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Motivation

Invariant subspace problem

Does every bounded linear operator have a closed non-trivial
invariant subspace?

Aronszajn and Smith - for compact operators

Lomonosov - for operators commuting with a compact
operator

Enflo - first example of a bounded operator without invariant
subspaces

Read - bounded operator on `1 without invariant subspaces

Argyros and Haydon - example of a Banach space such that
every bounded operator is a compact perturbation of a
multiple of identity
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Almost invariant half-space problem

Definition

A subspace Y of a Banach space X is called a half-space if it is of
both infinite dimension and infinite codimension in X .

Definition

If X is a Banach space, T ∈ L(X ) and Y is a subspace of X , then
Y is called almost invariant for T , or T -almost invariant if
there exists a finite dimensional subspace F of X such that
T (Y ) ⊆ Y + F .

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have
almost invariant half-spaces?

4/17



Almost invariant half-space problem

Definition

A subspace Y of a Banach space X is called a half-space if it is of
both infinite dimension and infinite codimension in X .

Definition

If X is a Banach space, T ∈ L(X ) and Y is a subspace of X , then
Y is called almost invariant for T , or T -almost invariant if
there exists a finite dimensional subspace F of X such that
T (Y ) ⊆ Y + F .

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have
almost invariant half-spaces?

4/17



Almost invariant half-space problem

Definition

A subspace Y of a Banach space X is called a half-space if it is of
both infinite dimension and infinite codimension in X .

Definition

If X is a Banach space, T ∈ L(X ) and Y is a subspace of X , then
Y is called almost invariant for T , or T -almost invariant if
there exists a finite dimensional subspace F of X such that
T (Y ) ⊆ Y + F .

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have
almost invariant half-spaces?

4/17



Almost invariant half-space problem

Proposition

Let T ∈ L(X ) and H ⊆ X be a half-space. Then H is almost
invariant under T if and only if H is invariant under T + K for
some finite rank operator K .

Proposition

Let T be an operator on a Banach space X . If T has an almost
invariant half-space then so does its adjoint T ∗.
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Almost invariant half-space problem

The unilateral shift on l2 has invariant half-spaces.

Donoghue operators

A Donoghue operator is a weighted shift D : l2 → l2, De1 = 0,
Dei = wiei−1 for i > 1 where (wi )i is a sequence of non-zero
complex numbers such that (|wi |)i is monotone decreasing and in
l2.

D has only invariant subspaces of finite dimension and D∗ has only
invariant subspaces of finite codimension.
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The Method (sketch)

For a nonzero vector e ∈ X and for λ ∈ ρ(T )−1 define a vector
h(λ, e) in X by

h(λ, e) :=
(
λ−1I − T

)−1
(e).

Observe that
(
λ−1I − T

)
h(λ, e) = e for every λ ∈ ρ(T )−1 hence

Th(λ, e) = λ−1h(λ, e)− e
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The Method (sketch)

Lemma

Let X be a Banach space, T ∈ L(X ) and e ∈ X be an arbitrary
non-zero vector. Let A ⊆ ρ(T )−1. Then the closed subspace Y of
X defined by

Y = span
{

h(λ, e) : λ ∈ A
}

is a T -almost invariant subspace (which is not not necessarily a
half-space).
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The Method (sketch)

Lemma

Let T ∈ L(X ) is such that T has no eigenvalues. Then, for any
nonzero vector e ∈ X the set {h(λ, e) : λ ∈ ρ(T )−1} is linearly
independent.

Thus, for any A ⊆ ρ(T )−1 with infinite cardinality we have that

Y = span
{

h(λ, e) : λ ∈ A
}

is infinite dimensional and T -almost invariant with 1-dimensional
”error”.

How can we choose A ⊆ ρ(T )−1 in such a way that Y is also
infinite codimensional?
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Main Result

Theorem

Let X be a Banach space and T ∈ L(X ) satisfy the following:

1 T has no eigenvalues.

2 The unbounded component of ρ(T ) contains a punctured
neighbourhood of 0.

3 There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with 1-dimensional
”error”.

Condition (2) is satisfied by many important classes of operators.
For example:

if 0 is an isolated point of σ(T ) (in particular, if T is
quasinilpotent)

if 0 belongs in the unbounded component of ρ(T )

10/17



Main Result

Theorem

Let X be a Banach space and T ∈ L(X ) satisfy the following:

