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Hopf-Dunford-Schwartz ‘56 : case when T is an absolute contraction, i.e.

|T: ' — <1 and |T:L® — L[| <1



Stronger Maximal inequalities

Stein’s Theorem, '61

Assume that T is a positive absolute contraction, and that
T: L2 — 2

is selfadjoint and positive in the Hilbertian sense (that is, o(T) C [0, 1]).
Then for any 1 < p < o0,

[sup | TGl S lxlle x € L@,
n=>0 p
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Stein’s Theorem, '61

Assume that T is a positive absolute contraction, and that
T: L2 — 2

is selfadjoint and positive in the Hilbertian sense (that is, o(T) C [0, 1]).
Then for any 1 < p < o0,
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Question :

Which (less restrictive) conditions imply this stronger maximal inequality ?
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Let (T¢)e>0 be a strongly continuous semigroup on LP(Q).
For any t > 0, define

Similarly, we have :

@ Assume that T; is a positive contraction for any t > 0. Then we have

[sup (M) S lxllpe x € LP(R).
t>0 P

@ Assume that each T; is a positive absolute contraction and that
(T:)t=0 is a selfadjoint strongly continuous semigroup on L2. Then we
have

[sup | Tl S lxllp x € L2(@),
t>0 p
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Analyticity |

Forany angle 0 <o < 5, let: £, ={z€ C*: |Arg(2)| < a}.

Let (T:)t>0 be a strongly continuous semigroup of contractions on X. It is
called analytic if (T¢):>0 has a bounded holomorphic extension

ze¥, — T, € B(X),

for some 0 < a < 7.



A necessary and sufficient condition is that

3C>0 | Vt>0, xeX, Ht— Te(x chuxu.



Let (T¢)¢>0 be a strongly continuous semigroup of positive contractions on
LP(2), with 1 < p < oo, and assume that (T¢)¢>0 is analytic. Then we
have

[sup [Tl S lixllp,  x € L7(@).
t>0 P




Let (T¢)¢>0 be a strongly continuous semigroup of positive contractions on
LP(2), with 1 < p < oo, and assume that (T¢)¢>0 is analytic. Then we
have

Jsup | 7eGl| ) S lxller € L.
>0 P

Remark.
(1) Let (T¢)t=0 be a selfadjoint strongly continuous semigroup of
contractions on L?(2). Then (T;)¢=0 is analytic, by spectral theory.

T, =e ™ with A= positive selfadjoint operator.

Extends to T, = e~4 for Re(z) > 0 with || T,|| < 1.



Let (T¢)¢>0 be a strongly continuous semigroup of positive contractions on
LP(2), with 1 < p < oo, and assume that (T¢)¢>0 is analytic. Then we
have

SUP!Tt(X)\H Slxll,  x € LP(Q).
t>0 P

Remark.
(1) Let (T¢)t=0 be a selfadjoint strongly continuous semigroup of
contractions on L?(2). Then (T;)¢=0 is analytic, by spectral theory.

T, =e ™ with A= positive selfadjoint operator.

Extends to T, = e~4 for Re(z) > 0 with || T,|| < 1.

(2) If further each T, is an absolute contraction for any t > 0, then for
any 1 < p < oo, the realization of (T¢)=0 on LP(2) is analytic. Here
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Analyticity Il

Let T: X — X be a contraction on Banach space. It is called analytic if
3C>0 | Vnx1, n|T"-T"Y <C.
(Coulhon, Saloff-Coste, '85)

This is equivalent (for a contraction) to the so-called Ritt condition :

K
A=1]

o(T)cD and IR\, T)| <
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For any angle 0 < v < 7, let B, be the convex hull of 1 and the disc of
center 0 and radius sin .
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Then analyticity implies that
37e(0.5) | oM cB,
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Let T be a positive contraction on LP(Q), with 1 < p < oo, and assume
that T is analytic. Then we have
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Let T be a positive contraction on LP(Q), with 1 < p < oo, and assume
that T is analytic. Then we have

[seel TG S I, x € 1P,

This extends Stein’s Theorem.



Square functions (semigroup case)

Proposition |

Let (T:)t>0 be a strongly continuous semigroup of positive contractions on
LP(Q2), with 1 < p < o0, and assume that (T¢)¢=0 is analytic. Then we
have an estimate
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Square functions (semigroup case)

Proposition |

Let (T:)t>0 be a strongly continuous semigroup of positive contractions on
LP(Q2), with 1 < p < o0, and assume that (T¢)¢=0 is analytic. Then we
have an estimate

H(/ | (roo)f )|

Such square function estimates appeared in Stein’s work for diffusion
semigroups and then in H*® functional calculus theory (Doust, Cowling,
Mclntosh, Yagi).

