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Let H be a complex Hilbert space and B(H) the Banach
algebra of all bounded linear operators on H, while I is the
identity operator on H.
Let A ∈ B(H) be a positive operator, A 6= 0. An operator
T ∈ B(H) satisfying the operator inequality

T ∗AT ≤ A (1)

is called an A-contraction on H. Also, T is called an
A-isometry if the equality in (1) occurs. It is easy to see from
(1) that N (A) is an invariant subspace for T , and it is not
invariant for T ∗, in general.
An A-contraction T is regular (or T is A-regular) if

AT = A1/2TA1/2
. (2)

We know that if A is an orthogonal projection then any
A-contraction is regular.



Let T = (T0, T1) be a pair of commuting contractions on H, that
is Ti ∈ B(H), ||Ti || ≤ 1 (i = 0, 1) and T0T1 = T1T0. Such T is
called a bicontraction on H, and when T0 and T1 are
isometries, T is called a bi-isometry on H.
Since Ti is a contraction, the asymptotic limit of Ti can be
defined as

STi
h = lim

n→∞
T ∗n

i T n
i h (h ∈ H). (3)

Clearly, 0 ≤ STi
≤ T ∗

i Ti and Ti is a STi
-isometry. Moreover,

N (I − STi
) is the maximum invariant subspace for Ti on which

Ti is an isometry, while N (STi
) is the maximum invariant

subspace for Ti on which the sequence {T n
i }n∈N strongly

converges to 0, for i = 0, 1.



We have that T1 is a ST0
-contraction. Thus, one can define the

operator ST0,T1
∈ B(H) by

ST0,T1
h = lim

m→∞
T ∗m

1 ST0
T m

1 h = lim
m→∞

lim
n→∞

T ∗m
1 T ∗n

0 T n
0 T m

1 h (4)

for h ∈ H, and obviously 0 ≤ ST0,T1
≤ ST0

.
By symmetry, T0 is a ST1

-contraction, and so can be defined
the operator ST1,T0

∈ B(H) by

ST1,T0
h = lim

n→∞
T ∗n

0 ST1
T n

0 h = lim
n→∞

lim
m→∞

T ∗n
0 T ∗m

1 T m
1 T n

0 h. (5)

We get ST0,T1
= ST1,T0

, and so the operator

ST := ST0,T1
= ST1,T0

(6)

can be defined by any of the iterated limits of the sequence

{T ∗m
1 T ∗n

0 T n
0 T m

1 }m,n∈N

in the strong topology of B(H). The operator ST is called the
asymptotic limit of the bicontraction T , and clearly, T0 and T1

are ST -isometries.



Theorem

For a bicontraction T = (T0, T1) on H one has

N (I − ST ) =
⋂

m,n∈N

N (I − T ∗m
1 T ∗n

0 T n
0 T m

1 ), (7)

and N (I − ST ) is the maximum invariant subspace for T0 and
T1 on which T0 and T1 are isometries.

Let T̂1−i ∈ R(STi
) is the operator satisfying

T̂1−iS
1/2
Ti

= S1/2
Ti

T1−i .



Theorem

For a bicontraction T = (T0, T1) on H the following statements
are equivalent :
(i) ST T1 = T1ST ;
(ii) T1 is ST -regular and N (ST ) reduces T1;
(iii) T ∗

1 is a regular ST -contraction;
(iv) T ∗

1 is a ST -contraction and either T1 or T ∗
1 is ST -regular.

Moreover, if T1 is ST0
-regular then the conditions (i) − (iv) are

also equivalent to
(v) ST̂1

= S2
T̂1

and R1ST = 0, if T1 on H = R(ST0
) ⊕N (ST0

)

has the operator matrix representation

T1 =

(
T̂1 0
R1 Q1

)
. (8)

In addition, when T1 is ST0
-regular, we have ST = S2

T if and
only if ST̂1

= S2
T̂1

and ST0
h = S2

T0
h for h ∈ R(ST ).



Remark. We derive that the condition ST = S2
T implies

ST T1 = T1ST and, by symmetry ST T0 = T0ST .
Since ST = S1/2

T0
ST̂1

S1/2
T0

we have S2
T = S1/2

T0
ST̂1

ST0
ST̂1

S1/2
T0

,

and so ST = S2
T if and only if ST̂1

= ST̂1
S0ST̂1

, S0 = ST0
|
R(ST0

)
.

The last equality implies that ST̂1
has a generalized inverse, or

equivalently, that R(ST̂1
) is closed.

