also [4]) to the present situa-
tion. The main tool which will be used in this paper is the Leray–Schauder degree
together with a theorem of upper and lower solutions and a strong maximum prin-
ciple for the telegraph equation proved in [5]. For a short history of the Ambrosetti–
Prodi problem, see the introduction in [4]. Note that the Leray–Schauder degree
theory, a theorem of upper and lower solutions and a strong maximum principle for
the telegraph equation have been already used in order to give a multiplicity result
for the forced sine-Gordon equation with periodic boundary conditions [6].

2. Auxiliary results

Consider the set
Γ = {m2 : m ∈ N}.

The following result plays an important role in the fixed-point reformulation of the
problem (1.1).

Lemma 2.1 (Ortega and Robles-Pérez [5]). Assume that λ /∈ Γ and h ∈ C(T2).
There then exists u ∈ C(T2), a unique solution of the linear problem∫

T2
u(φtt − φxx − cφt − λφ) =

∫
T2

hφ for all φ ∈ C∞(T2). (2.1)

This solution satisfies the estimate

‖u‖∞ � C1‖h‖1, (2.2)
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where C1 is a constant that depends only on c and λ. Moreover, the linear operator
Rλ : C(T2) → C(T2) defined by Rλ(h) = u is a compact operator.

If λ = 0 and
∫

T2 h = 0, then (2.1) has a unique solution u ∈ C(T2) such that∫
T2 u = 0, which satisfies (2.2).

The following result is a strong maximum principle for periodic solutions of the
telegraph equation.

Lemma 2.2 (Ortega and Robles-Pérez [5]). There exists a function ν : (0,∞) →
(0,∞) such that, for −λ ∈ (0, ν(c)] and h ∈ C(T2) with

h � 0,

∫
T2

h > 0,

we have
Rλ(h)(t, x) > 0 for all (t, x) ∈ R

2.

Moreover, the function ν satisfies

c2

4
< ν(c) � c2 + 1

4
, ν(c) → 0 as c → 0.

A function α ∈ C(T2) is a lower solution of (1.1) if the following inequality holds∫
T2

α(φtt − φxx − cφt) +
∫

T2
(f(t, x, α) − s)φ � 0 for all φ ∈ C∞

+ (T2). (2.3)

An upper solution β ∈ C(T2) is a function that satisfies the reversed inequality.

Lemma 2.3 (Ortega and Robles-Pérez [5]). Assume that f satisfies condition (f1)
and that (1.1) has a lower solution α ∈ C(T2) and an upper solution β ∈ C(T2)
satisfying

α(t, x) � β(t, x) for all (t, x) ∈ R
2.

Then (1.1) has a solution u ∈ C(T2) such that

α(t, x) � u(t, x) � β(t, x) for all (t, x) ∈ R
2.

3. A fixed-point reformulation and a priori estimations

Consider the nonlinear operator Ns : C(T2) → C(T2) defined by

Ns(u)(t, x) = s − f(t, x, u(t, x)) for all (t, x) ∈ R
2.

The operator Ns is continuous and takes bounded sets into bounded sets. Let
G(s, ·) : C(T2) → C(T2) be the operator

G(s, ·) = R−ν ◦[Ns + νI].

Henceforth, ν = ν(c) and c > 0 is fixed. Using the compactness of the linear
operator R−ν , it is not difficult to see that the homotopy G is compact on [a, b]× Ω̄
whenever a, b ∈ R and Ω is an open bounded set in C(T2). On the other hand,
using lemma 2.1 we deduce the following lemma.



722 C. Bereanu

Lemma 3.1. A function u ∈ C(T2) is a solution of (1.1) if and only if u is a fixed
point of G(s, ·), that is u = G(s, u).

The following lemma gives an a priori bound for the possible solutions of (1.1)
for s in compact intervals.

Lemma 3.2. If f satisfies condition (f2), then for each b > 0 there exists ρ = ρ(b)
such that any possible solution u of (1.1) with |s| � b satisfies ‖u‖∞ < ρ.

Proof. Let |s| � b and u ∈ C(T2) be a solution of (1.1). Using (f2) we deduce that
f is bounded from below. This implies that there exists δ > 0 such that

|f(t, x, u)| � f(t, x, u) + δ for all (t, x, u) ∈ R
3,

which, together with ∫
T2

(f(t, x, u) − s) = 0, (3.1)

implies that ∫
T2

|f(t, x, u)| � 4π2(s + δ). (3.2)

Using (3.1) it follows that, for h = Ns(u), (2.1) has a unique solution ũ ∈ C(T2)
such that

∫
T2 ũ = 0 and

‖ũ‖∞ � C1

∫
T2

|f(t, x, u) − s|. (3.3)

Using (3.2), (3.3) and the fact that |s| � b, we deduce that

‖ũ‖∞ � C14π2(2b + δ). (3.4)

On the other hand, it is clear that we have the decomposition

u = ū + ũ =
(

1
4π2

∫
T2

u

)
+ ũ. (3.5)

Using (f2), (3.1), (3.4) and (3.5) it follows that there exists a constant C2 such that

|ū| < C2. (3.6)

Now (3.4)–(3.6) give the conclusion.

