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Abstract

We study the Dirichlet problem with mean curvature operator in Minkowski space

div

( ∇v√
1 − |∇v|2

)
+ λ

[
μ

(|x|)vq
] = 0 in B(R), v = 0 on ∂B(R),

where λ > 0 is a parameter, q > 1, R > 0, μ : [0,∞) → R is continuous, strictly positive on (0,∞) and
B(R) = {x ∈ RN : |x| < R}. Using upper and lower solutions and Leray–Schauder degree type arguments,
we prove that there exists Λ > 0 such that the problem has zero, at least one or at least two positive radial
solutions according to λ ∈ (0,Λ), λ = Λ or λ > Λ. Moreover, Λ is strictly decreasing with respect to R.
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1. Introduction

In this paper we present some non-existence, existence and multiplicity results for radial so-
lutions of Dirichlet problems in a ball, associated to the mean curvature operator in the flat
Minkowski space

LN+1 := {
(x, t): x ∈ RN, t ∈ R

}
endowed with the Lorentzian metric

N∑
j=1

(dxj )
2 − (dt)2,

where (x, t) are the canonical coordinates in RN+1.
These problems are originated in the study – in differential geometry or special relativity, of

maximal or constant mean curvature hypersurfaces, i.e., spacelike submanifolds of codimension
one in LN+1, having the property that their mean extrinsic curvature (trace of its second funda-
mental form) is respectively zero or constant (see e.g. [1,9,21]). More specifically, let M be a
spacelike hypersurface of codimension one in LN+1 and assume that M is the graph of a smooth
function v : Ω → R with Ω a domain in {(x, t): x ∈ RN, t = 0} � RN . The spacelike condition
implies |∇v| < 1 and the mean curvature H satisfies the equation

div

( ∇v√
1 − |∇v|2

)
= NH(x, v) in Ω.

If H is bounded, then it has been shown in [3] that the above equation has at least one solution
u ∈ C1(Ω) ∩ W 2,2(Ω) with u = 0 on ∂Ω .

In this paper we consider the Dirichlet boundary value problem

div

( ∇v√
1 − |∇v|2

)
+ λ

[
μ

(|x|)vq
] = 0 in B(R), v = 0 on ∂B(R), (1)

where λ > 0 is a parameter, q > 1, R > 0, μ : [0,∞) → R is continuous, strictly positive on
(0,∞) and B(R) = {x ∈ RN : |x| < R}.

Using a variational type argument, in [8] it is shown that if

(q + 1)RN < λN

R∫
0

rN−1μ(r)(R − r)q+1 dr,

then problem (1) has at least one positive classical radial solution. In particular, it is clear that the
above condition is satisfied provided that λ is sufficiently large. On account of the main result of
this paper (Theorem 1), this result becomes more precise. Namely, we prove (Corollary 1) that

• there exists Λ > 0 such that (1) has zero, at least one or at least two positive classical radial
solutions according to λ ∈ (0,Λ), λ = Λ or λ > Λ. Moreover, Λ is strictly decreasing with
respect to R.
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Up to our knowledge, such bifurcation scheme is completely new and has not been described
before in related problems. If we compare with known results for classical elliptic equations with
convex-concave nonlinearities (see for instance [2]), the bifurcation diagram is reversed in some
sense. In particular, the non-existence of solutions for small values of the bifurcation parameter
is a striking effect and a genuine consequence of the Minkowski mean curvature operator.

In the case μ = 1, it is interesting to compare (1) with the analogous problem in the Euclidean
context:

div

( ∇v√
1 + |∇v|2

)
+ λvq = 0 in B(R), v = 0 on ∂B(R), (2)

with 1 < q < N+2
N−2 . The assumption on q is natural because, from [19] it follows that (2) has no

nontrivial solutions if q � N+2
N−2 . Notice also that, according to [13], all positive solutions of (2)

have radial symmetry. Using critical point theory, in [11] it is proved that (2) has at least one
positive radial solution for λ sufficiently large. One the other hand, in [10] it is shown that if
λ = 1 then there exists a non-negative number R∗ such that (2) has at least one positive radial
solution for every R > R∗; this is done by means of a generalization of a Liouville type theorem
concerning ground states due to Ni and Serrin. Also, notice that in [20] it has been shown that
there exists R∗ > 0 such that (2) has no positive radial solution when R < R∗. The case q = 1
is considered in [17] for λ in a left neighborhood of the principal eigenvalue of −� in H 1

0 .
In dimension one for R = 1, in [14] it is given a complete description of the exact number of
positive solutions of (2).