Corollary

Let T = (T0, T1) be a bicontraction on H such that
T1ST0

= ST0
T1. Then

ST T1 = T1ST ⇔ ST = S2
T ⇔ ST̂1

= S2
T̂1



Theorem

Let T = (T0, T1) be a bicontraction on H such that ST0
= S2

T0
.

The following statements are equivalent :
(i) ST = S2

T ;
(ii) ST̂1

= S2
T̂1

;

(iii) T ∗
1 |R(ST )

is a coisometry.



Theorem

Let T = (T0, T1) be a bicontraction on H such that ST0
= S2

T0
. If

T1ST0
= ST0

T1 then the following statements hold :
(i) ST1

= S2
T1

if and only if ST = S2
T and SQ1

= S2
Q1

, where
Q1 = T1|N (ST0

).

(ii) R(ST ) = R(ST0
) ∩R(ST1

), R(ST ) = N (I − ST0
) ∩R(ST1

),
hence if R(ST1

) is closed then R(ST ) is closed, too.



Remark. The previous theorem shows that, in certain
conditions, if ST0

and ST1
are orthogonal projection, then ST is

also an orthogonal projection. But, when ST0
and ST are

orthogonal projections, ST1
is not necessarily an orthogonal

projection, in general.
For instance, suppose that T1 is a ST0

-isometry, that is
T ∗

1 ST0
T1 = ST0

, which yields ST = ST0
. Hence, if ST = S2

T then
T1ST0

= T1ST = ST T1 = ST0
T1 and T̂1 is an isometry, therefore

ST̂1
= I. In this case we have ST1

= S2
T1

if and only if

SQ1
= S2

Q1
, where Q1 = T1|N (ST0

).
Let T = (T0, T1) be a bicontraction on H with T ∗

i hyponormal,
(that is TiT ∗

i ≤ T ∗
i Ti ), j = 0, 1, such that either T1ST0

= ST0
T1,

or T0ST1
= ST1

T0. It is known that STi
= S2

Ti
for i = 0, 1, and by

previous Theorem one has ST = S2
T . In particular, if Ti are

quasinormal (that is TiT ∗
i Ti = T ∗

i T 2
i ) and TiST1−i

= ST1−i
Ti and

TiST∗

1−i
= ST∗

1−i
Ti for either i = 0 or i = 1, then ST = S2

T and

ST∗ = S2
T∗ , because ST∗

i
= S2

T∗

i
, i = 0, 1.



Theorem

Let T = (T0, T1) be a bicontraction on H such that {T n
0 }n∈N

strongly converges. Then ST0
= S2

T0
and T1ST0

= ST0
T1.

Furthermore, if (I − T0)T n
1 h → 0 (n → ∞) for h ∈ H then

ST = ST1
.

Corollary

If {T n
i }n∈N strongly converges for i = 0, 1 then ST0

, ST1
and ST

are orthogonal projections, and STi
T1−i = T1−iSTi

for i = 0, 1.

Corollary

Suppose that {T n
0 }n∈N strongly converges and that

(I − T1)T n
0 h → 0 (n → ∞) for h ∈ H. Then ST = ST0

is an
orthogonal projection, and ST1

= I ⊕ SQ1
.



Theorem

Let T = (T0, T1) be a bicontraction on H such that {T n
0 }n∈N

strongly converges. Then ST0
= S2

T0
and T1ST0

= ST0
T1.

Furthermore, if (I − T0)T n
1 h → 0 (n → ∞) for h ∈ H then

ST = ST1
.

Corollary

If {T n
i }n∈N strongly converges for i = 0, 1 then ST0

, ST1
and ST

are orthogonal projections, and STi
T1−i = T1−iSTi

for i = 0, 1.

Corollary

Suppose that {T n
0 }n∈N strongly converges and that

(I − T1)T n
0 h → 0 (n → ∞) for h ∈ H. Then ST = ST0

is an
orthogonal projection, and ST1

= I ⊕ SQ1
.



Theorem

Let T = (T0, T1) be a bicontraction on H such that {T n
0 }n∈N

strongly converges. Then ST0
= S2

T0
and T1ST0

= ST0
T1.

Furthermore, if (I − T0)T n
1 h → 0 (n → ∞) for h ∈ H then

ST = ST1
.

Corollary

If {T n
i }n∈N strongly converges for i = 0, 1 then ST0

, ST1
and ST

are orthogonal projections, and STi
T1−i = T1−iSTi

for i = 0, 1.

Corollary

Suppose that {T n
0 }n∈N strongly converges and that

(I − T1)T n
0 h → 0 (n → ∞) for h ∈ H. Then ST = ST0

is an
orthogonal projection, and ST1

= I ⊕ SQ1
.