The proof of Proposition | relies on H* calculus and a result of L. Weis.

Slixllp, x € LP(Q).
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How to go from Proposition | to Theorem 17
By an integration by parts,

t t
tl\/lt:/ T.ds = tTt—/ sT.ds.
0 0
For any x € LP(Q),

1 [t
Ti(x) = Me(x) + t/o sT.(x)ds

Hence

ITe(x)] < [Me(x)] + H/Otsrg(x) ds|

< M) +1(/0tsds)5 (/Ots\rg(x)ms)é

< [Me(x)] + (/OOOS‘TS’(X)’2 ds)é.
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Square functions (discrete case)

Proposition Il

Let T be a positive contraction on LP(Q), with 1 < p < oo, and assume
that T is analytic. Then we have an estimate

(Soirto- )

5 S Xl x € LA(Q).

Such square function estimates appear in Stein’s work for martingales and
for unital, positive operators T: L*°(Q2) — L*°(Q2) extending to a
selfadjoint positive contraction on L2(Q).

Passing from Proposition Il to Theorem Il is easy.



Functional calculus for analytic operators

FC Theorem

Let T be a positive contraction on LP(2), with 1 < p < oo, and assume
that T is analytic.

(1) Then there exists an angle v € (0,5) and a constant C > 1 such that
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for any polynomial F.




Functional calculus for analytic operators

FC Theorem

Let T be a positive contraction on LP(2), with 1 < p < oo, and assume
that T is analytic.

(1) Then there exists an angle v € (0,5) and a constant C > 1 such that

IF(T)I < Csup{|F(2)| : z€ B, }
for any polynomial F.

(2) More generally, for any sequence (F,)n>1 of polynomials and any
x € LP(Q2), we have

H(i\a(m;z)i < cux||psup{(im(z>!2)é zc8).
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To deduce the square function estimate in Proposition I, take
L n—1
Fo(z) = n2z"" Yz —1)

For any z € D, we have

SR = 3 afz2e D]z - 1p
n=1 n=1
1
R [ —
11— z| i |Z’2)2

11—z
< .
1—|z|

This upper bound is bounded on B,.
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Again, let T be a positive contraction on LP(Q), with 1 < p < oo, and
assume that T is analytic.

@ For any integer m > 2, there is an estimate

N[

S Il
p

| (i(n F 1R T(T - 1))
n=0



More inequalities....

Again, let T be a positive contraction on LP(Q), with 1 < p < oo, and
assume that T is analytic.

@ For any integer m > 2, there is an estimate

N[

H(fi(n+-n2m—w7W(T-n"xxnz)
n=0

S Il
p

@ For any integer m > 1, we have a maximal inequality for the m-th
derivative,

an+DWT%T—UW@wp§me x € LP(Q).

n=0
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Noncommutative LP-spaces

Let M be a semifinite von Neumann algebra equipped with a normal
semifinite faithful trace 7. For any 1 < p < oo, define

Ixlp = (~(Ix[P))?

on a suitable subspace S C M.

Then || ||p is a norm on S and by definition

LP(M) = (S, ] [I»)

is the resulting completion.

This includes :
@ Commutative LP-spaces LP(Q, 11), associated to M = L>(Q, u).
@ Schatten spaces SP(H), associated to B(H).
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What is a noncommutative maximal function?

Let (x1)n>0 be a sequence of LP(M).
Warning. The supremum sup,, |x,| does not make any sense! !

Given 1 < p < 0o, LP(M; £>°) is defined as the space of all sequences
(Xn)n=0 in LP(M) for which there exist a, b € L?P(M) and a bounded
sequence (zp)n>0 in M such that

Xp = azyb, n>0.
For such a sequence, set

[ (xa)nz0]| 1o(ap.eoey = inf{llall2p sup [|zallllbll2p},
(M) !

where the infimum runs over all possible such factorizations.
Then LP(M; ¢>°) is a Banach space (Pisier, Junge).
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For an operator T and an integer n > 1, let

1 n
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Junge-Xu Theorem, '07

Assume that T is a positive absolute contraction, that is,
|T: LY(M) = LX(M)|| <land |[T: M — M|| < 1.