For μ(r) ≡ rm, the analogous semilinear problem in which the mean curvature operator is
replaced by the Laplacian is

�v + |x|mvq = 0 in B(1), v = 0 on ∂B(1),

and we point out that, as shown in [18], the above problem has a positive radial solution provided
that 1 < q < N+2m+2

N−2 and N � 3, m > 0.
Setting, as usual, r = |x| and v(x) = u(r), we reduce the Dirichlet problem (1) to the mixed

boundary value problem

(
rN−1 u′√

1 − u′2

)′
+ rN−1[λμ(r)uq

] = 0, u′(0) = 0 = u(R). (3)

The rest of the paper is organized as follows. In Section 2 we associate to a larger class of
problems of type (3) a fixed point operator and we prove a lower and upper solution result
(Proposition 1). A Cauchy problem associated to the differential equation in (3) is studied in
Section 3. The main result of this section (Proposition 2) will be employed to prove the mono-
tonicity of Λ with respect to R. By means of a degree computation inspired in the proof of the
cone compression–expansion theorem by Krasnosel’skii (see [15]), in Section 4 we show that the
Leray–Schauder index in zero of the fixed point operator introduced in Section 2 is 1. Section 5
is devoted to the proof of the main result.

For other results concerning the Neumann problem associated to prescribed mean curvature
operator in Minkowski space we refer the reader to [5–7,16].
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2. A fixed point operator, lower and upper solutions and degree

In this section we consider problems of the type

(
rN−1φ

(
u′))′ + rN−1g(r,u) = 0, u′(0) = 0 = u(R), (4)

where N � 2 is an integer, R > 0 and the following main hypotheses hold true:

(Hφ) φ : (−a, a) → R (0 < a < ∞) is an odd, increasing homeomorphism;
(Hg) g : [0,R] × R → R is a continuous function.

In the sequel, the space C := C[0,R] will be endowed with the usual sup-norm ‖ · ‖∞ and
C1 := C1[0,R] will be considered with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞. Also, we shall use the
closed subspace of C1 defined by

C1
M = {

u ∈ C1: u′(0) = 0 = u(R)
}
.

For u0 ∈ C1
M , we set B(u0, ρ) := {u ∈ C1

M : ‖u‖ < ρ} (ρ > 0) and, for shortness, we shall write
Bρ instead B(0, ρ).

Recall, by a solution of (4) we mean a function u ∈ C1 with ‖u′‖∞ < a, such that
rN−1φ(u′) ∈ C1 and (4) is satisfied.

Setting

σ(r) := 1/rN−1 (r > 0),

we introduce the linear operators

S : C → C, Su(r) = σ(r)

r∫
0

tN−1u(t) dt
(
r ∈ (0,R]), Su(0) = 0;

K : C → C1, Ku(r) =
R∫

r

u(t) dt
(
r ∈ [0,R]).

It is easy to see that K is bounded and standard arguments, invoking the Arzela–Ascoli theorem,
show that S is compact. This implies that the nonlinear operator K ◦ φ−1 ◦ S : C → C1 is com-
pact. On the other hand, an easy computation shows that, for a given function h ∈ C, the mixed
problem

(
rN−1φ

(
u′))′ + rN−1h(r) = 0, u′(0) = 0 = u(R),

has an unique solution u given by

u = K ◦ φ−1 ◦ S ◦ h.
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Next, let Ng be the Nemytskii operator associated to g, i.e.,

Ng : C → C, Ng(u) = g
(·, u(·)).