Theorem

Let T = (T0, T1) be a bicontraction on H. Then the sequence
{T m

0 T n
1 }m,n∈N strongly converges as m, n → ∞ if and only if

Ti = I ⊕ Si (i = 0, 1) relative to an orthogonal decomposition
H = M⊕M⊥, such that Sm

0 Sn
1h → 0 as m, n → ∞ for any

h ∈ M⊥. In this case we have ST = S2
T .

Theorem

Let T = (T0, T1) be a bicontraction on H. Then ST is a compact
operator if and only if Ti = Ui ⊕ Si (i = 0, 1) relative to an
orthogonal decomposition H = M⊕M⊥ with M a finite
dimensional subspace, such that Ui are unitary operators on M
and {Sm

0 Sn
1}m,n∈N strongly converges to 0, (as m, n → ∞) in

B(M⊥). In this case, ST is a finite dimensional orthogonal
projection, which commutes with T0 and T1.



Theorem

Let T = (T0, T1) be a bicontraction on H. Then the sequence
{T m

0 T n
1 }m,n∈N strongly converges as m, n → ∞ if and only if

Ti = I ⊕ Si (i = 0, 1) relative to an orthogonal decomposition
H = M⊕M⊥, such that Sm

0 Sn
1h → 0 as m, n → ∞ for any

h ∈ M⊥. In this case we have ST = S2
T .

Theorem

Let T = (T0, T1) be a bicontraction on H. Then ST is a compact
operator if and only if Ti = Ui ⊕ Si (i = 0, 1) relative to an
orthogonal decomposition H = M⊕M⊥ with M a finite
dimensional subspace, such that Ui are unitary operators on M
and {Sm

0 Sn
1}m,n∈N strongly converges to 0, (as m, n → ∞) in

B(M⊥). In this case, ST is a finite dimensional orthogonal
projection, which commutes with T0 and T1.



Theorem

Let T = (T0, T1) be a bicontraction on H. Then
(i) T is similar to a bi-isometry if and only if ST is invertible. In
this case STi

is invertible, too, for i = 0, 1.
(ii) R(ST ) is closed if and only if T 0 = (T00, T10) is similar to a
isometry, where Ti0 = P

R(ST )Ti |R(ST ), i = 0, 1.



Theorem

Let T = (T0, T1) and T ′ = (T ′
0, T ′

1) be two bicontractions on H
and H′, respectively. Then an operator A ∈ B(H′,H) satisfies
A = T ∗

i AT ′
i for i = 0, 1 if and only if there exists an operator

B ∈ B(R(ST ′),R(ST )) such that A = S1/2
T BS1/2

T ′ and
B = V ∗

i BV ′
i , where Vi and V ′

i are the isometries on R(ST ) and

R(ST ′) respectively, which satisfy the relations ViS
1/2
T = S1/2

T Ti

and V ′
i S

1/2
T ′ = S1/2

T ′ T ′
i , for i = 0, 1. In this case, B is uniquely

determined and ||B|| = ||A||.

Corollary

Under the hypotheses of previous Theorem, if either ST = 0, or
ST ′ = 0, then the only operator A ∈ B(H′,H) satisfying
A = T ∗

i AT ′
i for i = 0, 1 is A = 0.



Theorem

Let T = (T0, T1) and T ′ = (T ′
0, T ′

1) be two bicontractions on H
and H′, respectively. Then an operator A ∈ B(H′,H) satisfies
A = T ∗

i AT ′
i for i = 0, 1 if and only if there exists an operator

B ∈ B(R(ST ′),R(ST )) such that A = S1/2
T BS1/2

T ′ and
B = V ∗

i BV ′
i , where Vi and V ′

i are the isometries on R(ST ) and

R(ST ′) respectively, which satisfy the relations ViS
1/2
T = S1/2

T Ti

and V ′
i S

1/2
T ′ = S1/2

T ′ T ′
i , for i = 0, 1. In this case, B is uniquely

determined and ||B|| = ||A||.

Corollary

Under the hypotheses of previous Theorem, if either ST = 0, or
ST ′ = 0, then the only operator A ∈ B(H′,H) satisfying
A = T ∗

i AT ′
i for i = 0, 1 is A = 0.



Let K ⊃ H be a Hilbert space. An isometric dilation on K ⊃ H
of the bicontraction T = (T0, T1) on H is a bi-isometry
V = (V0, V1) on K satisfying

T m
0 T n

1 = PHV m
0 V n

1 |H (m, n ∈ N). (9)

The dilation V of T is minimal, and we denote it by [K, V ], if

K =
∨

m,n≥0

V m
0 V n

1 H. (10)

The existence of such a dilation was firstly proved by Ando, but
it also follows from the commutant dilation Nagy-Foiaş’s
theorem.