1 T has no eigenvalues.

2 The unbounded component of ρ(T ) contains a punctured
neighbourhood of 0.

3 There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with 1-dimensional
”error”.

Condition (2) is satisfied by many important classes of operators.
For example:

if 0 is an isolated point of σ(T ) (in particular, if T is
quasinilpotent)

if 0 belongs in the unbounded component of ρ(T )

10/17



Main Result

Theorem

Let X be a Banach space and T ∈ L(X ) satisfy the following:

1 T has no eigenvalues.

2 The unbounded component of ρ(T ) contains a punctured
neighbourhood of 0.

3 There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with 1-dimensional
”error”.

Condition (2) is satisfied by many important classes of operators.
For example:

if 0 is an isolated point of σ(T ) (in particular, if T is
quasinilpotent)

if 0 belongs in the unbounded component of ρ(T )

10/17



Main Result

Theorem

Let X be a Banach space and T ∈ L(X ) satisfy the following:

1 T has no eigenvalues.

2 The unbounded component of ρ(T ) contains a punctured
neighbourhood of 0.

3 There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with 1-dimensional
”error”.

Condition (2) is satisfied by many important classes of operators.
For example:

if 0 is an isolated point of σ(T ) (in particular, if T is
quasinilpotent)

if 0 belongs in the unbounded component of ρ(T )

10/17



Main Result

Theorem

Let X be a Banach space and T ∈ L(X ) satisfy the following:

1 T has no eigenvalues.

2 ρ(T )−1 has a connected component C such that 0 ∈ C and C
contains a neighbourhood of ∞.

3 There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space.

Corollary

If X = `p (1 ≤ p <∞) or c0 and T ∈ L(X ), is a weighted right
shift operator with weights converging to zero then both T and T ∗

have almost invariant half-spaces.
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Donoghue operators

D ∈ L(`2) is defined by:

De1 = 0, Dei = wiei−1, i > 1,

where (wi ) is a sequence of non-zero complex numbers such that(
|wi |
)

is monotone decreasing and in `2.

D has only finite dimensional invariant subspaces

D∗ has only finite codimensional invariant subspaces

Corollary

If D is a Donoghue operator then both D and D∗ have almost
invariant half-spaces with one dimensional ”error”.

Donoghue operators do not have invariant half-spaces, yet they
have almost-invariant half-spaces with one dimensional “error”.
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Proof (sketch) - construction of the subspace

Let e ∈ X be such that (T ie)∞i=0 is minimal.

Let (ci ) be a sequence of positive real numbers so that ci
converges to 0 ”fast” and in particular i

√
ci → 0.

Consider F : C→ C defined by F (z) =
∑∞

i=0 ciz
i . Clearly F is

entire.

WLOG (Picard’s Theorem) we may assume
{

z ∈ C | F (z) = 0
}

is
infinite.

Fix a sequence of distinct complex numbers (λn) such that
F (λn) = 0 for every n.

Note |λn| → +∞ for all n so we can assume λn ∈ ρ(T )−1

Let Y = span{h(λn, e) : n ∈ N}

Y is almost invariant under T and dim Y =∞.
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Proof (sketch) - construction of bounded linear functionals

Define a functional f on span{T ie}∞i=0 via f (T ie) = ci .

Since (T ie)i is minimal and (ci )i converges to 0 ”fast” we have
that f is bounded.

Extend f to X by Hahn-Banach.

The annihilation of Y :

f
(
h(λn, e)

)
= f
(
λn

∞∑
i=0

λinT ie
)

= λn

∞∑
i=0

λinci = λnF (λn) = 0.
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Proof (sketch) - construction of bounded linear functionals

For every k = 0, 1, . . . , put Fk(z) = zkF (z). Then

Fk(z) =
∞∑
i=0

c
(k)
i z i =

∞∑
i=k

ci−kz i

Define a functional fk on span{T ie}∞i=0 via fk(T ie) = c
(k)
i .

As before, fk is bounded, so it can be extended to
span{T ie : i ∈ N}, and then by Hahn-Banach to a bounded
functional on all of X .

The annihilation of Y :

fk
(
h(λn, e)

)
= fk

(
λn

∞∑
i=0

λinT ie
)

= λn

∞∑
i=0

λinc
(k)
i =

λnFk(λn) = λk+1
n F (λn) = 0.
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Proof (sketch) - linear independence

Linear independence:

Assume fN =
N−1∑
k=M

ak fk with aM 6= 0

However fN(TMe) = 0 by definition of fN while
N−1∑
k=M

ak fk(TMe) = aMc0 6= 0, contradiction.
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Open Problems

Enflo’s operator?

Read’s operator? (quasinilpotent version on `1)

Operators on HI-spaces?

....?
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