Noticing that Ng is continuous and takes bounded sets into bounded sets, we have the following
fixed point reformulation of problem (4).

Lemma 1. A function u ∈ C1
M is a solution of (4) if and only if it is a fixed point of the compact

nonlinear operator

Ng : C1
M → C1

M, Ng = K ◦ φ−1 ◦ S ◦ Ng.

Moreover, any fixed point u of Ng satisfies

∥∥u′∥∥∞ < a, ‖u‖∞ < aR (5)

and

dLS[I −Ng,Bρ,0] = 1 for all ρ � a(R + 1).

Proof. Inequalities in (5) follow immediately from the fact that the range of φ−1 is (−a, a).
Next, consider the compact homotopy

H : [0,1] × C1
M → C1

M, H(τ, ·) = τNg(·).

One has that

H([0,1] × C1
M

) ⊂ Ba(R+1),

which together with the invariance under homotopy of the Leray–Schauder degree, imply that

dLS
[
I −H(0, ·),Bρ,0

] = dLS
[
I −H(1, ·),Bρ,0

]
,

for all ρ � a(R + 1). The result follows from H(0, ·) = 0, H(1, ·) = Ng and dLS[I,Bρ,0] =
1. �

A lower solution of (4) is a function α ∈ C1 such that ‖α′‖∞ < a, rN−1φ(α′) ∈ C1 and

(
rN−1φ

(
α′(r)

))′ + rN−1g
(
r,α(r)

)
� 0

(
r ∈ [0,R]), α(R) � 0.

Similarly, an upper solution of (4) is defined by reversing the above inequalities.

Proposition 1. If (4) has a lower solution α and an upper solution β such that α(r) � β(r) for
all r ∈ [0,R], then (4) has a solution u such that α(r) � u(r) � β(r) for all r ∈ [0,R].
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Proof. Let γ : [0,R] × R → R be the continuous function defined by

γ (r, u) =
⎧⎨⎩

α(r), if u < α(r),

u, if α(r) � u � β(r),

β(r), if u > β(r),

and define G : [0,R] × R → R by G(r,u) = g(r, γ (r, u)). We consider the modified problem

(
rN−1φ

(
u′))′ + rN−1[G(r,u) − u + γ (r, u)

] = 0, u′(0) = 0 = u(R). (6)

It follows from [4] that problem (6) has at least one solution.
We show that if u is a solution of (6), then α(r) � u(r) � β(r) for all r ∈ [0,R]. This will

conclude the proof.
Suppose that there exists some r0 ∈ [0,R] such that

max
[0,R]

(α − u) = α(r0) − u(r0) > 0.

If r0 ∈ (0,R) then α′(r0) = u′(r0) and there is a sequence {rk} in (0, r0) converging to r0 such
that α′(rk) − u′(rk) � 0. As φ is an increasing homeomorphism, this implies

rN−1
k φ

(
α′(rk)

) − rN−1
0 φ

(
α′(r0)

)
� rN−1

k φ
(
u′(rk)

) − rN−1
0 φ

(
u′(r0)

)
,

implying that

(
rN−1φ

(
α′(r)

))′
r=r0

�
(
rN−1φ

(
u′(r)

))′
r=r0

.

Hence, because α is a lower solution of (4), we obtain

(
rN−1φ

(
α′(r)

))′
r=r0

�
(
rN−1φ

(
u′(r)

))′
r=r0

= rN−1
0

[−g
(
r0, α(r0)

) + u(r0) − α(r0)
]

< rN−1
0

[−g
(
r0, α(r0)

)]
�

(
rN−1φ

(
α′(r)

))′
r=r0

,

a contradiction. If r0 = R then α(R) − u(R) > 0. But u(R) = 0 and α(R) � 0, obtaining again
a contradiction. Finally, if r0 = 0 then there exists r1 ∈ (0,R] such that α(r) − u(r) > 0 for all
r ∈ [0, r1] and α′(r1) − u′(r1) � 0. It follows that

rN−1
1 φ

(
α′(r1)

)
� rN−1

1 φ
(
u′(r1)

)
.

