Quasianalytic contractions and function algebras

Laszlé Kérchy

‘H complex Hilbert space, dimH = N
L(H) bounded linear operators on H
S C L(H), LatS:={M subspace: CM C M VC € S}
T e L(H)
W(T) := {p(T') : p polynomial};qr
R(T') := {q(T) : g rational function }yyq
{T} ={CeL(H):CT=TC}
W(T) C R(T) c{TYV
Lat T'D> Rlat 7' D Hlat T’

(HSP) Is it true that Hlat T # {{0}, H} whenever T # cI?
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We may assume: ||T]| <1
Ho(T) :={x € H :lim,_ ||T™x|| =0} € Hlat T

Sz.-Nagy—Foias classification:

T e Cy. if Ho(T) =H

T € Cy. if Ho(T) ={0}

T eCy if Ho(T*)=H

T € C if Ho(T*)={0}
Ci; =Ci.NC,

(HSP) for Cyg is equivalent to the general (HSP)
(HSP) for the complement of Cyg can be reduced to Cig

(HSP)* Is it true for every T € Cyg that Hlat T # {{0}, H}?



Typical example for a Cig-contraction:
S e L(H?), Sf = xf unilateral shift (x(¢) =)

H>* ={9e€ H® :|¥(()| =1 for a.e. ( €T}

inner functions

Beurling Theorem:
Lat S = {19H2 S Hioo}
191H2 = 192H2 <— drk €T, ¥ =kt



T e ClO
W € L(K) unitary operator
X e LH,K), | X]| <1 and XT =WX

(X, W) is a unitary asymptote of T, if
VX, W, Y € LK, K, |V <1,
X' =YX and YW =W'Y

Exists uniquely up to isomorphism.

vy AT} = {W}, C+— D, where XC = DX

contractive algebra-homomorphism



W absolutely continuous unitary operator

0:T — NU{0,00} spectral-multiplicity function

vneN, w(T,n):={CeT:§¢) >n}
w(T) :=w(T,1) is the residual set of T

Theorem 1. If w(T) =T, then Ve >0, VLat(T,¢e) = H,

where
Lat(T,e) = {M € Lat T : 3Q € L(M, H?) invertible,
Q(TIM) = SQ, [IQIIQ™H <1+e}.



Sz.-Nagy—Foias calculus:
O H® — L(H), 9 — ¥(T) algebra-hom.
Vo <9 if |¥2(2)| < [91(2)| V2 €D
Ay < Ay if ||Asz|| < ||Arz|| Ve € H
Vo < = 92(T) < 1 (T)

O = (9,)22, decreasing, Co(C) = limy—oo [9,(C)] (C € T)
— {V,(T)}>2, decreasing,
Ho(T,0) :={z € H : lim, . ||9,(T)z| = 0}

T is non-vanishing on the set ao C T, if
Ho(T,0) = {0} whenever x,Go Z 0
7(T) is the largest Borel set where T' is non-vanishing

is called the quasianalytic spectral set of T



Theorem 2. (a) 7(T) C w(T)
(b) If m(T') # w(T), then Hlat T is non-trivial.

We may assume that T' is a quasianalytic contraction:

m(T) = w(T).
Let us assume: W is cyclic, that is w(T,2) = (.

Lo(H) :={T € Cro(H) : 7(T) = w(T) and w(T,2) =0}
,Cl(H) = {T c ,Cl(H) : w(T) = T}

Theorem 3. If T € Lo(H) and w(T) contains an arc,
then 3T € L1(H), {T} = {TV.



Examples for operators in L1(H):
(a) S € L(H?), Sf=xf unilateral shift

(b) T € Ci9p and dp~ =dp + 1 < 0o, where
dp = rank(I —T*T)

(¢c) T € Chp, dp = oo, dimker T < oo,
JU: D — L(Dr+,Dr) bounded, analytic,
45 € H* \ {0}, YO =J1.

(d) Cyclic subspaces of orthogonal sums of operators in L.