An isometric dilation V = (V0, V1) of T = (T0, T1) is regular if

T ∗m
0 T n

1 = PHV ∗m
0 V n

1 |H (m, n ∈ N). (11)

The minimal regular isometric dilation of T is uniquely
determined up to a unitary equivalence.



We can use the operators ST0
, ST1

and ST in order to obtain an
isometric dilation of a bicontraction T = (T0, T1) satisfying the
condition

∆2
T := I − T ∗

0 T0 − T ∗
1 T1 + T ∗

1 T ∗
0 T0T1 ≥ 0,

which means T has a regular dilation.
We remark that ∆2

T = D2
T0

− T ∗
1 D2

T0
T1, where

DTi
= (I − T ∗

i Ti)
1/2 is the defect operator of Ti , i = 0, 1.



||h||2 =

∞∑

m,n=0

||∆T T m
0 T n

1 h||2 + ||S1/2
T0

h||2 + ||S1/2
T1

h||2 − ||S1/2
T h||2

(12)

=

∞∑

m,n=0

||∆T T m
0 T n

1 h||2+||(ST0
−

1
2

ST )1/2h||2+||(ST1
−

1
2

ST )1/2h||2.

Denote DT = ∆TH and let HT =
⊕

m,n∈Z
D

(m,n)
T be the Hilbert

space of all sequences {hm,n}m,n∈Z with hm,n ∈ D
(m,n)
T and

∑

m,n∈Z

||hm,n||
2

< ∞.



The space H can be isometrically embedded in the space

G = HT ⊕R(ST0
) ⊕R(ST1

)

by identifying the element h of H with the element
h̃ ⊕ (ST0

− 1
2ST )1/2h ⊕ (ST1

− 1
2ST )1/2h of G, where

h̃ = {h̃m,n}m,n∈Z such that

h̃m,n =

{
∆T T m

0 T n
1 h, if m, n ≥ 0

0, if m < 0, or n < 0.



Now we can define an isometry Wi on R(STi
) by

Wi(STi
−

1
2

ST )1/2h = (STi
−

1
2

ST )1/2Tih, h ∈ H,

because Ti is a STi
-isometry and also, a ST -isometry.

Similarly, since T1−i is a STi
-contraction, we can define a

contraction T̃1−i on R(STi
) by

T̃1−i(STi
−

1
2

ST )1/2h = (STi
−

1
2

ST )1/2T1−ih, h ∈ H.

In addition, we have

Wi T̃1−i = T̃1−iWi

because TiT1−i = T1−iTi , for i = 0, 1.



Let [Ki , Ṽi ] be the minimal isometric dilation of T̃i and W̃1−i be
the isometric extension of W1−i on Ki such that

W̃1−i Ṽi = ṼiW̃1−i ,

for i = 0, 1.
Let Si ∈ B(HT ) be the bilateral shift defined by

S0{hm,n} = {hm+1,n}, S1{hm,n} = {hm,n+1} (13)

if {hm,n} ∈ HT . Clearly, Si is unitary and S0S1 = S1S0.
Consider the isometries V0 and V1 on the Hilbert space

K = HT ⊕K1 ⊕K0

given by

V0 = S0 ⊕ W̃0 ⊕ Ṽ0, V1 = S1 ⊕ Ṽ1 ⊕ W̃1. (14)



Theorem

If T = (T0, T1) is a bicontraction on H such that ∆2
T ≥ 0, then

the bi-isometry V = (V0, V1) on K given by (14) is an isometric
dilation of T .

Theorem

Let T = (T0, T1) be a bicontraction on H such that T0 is normal
and ST1

= S2
T1

. Then the isometric dilation of T given by (14) is
regular.



Theorem

If T = (T0, T1) is a bicontraction on H such that ∆2
T ≥ 0, then

the bi-isometry V = (V0, V1) on K given by (14) is an isometric
dilation of T .

Theorem

Let T = (T0, T1) be a bicontraction on H such that T0 is normal
and ST1

= S2
T1

. Then the isometric dilation of T given by (14) is
regular.



Theorem

Let T = (T0, T1) be a bidisk isometry on H. Then
(i) [K, V ] is a minimal isometric dilation of T , where
K = K1 ⊕K0 and V = (V0, V1) is given by (14).
(ii) If ST0

= S2
T0

then we have ST = S2
T if and only if ST1

= S2
T1

.
(iii) If STi

= S2
Ti

for i = 0, 1 then [K, V ] is the minimal regular
isometric dilation of T .