On the other hand, integrating (6) from 0 to r1 and using that α is a lower solution of (4) we
obtain
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rN−1
1 φ

(
u′(r1)

) =
r1∫

0

rN−1[−g
(
r,α(r)

) + u(r) − α(r)
]
dr

<

r1∫
0

(
rN−1φ

(
α′(r)

))′
dr

= rN−1
1 φ

(
u′(r1)

)
,

a contradiction. Consequently, α(r) � u(r) for all r ∈ [0,R]. Analogously, it follows that u(r) �
β(r) for all r ∈ [0,R]. The proof is completed. �
Lemma 2. Assume that (4) has a lower solution α and an upper solution β such that α(r) � β(r)

for all r ∈ [0,R], and let Ωα,β := {u ∈ C1
M : α � u � β}. Assume also that problem (4) has an

unique solution u0 in Ωα,β and there exists ρ0 > 0 such that B(u0, ρ0) ⊂ Ωα,β . Then,

dLS
[
I −Ng,B(u0, ρ),0

] = 1 for all 0 < ρ � ρ0,

where Ng is the fixed point operator associated to (4).

Proof. Let Nγ be the fixed point operator associated to the modified problem (6). From the proof
of Proposition 1 it follows that any fixed point u of Nγ is contained in Ωα,β and u is also a fixed
point of Ng . It follows that u0 is the unique fixed point of Nγ . Then, from Lemma 1 and the
excision property of the Leray–Schauder degree one has that

dLS
[
I −Nγ ,B(u0, ρ),0

] = 1 for all ρ > 0.

The result follows from the fact that

Nγ (u) =Ng(u) for all u ∈ B(u0, ρ0). �
3. A Cauchy problem

In this section we consider the Cauchy problem

(
rN−1φ

(
u′(r)

))′ + rN−1[λμ(r)p
(
u(r)

)] = 0
(
r ∈ [0,R]),

u(0) = ξ, u′(0) = 0, (7)

where λ, ξ > 0 and

• μ : [0,R] → R is continuous;
• p : R → R is Lipschitz continuous on bounded sets.

We denote μM := max[0,R] |μ|. In the proof of the next result we use some ideas from the last
section in [12].
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Proposition 2. Assume (Hφ) and that φ is of class C1, φ′ > 0. Then, problem (7) has an unique
solution u(λ, ξ ; ·) and the mapping (λ, ξ) �→ u(λ, ξ ; ·) is continuous from (0,∞)×(0,∞) to C1.

Proof. We divide the proof in three steps.

1. Existence. Consider the nonlinear compact operator

C : C → C, Cu(r) ≡ ξ −
r∫

0

φ−1

(
1

tN−1

t∫
0

sN−1[λμ(s)p
(
u(s)

)]
ds

)
dt.

One has that u ∈ C is solution of (7) if and only if u = Cu. Using that ‖Cu‖∞ < ξ + aR for all
u ∈ C, it follows from Schauder’s fixed point theorem that C has at least one fixed point u which
is a solution of (7). Notice that

‖u‖∞ < ξ + aR. (8)

2. Uniqueness. Let u and v be solutions of (7) and

ω = φ
(
u′) − φ

(
v′), ψ = λμ

[
p(v) − p(u)

]
.

It follows that, for all r ∈ [0,R], one has

∣∣ω(r)
∣∣ =

∣∣∣∣∣ 1

rN−1

r∫
0

tN−1ψ(t) dt

∣∣∣∣∣ � R

N
sup
[0,r]

|ψ |.

