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Does every bounded linear operator have a closed non-trivial
invariant subspace?

@ Aronszajn and Smith - for compact operators

@ Lomonosov - for operators commuting with a compact
operator

@ Enflo - first example of a bounded operator without invariant
subspaces

@ Read - bounded operator on £; without invariant subspaces

@ Argyros and Haydon - example of a Banach space such that
every bounded operator is a compact perturbation of a
multiple of identity
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If X is a Banach space, T € £(X) and Y is a subspace of X, then
Y is called almost invariant for T, or T-almost invariant if

there exists a finite dimensional subspace F of X such that
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Does every bounded linear operator on a Banach space have
almost invariant half-spaces?
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Donoghue operators

A Donoghue operator is a weighted shift D : b — b, De; =0,
De; = wjej_1 for i > 1 where (w;); is a sequence of non-zero
complex numbers such that (|w;|); is monotone decreasing and in
b.

D has only invariant subspaces of finite dimension and D* has only
invariant subspaces of finite codimension.
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Lemma

Let X be a Banach space, T € L(X) and e € X be an arbitrary
non-zero vector. Let A C p(T)™L. Then the closed subspace Y of
X defined by
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Lemma

Let T € L(X) is such that T has no eigenvalues. Then, for any
nonzero vector e € X the set {h(\, e): A\ € p(T)~1} is linearly
independent.

Thus, for any A C p(T)~! with infinite cardinality we have that
Y =span{h(\,e): A € A}

is infinite dimensional and T-almost invariant with 1-dimensional
"error" .

How can we choose A C p(T)™1
infinite codimensional?

in such a way that Y is also
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Main Result

Let X be a Banach space and T € L(X) satisfy the following:
© T has no eigenvalues.
@ The unbounded component of p(T) contains a punctured
neighbourhood of 0.
© There is a vector whose orbit is a minimal sequence.
Then T has an almost invariant half-space with 1-dimensional
"error”.
Condition (2) is satisfied by many important classes of operators.
For example:

@ if 0 is an isolated point of o(T) (in particular, if T is
quasinilpotent)

@ if 0 belongs in the unbounded component of p(T)
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Main Result

Let X be a Banach space and T € L(X) satisfy the following:

© T has no eigenvalues.

@ p(T)~! has a connected component C such that 0 € C and C
contains a neighbourhood of oco.

© There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space.

Corollary

IfX =14, (1<p<oo)orc and T € L(X), is a weighted right
shift operator with weights converging to zero then both T and T*
have almost invariant half-spaces.
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D € L(¢») is defined by:
De; =0, De =wiei_1, i>1,
where (w;) is a sequence of non-zero complex numbers such that
(|wj]) is monotone decreasing and in ».
D has only finite dimensional invariant subspaces

D* has only finite codimensional invariant subspaces

Corollary

If D is a Donoghue operator then both D and D* have almost
invariant half-spaces with one dimensional "error”.

Donoghue operators do not have invariant half-spaces, yet they
have almost-invariant half-spaces with one dimensional “error”.
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Proof (sketch) - construction of bounded linear functionals

Define a functional f on span{T'e}2, via f(T'e) = c;.

Since (T'e); is minimal and (c;); converges to 0 "fast” we have
that f is bounded.

Extend f to X by Hahn-Banach.
The annihilation of Y:

f(h(An, €)) ( Z/\’ Ti ) . i Aoci = AnF(\n) = 0.
i=0
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Proof (sketch) - construction of bounded linear functionals

For every k =0,1,..., put Fi(z) = zXF(z). Then

© k . © .
Fi(z) = Z c,.( )7l = Z Ci—kZz'
i=0 i=k
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For every k =0,1,..., put Fi(z) = zXF(z). Then
z)= Z c,.(k)zi = Z CikZ'
i=0 i=k

Define a functional f; on span{T e}, via fx(T'e) = c(k).

As before, f is bounded, so it can be extended to
span{T'e: i € N}, and then by Hahn-Banach to a bounded
functional on all of X.

The annihilation of Y:

e (h(An, €)) _fk( Z)\’ Ti >_)\ Z)\’ (k) _
A,,Fk(A,,) = \FLE(N,) = 0.
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Proof (sketch) - linear independence

Linear independence:

N—1
Assume fy = > akfx with apy #0
k=M

However fy(TMe) = 0 by definition of fy while
N—1

S anfi(TMe) = apcp # 0, contradiction.
k=M
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