4. Proof of the main result

Let Sj = {s ∈ R : (1.1) has at least j solutions}, j � 1.

(a) S1 �= ∅. Take
s∗ > max

(t,x)∈R2
f(t, x, 0)

and use (f2) to find R∗
+ > 0 such that

min
(t,x)∈R2

f(t, x, R∗
+) > s∗.

Then α ≡ 0 is a lower solution and β ≡ R∗
+ is an upper solution of (1.1) with s = s∗

such that α < β. Using lemma 2.3 it follows that s∗ ∈ S1.
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(b) If s̃ ∈ S1 and s > s̃, then s ∈ S1. Let ũ be a solution of (1.1) with s = s̃, and
let s > s̃. Then ũ is a lower solution for (1.1). Take R+ > maxR2 ũ such that

min
(t,x)∈R2

f(t, x, R+) > s.

Then α = ũ is a lower solution and β ≡ R+ is an upper solution of (1.1) such that
α < β. From lemma 2.3, s ∈ S1.

(c) s1 = inf S1 is finite and S1 ⊃ (s1,∞). Let s ∈ R and suppose that (1.1) has
a solution u. Then (3.1) holds, implying that s � infR3 f > −∞. To obtain the
second part of claim (c), we apply (b).

(d) S2 ⊃ (s1,∞). Let s3 < s1 < s2. For each s ∈ R, let G(s, ·) be the fixed-point
operator in C(T2) associated with problem (1.1) and defined in lemma 3.1. Using
lemma 3.2 we find ρ such that each possible zero of I − G(s, ·) with s ∈ [s3, s2]
satisfies ‖u‖∞ < ρ. Consequently, the invariance property of the Leray–Schauder
degree implies that

dLS[I − G(s, ·), Bρ, 0]

is well defined and does not depend upon s ∈ [s3, s2] (see [3]).
However, using (c), we see that u − G(s3, u) �= 0 for all u ∈ C(T2). This implies

that dLS[I − G(s3, ·), Bρ, 0] = 0, so that dLS[I − G(s2, ·), Bρ, 0] = 0 and, by the
excision property of Leray–Schauder degree [3],

dLS[I − G(s2, ·), Bρ′ , 0] = 0 if ρ′ > ρ. (4.1)

Let ŝ ∈ (s1, s2) and û be a solution of (1.1) with s = ŝ (using (c)). Using (f2), it
follows that there exists a constant β > maxR2 û such that

min
(t,x)∈R2

f(t, x, β) > s2. (4.2)

Consider the open bounded convex set in C(T2) defined by

Ωû,β = {u ∈ C(T2) : û < u < β}.

Let u ∈ Ω̄û,β and v = G(s2, u). Consider w = β − v. Hence, w = R−ν(h), where
h ∈ C(T2) is defined as

h(t, x) := νβ − νu(t, x) − s2 + f(t, x, u(t, x)) for all (t, x) ∈ R
2.

Note that (f1), (4.2) and u � β imply that h > 0 on R
2. Using lemma 2.2, we

deduce that w > 0 on R
2, that is v < β on R

2. Analogously, we can prove that
û < v on R

2. Consequently, v ∈ Ωû,β and

G(s2, Ω̄û,β) ⊂ Ωû,β .

This implies that
dLS[I − G(s2, ·), Ωû,β , 0] = 1. (4.3)

Hence, the existence property of Leray–Schauder degree [3] implies that G(s2, ·)
has a fixed point in Ωû,β which is also a solution of (1.1) with s = s2 (lemma 3.1).
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On the other hand, the additivity property of Leray–Schauder degree [3], (4.1) and
(4.3) imply, for ρ′ sufficiently large, that

dLS[I − G(s2, ·), Bρ′ \ Ω̄û,β , 0] = dLS[I − G(s2, ·), Bρ′ , 0],

−dLS[I − G(s2, ·), Ωû,β , 0] = −dLS[I − G(s2, ·), Ωû,β , 0] = −1,

and (1.1) with s = s2 has a second solution in Bρ′ \ Ω̄û,β .

(e) s1 ∈ S1. Let (τk) be a sequence in (s1, +∞) converging to s1, and let uk be a
solution of (1.1) with s = τk given by (c). Using lemma 3.1, we deduce that

uk = G(τk, uk). (4.4)

From lemma 3.2, there exists ρ > 0 such that ‖uk‖∞ < ρ for all k � 1. The
compactness of G implies that, up to a subsequence, the right-hand member of (4.4)
converges in C(T2), and hence (uk) converges to some u ∈ C(T2) such that u =
G(s1, u), i.e. to a solution of (1.1) with s = s1.
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