On the other hand, from (8) we have

∣∣ψ(r)
∣∣ � M

∣∣u(r) − v(r)
∣∣ (

r ∈ [0,R]),
where M = λLμM and L is the Lipschitz constant of p corresponding to the interval [−(ξ +aR),

ξ + aR]. Hence, using that u(0) = v(0), we infer that for all r ∈ [0,R],

∣∣ψ(r)
∣∣ � M

r∫
0

∣∣u′(t) − v′(t)
∣∣dt � M

m

r∫
0

∣∣ω(t)
∣∣dt,

where m is the minimum of φ′ on the interval [0,max{‖u′‖∞,‖v′‖∞}]. It follows that

∣∣ω(r)
∣∣ � MR

mN

r∫
0

∣∣ω(t)
∣∣dt

(
r ∈ [0,R]),

which together with Gronwall’s inequality imply ω = 0, hence u = v.
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3. Continuous dependence on (λ, ξ). Let u(λ, ξ ; ·) be the unique solution of (7). For l, h ∈ R
sufficiently small, we set

u := u(λ, ξ ; ·), v := u(λ + l, ξ + h; ·).

From (8) we may assume that

‖v‖∞ < ξ + 1 + aR.

This and

−v′(r) = φ−1

(
1

rN−1

r∫
0

sN−1[(λ + l)μ(s)p
(
v(s)

)]
ds

)
(9)

imply that there exists δ > 0, which is independent on l and h, such that

∥∥v′∥∥∞ � δ < a.

Let ω,ψ be as in Step 2. Using (9), for all r ∈ [0,R], one has

∣∣ω(r)
∣∣ =

∣∣∣∣∣ 1

rN−1

r∫
0

tN−1[ψ(t) − lμ(t)p
(
v(t)

)]
dt

∣∣∣∣∣ � R

N

[
sup
[0,r]

|ψ | + |l|c
]
,

where c = μM max[−(ξ+1+aR),ξ+1+aR] |p|. On the other hand, arguing as above we infer that for
all r ∈ [0,R],

∣∣ψ(r)
∣∣ � M

k

r∫
0

∣∣ω(t)
∣∣dt + M|h|,

where M = λLμM and L is the Lipschitz constant of p corresponding to the interval
[−(ξ + 1 + aR), ξ + 1 + aR], and k is the minimum of φ′ on the interval [0, δ]. It follows

∣∣ω(r)
∣∣ � cR|l| + MR|h|

N
+ MR

kN

r∫
0

∣∣ω(t)
∣∣dt

(
r ∈ [0,R]),

which together with Gronwall’s inequality imply that

∣∣ω(r)
∣∣ �

(
cR|l| + MR|h|

N

)
exp

(
MR2

kN

) (
r ∈ [0,R]).

So, ‖u′ − v′‖∞ → 0 as l, h → 0, implying also that ‖u − v‖∞ → 0. �
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4. Non-negative nonlinearities, positive solutions and degree around zero

Here, we consider mixed boundary value problems of the type

(
rN−1φ

(
u′))′ + rN−1f (r,u) = 0, u′(0) = 0 = u(R), (10)

where N � 2 is an integer, R > 0 under hypotheses (Hφ) and

(Hf ) f : [0,R]×[0,∞) → [0,∞) is continuous and f (r, s) > 0 for all (r, s) ∈ (0,R]×(0,∞).

We need the following elementary result, which is proved in [8].

Lemma 3. Assume (Hφ), (Hf ) and let u be a nontrivial solution of

(
rN−1φ

(
u′))′ + rN−1f

(
r, |u|) = 0, u′(0) = 0 = u(R). (11)

Then u > 0 on [0,R) and u is strictly decreasing.

Notice that, by virtue of Lemma 3, u is a nontrivial solution of the mixed boundary value
problem (11) if and only if u is a positive solution of (10). In this case, u is strictly decreasing.

Let Nf be the fixed point operator associated to (11). In the next lemma we assume that f is
sublinear with respect to φ at zero.

Lemma 4. Assume (Hφ), (Hf ),

lim
s→0+

f (r, s)

φ(s)
= 0 uniformly for r ∈ [0,R] (12)

and

lim inf
s→0

φ(σs)

φ(s)
> 0 for all σ > 0. (13)

Then there exists ρ0 > 0 such that

dLS[I −Nf ,Bρ,0] = 1 for all 0 < ρ � ρ0.