(1) For any 1 < p < oo, there is an estimate
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Noncommutative Hopf-DS inequalities

For an operator T and an integer n > 1, let

1 n
Tk,
n+1 Z
k=0

Mn(T) =

Junge-Xu Theorem, '07

Assume that T is a positive absolute contraction, that is,
|T: LY(M) = LX(M)|| <land |[T: M — M|| < 1.

(1) Forany 1 < p < oo, there is an estimate

H(M”(T)X)n>0 S Ixllps x € LP(M).

LP(M;0=2)

(2) If further T: L2(M) — L2(M) is selfadjoint and positive in the
Hilbertian sense, then there is a (better!!) estimate

[(77) 120

S xlle,  x € LP(M).

LP(M; (o)

ey



Analyticity of noncommutative absolute contractions

Let T: M — M be an absolute contraction. For any 1 < p < o0,
provisionaly denote its LP-realization by

T,: LP(M) —s LP(M).

For any 1 < p,q < oo, Tp is analytic if and only if T, is analytic. l
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Analyticity of noncommutative absolute contractions

Let T: M — M be an absolute contraction. For any 1 < p < o0,
provisionaly denote its LP-realization by

T,: LP(M) —s LP(M).

For any 1 < p,q < oo, Tp is analytic if and only if T, is analytic.

This is due to S. Blunck in the commutative case.

—> Notion of analytic absolute contraction.
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Theorems on positive analytic absolute contractions

Let T: M — M be a positive analytic absolute contraction.
We have square function estimates on L?(M) as follows :

For any integer m > 1, we have an estimate

(X 12T =) S xles x € 2(M).
n=0

Nota bene : we do not have LP-estimates in general.

However using interpolation, the above [2-estimates suffice to lead to :

For any 1 < p < oo, we have an estimate

(7)1

< LP(M).
by S ¥l x € L2(M)
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Strong g-variations

Let a = (an)n>0 be a sequence of complex numbers.

Let 1 < g < 0.
The strong g-variation norm of the sequence a is defined as

1
I(an)asollvy = sup{(la0l? + > lan, — an_|7) }.

k>1

where the supremum runs over all increasing sequences (ng)x>o of integers
such that kg = 0.

vg ={a : [[(an)nzollv, < 0o} is a Banach space.

vg C £



The shift operator on Z

For any 1 < p < oo, consider

sp: by — 45, sp((q)j) = (¢-1)j,

the shift operator on E%.

Theorem (Bourgain, Jones-Kaufman-Rosenblatt-Wierdl, '98)

For any 2 < g < oo, there is an estimate

H (M”(SP)C)nzouéP Y S ”CHP’ ce EP(Z)'
(Z;vq)




The shift operator on Z

For any 1 < p < oo, consider
spi by, — 5 sp((G))) = (g1,

the shift operator on E%.

Theorem (Bourgain, Jones-Kaufman-Rosenblatt-Wierdl, '98)

For any 2 < g < oo, there is an estimate

H(M”(SP)C)nQOHZP(Z;vq) S ”CHP’ ce EP(Z)'

For ¢ = (cj)j, then My(sp)c is given by

(Mn(sp)c) i n+1 ZCJJrk



Final Results

Questions.
What about other operators?



Final Results

Questions.
What about other operators?

What about 777



Final Results

Questions.
What about other operators?

What about 777

Let T: LP(Q2) — LP(Q2) be a positive contraction and let 2 < g < oo.

Theorem

(1) We have an estimate

H(Mn(T)X),,;OHLp(vq) S lxllps x € LP(Q).




Final Results

Questions.
What about other operators?

What about 777

Let T: LP(Q2) — LP(Q2) be a positive contraction and let 2 < g < oo.

Theorem

(1) We have an estimate

H(Mn(T)X),,;OHLp(vq) S lxllps x € LP(Q).

(2) If further T is analytic, then we have an estimate

1(T"%) sollinquay S Xl x € L2(Q).




Final Results

Questions.
What about other operators?

What about 777

Let T: LP(Q2) — LP(Q2) be a positive contraction and let 2 < g < oo.

Theorem

(1) We have an estimate

H(Mn(T)X),,;OHLp(vq) S lxllps x € LP(Q).

(2) If further T is analytic, then we have an estimate

1(T"%) sollinquay S Xl x € L2(Q).

(1) is 'direct’, (2) follows from (1) and square function estimates.



