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Orbit

Orbr(x) ={T"x:n>0}

T is an operator on some space and x is a vector in the space
Hypercyclic

Orbt(x) is dense in the space

Other names

universal
topologically transitive i.e.

for any open sets U and V there is n such that T"(U)NV # 0
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Examples:

Tf(z)="f(z+ 1)
on the space of entire functions (Birkhoff, 1929)
Tf="1

same space (MacLane, 1957)
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Sufficient condition:

If there there is and increasing sequence (kj) of natural numbers,
there are two dense sets, Xy and Yy, and there is a sequence of
functions (Sk,) : Yo — Yo (neither necessarily linear nor
continuous) such that:

(i) Tknx — 0 for every x € Xo;
(ii) Sk,y — 0 for every y € Yp;
(i) TknSy y — y for every y € Yp

then the operator T is hypercyclic.

Not equivalent
C. J. Read & M. De La Rosa (2005, on /1), F. Bayart & E.
Matheron (2007 on /?)
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Problem 1: What to replace the criterion with?

Problem 2: Can we define a similar concept for non separable
spaces?

First idea:

Look at the behavior of the sequence

[l 1T T2 T3 -

Six types:
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Can be studied in non separable spaces

How different from hypercyclicity?
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Posibilities:
Hypercyclic restriction to an invariant subspace

r hypercyclic

Orbr(x) intersects every ball of radius r, for some r >0

€ hypercyclic

Orbr(x) intersects every cone of aperture &, for some € > 0

orbits dense in an one-dimensional subspace (can be done with
forward weighted shifts)
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Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if
Orbt(x) is weakly dense in the space

There are weakly hypercyclic operators which are not hypercyclic
Chan & Sanders 2003

Hypercyclic operators may have weakly hypercyclic vectors which
are not hypercyclic

There is a nonhypercyclic weakly hypercyclic operator having all
nonzero orbits increasing.
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J - class vectors

A vector x # 0 is called J class for the operator T if
Jr(x) =

{y: there are y, and k, such that y, — x and Tkny, — y}

equals the space
Costakis & Manoussos 2008

Jr(x) is always closed
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For 2B on [°° a vector x is J - class <— x € ¢,
Thus the vector x = (1,1/2,1/4,1/8,...) is J - class
although not irregular because (2B)x = x.

The operator has J - class irregular vectors.
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Compare with separable spaces

If T is hypercyclic then J7(x) = the space for every x
Proposed definition for nonseparable spaces:
x is hypercyclic vector for T if it is J - class & irregular.

Other restrictions may be needed.



Hypercyclic vs. irregular



Hypercyclic vs. irregular

T has property = aT has it for all |a| = 1.



Hypercyclic vs. irregular
T has property = aT has it for all |a| = 1.

A, B have the property = A @ B has the property



Hypercyclic vs. irregular
T has property = aT has it for all |a| = 1.

A, B have the property = A @ B has the property

Orbr(x) has property = Orb1(y) has the property for other y.



Hypercyclic vs. irregular
T has property = aT has it for all |a| = 1.

A, B have the property = A @ B has the property
Orbr(x) has property = Orb1(y) has the property for other y.

T invertible has property = T ! has the property
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How to show that a vector is irregular

Direct construction.

Works fine for forward or backward weighted shifts (or other
operators with a known matrix) even to show that there are
irregular non hypercyclic vectors.

Difficult for composition operators.

On the Hardy space a composition operator cannot have irregular
vectors unless it is hypercyclic. Are there irregular non hyperciclic
vectors?
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Sufficient condition:

If there there is and increasing sequence (k,) of natural numbers,
there are two sets, Xo and Yo = {y1, y2,¥3, ...} such that Yy C
closure of Xy, yan—1 — 0, ||y2n|| — o0, and there is a sequence of
functions (Sk,) : Yo — Yo (neither necessarily linear nor
continuous) such that:

(i) Tk"x — 0 for every x € Xo;
(ii) Sk,y — 0 for every y € Yp;
(ii) Tk"S, y — y for every y € Y

then the operator T has irregular vectors.
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Another sufficient condition:

If there is [\| > 1 and x € ker T — X\ such that x € closure Span
{ker(T — @) : || < 1} then T has irregular vectors. J
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Something like topological transitivity

for any open sets U and V there is n such that T"(U)NV # ()
Vin = B1/m(0)

Un = complement of B,(0)

Condition: for all my, my > 1 there are n; and n, such that
T(Ve) N Upm, #0 & T"™(Um )N Vi, #0

Necessary but not sufficient

Satisfied by
2 0
0 1/2

which does not have irregular vectors.