Proof. Using (13) we can find ε > 0 such that

Rε/N < lim inf
s→0

φ(s/R)

φ(s)
. (14)

From (12) it follows that there exists sε > 0 such that

f (r, s) � εφ(s) for all (r, s) ∈ [0,R] × [0, sε]. (15)
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Let us consider the compact homotopy

H : [0,1] × C1
M → C1

M, H(τ, u) = τNf (u).

We will show that there exists ρ0 > 0 such that

u �=H(τ, u) for all (τ, u) ∈ [0,1] × (
Bρ0 \ {0}). (16)

By contradiction, assume that one has

uk = τkNf (uk)

with τk ∈ [0,1], uk ∈ C1
M \ {0} for all k ∈ N and ‖uk‖ → 0. Using Lemma 3 it follows that uk

are strictly decreasing functions which are also strictly positive on [0,R). Passing if necessary to
a subsequence, we may assume that ‖uk‖ � sε for all k ∈ N, and then using (15) it follows

f
(
r, uk(r)

)
� εφ

(‖uk‖∞
)

for all r ∈ [0,R], k ∈ N.

This implies that, for any k ∈ N,

‖uk‖∞ �
R∫

0

φ−1

(
σ(t)

t∫
0

rN−1f
(
r, uk(r)

)
dr

)
dt

� Rφ−1
(

εR

N
φ
(‖uk‖∞

))
.

It follows

φ( 1
R

‖uk‖∞)

φ(‖uk‖∞)
� εR

N
(k ∈ N),

which together with ‖uk‖∞ → 0 contradict (14). Hence, (16) holds true. So, for any ρ ∈ (0, ρ0]
one has

dLS
[
I −H(1, ·),Bρ,0

] = dLS
[
I −H(0, ·),Bρ,0

]
,

implying that

dLS[I −Nf ,Bρ,0] = dLS[I,Bρ,0] = 1,

and the proof is complete. �
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5. Main result

Now, we come to study the one-parameter problem (3) under the hypothesis

(H) N � 2 is an integer, R > 0, q > 1 and μ : [0,∞) → R is continuous, μ(r) > 0 for all
r > 0.

As the results in the previous sections apply with

φ(s) = s√
1 − s2

(
s ∈ (−1,1)

)
,

note that u ∈ C1 is a positive solution of (3) if and only if u is a nontrivial solution of(
rN−1 u′√

1 − u′2

)′
+ rN−1[λμ(r)|u|q] = 0, u′(0) = 0 = u(R); (17)

in this case, u is strictly decreasing.
The main result of the paper is the following one. Notice that μM = max[0,R] μ.

Theorem 1. Under hypothesis (H), there exists Λ > 2N/(μMRq+1) such that problem (3) has
zero, at least one or at least two positive solutions according to λ ∈ (0,Λ), λ = Λ or λ > Λ.
Moreover, Λ is strictly decreasing with respect to R.

Proof. We denote

Sj := {
λ > 0: (3) has at least j positive solutions

}
= {

λ > 0: (17) has at least j non-trivial solutions
}

(j = 1,2)

and divide the proof in three steps.

1. Finding Λ. Let λ > 0 and u be a positive solution of (3). Integrating (3) on [0, r], it follows

−rN−1 u′(r)√
1 − u′2(r)

= λ

r∫
0

tN−1μ(t)uq(t) dt for all r ∈ [0,R].

Using that u is strictly decreasing on [0,R], we deduce that, for all r ∈ [0,R], one has

−rN−1u′(r) � −rN−1 u′(r)√
1 − u′2(r)

� λuq(0)μMrN/N

and integrating over [0,R], we obtain

u(0) � λuq(0)μMR2/(2N). (18)
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This, together with 0 < u(0) < R (see (5)) and q > 1 imply

λ > 2N/
(
μMRq+1).

From [8, Corollary 2] we know that (3) has a least one positive solution for λ > 0, sufficiently
large. In particular, S1 �= ∅ and we can define

Λ = Λ(R) := infS1.

Clearly, we have Λ � 2N/(μMRq+1). We claim that Λ ∈ S1. Indeed, let {λk} ⊂ S1 be a sequence
converging to Λ, and uk ∈ C1

M be positive on [0,R) such that

uk = K ◦ φ−1 ◦ S ◦ (
λkμu

q
k

)
.

Then, from (5) and the Arzela–Ascoli theorem, we infer that there exists u ∈ C such that, passing
eventually to a subsequence, {uk} converges to u in C. So, it follows that u � 0 and

u = K ◦ φ−1 ◦ S ◦ (
Λμuq

)
.

Using (18) we deduce that there is a constant c1 > 0 such that uk(0) > c1, for all k ∈ N. This
ensures that u(0) � c1, hence u > 0 on [0,R) (by Lemma 3) and the claim is proved. Also, it is
clear that Λ > 2N/(μMRq+1).

Next, let λ0 > Λ be arbitrarily chosen. We shall apply Proposition 1 to show that λ0 ∈ S1. In
this view, let u1 be a positive solution for (3) corresponding to λ = Λ. It is easy to see that u1
is a lower solution for (17) with λ = λ0. To construct an upper solution, let H > 0, R̃ > R and
consider the mixed problem

(
rN−1 u′√

1 − u′2

)′
+ rN−1H = 0, u′(0) = 0 = u(R̃). (19)

Then, by a simple integration, one has that the unique (positive) solution of (19) is given by

u(r) = N

H

[√
1 + H 2

N2
R̃2 −

√
1 + H 2

N2
r2

] (
r ∈ [0, R̃]).

For fixed λ2 > λ0, let u2 be the solution of (19) corresponding to H = λ2μMR̃q . Using that
u2(R) > 0 and

λ0μ(r)u
q

2(r) � λ2μMR̃q
(
r ∈ [0,R]),

it follows that u2 is an upper solution for (17) with λ = λ0. Since

u2(R) = N

[√
1

(λ2μM)2R̃2q
+ R̃2

N2
−

√
1

(λ2μM)2R̃2q
+ R2

N2

]
,
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we can find R̃ sufficiently large, such that u1(0) < u2(R). Then, taking into account that u1, u2
are strictly decreasing, we infer that u1 < u2 on [0,R]. By virtue of Proposition 1, we get λ0 ∈ S1.
Therefore, we have

S1 = [Λ,∞).

2. Multiplicity. We use some ideas from the proof of Theorem 3.10 in [2]. Let λ0 > Λ. We
shall apply Lemmas 1, 2, 4 to show that λ0 ∈ S2. With this aim, let u1, u2 be constructed as in
Step 1 and u0 be a solution of (17) with λ = λ0 such that u1 � u0 � u2, i.e., u0 ∈ Ωu1,u2 (see
Lemma 2).

First, we claim that there exists ε > 0 with B(u0, ε) ⊂ Ωu1,u2 . Notice that, for all r ∈ [0,R],
one has

u2(r) =
R̃∫

r

φ−1

(
σ(t)

t∫
0

sN−1[λ2μMR̃q
]
ds

)
dt,

implying that

u2(r) >

R∫
r

φ−1

(
σ(t)

t∫
0

sN−1[λ2μ(s)u
q

2(s)
]
ds

)
dt

�
R∫

r

φ−1

(
σ(t)

t∫
0

sN−1[λ0μ(s)u
q

0(s)
]
ds

)
dt

= u0(r),

so, there exists ε2 > 0 such that v � u2 for all v ∈ B(u0, ε2). Similar arguments show that
u1 < u0 on [0,R/2]. Thus, we can find ε′

1 > 0 so that

v ∈ C1
M and ‖v − u0‖∞ � ε′

1 ⇒ v � u1 on [0,R/2]. (20)

On the other hand, we have

−u′
0 = φ−1 ◦ S ◦ [

λ0μu
q

0

]
and −u′

1 = φ−1 ◦ S ◦ [
Λμu

q

1

]
,

yielding u′
0 < u′

1 on [R/2,R]. So, we can find ε1 ∈ (0, ε′
1) sufficiently small, such that v′ < u′

1

on [R/2,R] whenever v ∈ B(u0, ε1). Then, using u0(R) = 0 = v(R), we deduce that v > u1
on [R/2,R), for all v ∈ B(u0, ε1). Now, on account of (20), the claim follows with any ε ∈
(0,min{ε1, ε2}).

Next, if (17) has a second solution contained in Ωu1,u2 , this solution is nontrivial and the proof
of the multiplicity part is completed. If not, using Lemma 2 we deduce that

dLS
[
I −Nλ0 ,B(u0, ρ),0

] = 1 for all 0 < ρ � ε,



Author's personal copy

658 C. Bereanu et al. / Journal of Functional Analysis 265 (2013) 644–659

where Nλ0 is the fixed point operator associated to (17) with λ = λ0. On the other hand, from
Lemma 1 one has

dLS[I −Nλ0 ,Bρ,0] = 1 for all ρ � R + 1,

and from Lemma 4 we have

dLS[I −Nλ0,Bρ,0] = 1 for all ρ sufficiently small.

Now, consider ρ1, ρ2 > 0 sufficiently small and ρ3 � R + 1 such that B(u0, ρ1) ∩ Bρ2 = ∅ and
B(u0, ρ1) ∪ Bρ2 ⊂ Bρ3 . Then, from the additivity-excision property of the Leray–Schauder de-
gree it follows that

dLS
[
I −Nλ0,Bρ3 \ [

B(u0, ρ1) ∪ Bρ2

]
,0

] = −1,

which, together with the existence property of the Leray–Schauder degree, imply that Nλ0 has a
fixed point ũ0 ∈ Bρ3 \ [B(u0, ρ1) ∪ Bρ2 ]. We infer that (3) has a second positive solution.

3. Monotonicity of Λ. Let u0 be a nontrivial solution of (17) with λ = λ0 := Λ(R0) and
R = R0. We fix R > R0. Then, setting ξ0 = u0(0), from Proposition 2 with p(s) = |s|q , one has
that u(λ0, ξ0; ·)|[0,R0] = u0. Since u(λ0, ξ0; ·) is strictly decreasing on [0,R] (this is easily seen)
and u(λ0, ξ0;R0) = 0, it follows that u(λ0, ξ0;R) < 0. Using again Proposition 2, we infer that
there exists ε > 0 such that u(λ, ξ0;R) < 0 for all λ ∈ [λ0 − ε,λ0 + ε]; in particular, u(λ, ξ0; ·)
is a lower solution of (17). Arguing exactly as in Step 1, we can show that (17) has an upper
solution βλ such that u(λ, ξ0, ·) � βλ on [0,R]. Then, applying Proposition 1 we deduce that (17)
has at least one nonzero solution which is also a strictly positive solution of (3). Consequently,
Λ(R0) > Λ(R) and the proof is complete. �
Corollary 1. Under hypothesis (H), there exists Λ > 2N/(μMRq+1) such that problem (1) has
zero, at least one or at least two positive classical radial solutions according to λ ∈ (0,Λ), λ = Λ

or λ > Λ. Also, Λ is strictly decreasing with respect to R.

Example 1. If N � 2 is an integer and q > 1, m � 0, R > 0 are real numbers, then there exists
Λ > 2N/Rm+q+1 such that the problem

div

( ∇v√
1 − |∇v|2

)
+ λ|x|mvq = 0 in B(R), v = 0 on ∂B(R),

has zero, at least one or at least two positive classical radial solutions according to λ ∈ (0,Λ),
λ = Λ or λ > Λ. In addition, Λ is strictly decreasing with respect to R.

Remark 1. The reader will emphasize that, excepting the part concerning the monotonicity of Λ

as function of R, the statements of Theorem 1 and Corollary 1 still remain true if the continuous
weight function μ is defined only on [0,R] instead of [0,∞) and positive on (0,R].
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