We assume: T € L1(H)

¢: L>(T) = AW}, [ f(W)

0 :=¢ L {IW} — L>® isometric algebra-isomorphism

Ar :=po~:{T} — L* contractive alg.-hom., injective
independent of the choice of (X, W)
Vi € H*, yp(J(T)) =9

F(T) := ran 7y is a subalgebra of L,
F(T) D> H*® functional commutant of T

Or: F(T) = {TY, f f(T), where 0 (f(T)) = f

algebra-isomorphism, extension of ®



Theorem 4. F(T) is a quasianalytic function algebra:

Ve F(T)\{0}, f(¢)# 0 fora.e. C€T.

Proof. f e F(T)\ {0}
3C e T}, 7r(C) = f
0£veH
T quasianalytic = Xw is cyclic for {W}’
W cyclic = Xw is separating for {W}'
XCv=fW)Xv#0 = Cv#0
—> f(W)Xv = XCuv is cyclic for {W};
— f(()#0 forae. (€T
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F. & M. Riesz Theorem = H®° is quasianalytic

BC H™, [B, HOO]O := is the algebra, generated by BU H™>

quasianalytic, pre-Douglas algebra

[B, HOO] := closure of [B, HOO}O, Douglas algebra

Chang—Marshall Theorem.
FEvery closed algebra H>* C A C L™ is a Douglas algebra.

A # H* Douglas algebra — A D [\, H>*] = C(T) + H*
— A is not quasianalytic
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Ap = X*X =lim,, oo T""T"
LTZ {T}/ — E(H), C— ATC

Theorem 5. TFAFE:

) F(T) is a Douglas algebra

) ®7 is bounded  (c) ®r is an isometry

f) F(I)=H>

) {T} = H>(T)
Then Hlat T = Lat T' s rich.

(a
(b
(d) L is bounded from below  (e) L is an isometry
(
(8

TeLi(H), T<S = F(T) Douglas algebra

Proposition 6. o¢(T)=D" <= FT)NH>*=T-1
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Theorem 7. (a) — (b) = (c), where
(a) F(T) is a pre-Douglas algebra
(b) {T} = R(T)
(¢) Hlat T= Rlat T

Sketch of the proof.

Suppose F(T') # H* is a pre-Douglas algebra
B {nc H® 7€ F(T)}, (B, H ]y = F(T)
Question: ne B = n(T) € R(T)?

Basily verified if n = HN bs, is a finite Blaschke product.

n=1"-"a

(bo(z) =z, by(z)= —% = for a e D\ {O})
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Assume n =[] _, b, infinite Blaschke product.

n=1 "Aan
For N eN, By =[[._, ba,.

By =T[=n41ba, € F(T) = Bn(T) € R(T)
By — n weak-+ = By(T) — n(T) WOT (N — )

= |IBN (D)7 < [In(T) = n(T)]| YN €N
H Bn; }52, subsequence:

By, (T)~! — C WOT, and

By, (¢) — n(¢) forae. ¢€T.

= Bn,(T) —n(T) SOT

—s I =By, (T)"'By,(T) — Cn(T) WOT

— (T) = ()" = C € R(T)
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Suppose n € B arbitrary non-constant.

Frostman Theorem = Ja € D,0 < |a| < 47 ||7(T)|| 71,

b, omn = b is a Blaschke product.
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H> c AC L* is a generalized Douglas algebra, if
feANEC, N> |fle = 725 €A

Tolokonnikov’s Theorem.

If A# H® is a generalized Douglas algebra, then Y € A.

Theorem 8.
(a) F(T) is a generalized Douglas algebra
= VfeFT), r(f(T)) =flleo
(b) F(T) # H* s a generalized Douglas alg. =—> o(T) = T.
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Questions.

(a) What are the quasianalytic function algebras in L7

(b) Which quasianalytic function algebras can be attained as a
functional commutant F(T') of some T € L1(H)?

(¢) Which pre-Douglas algebras are attainable?

(d) Which generalized Douglas algebras are attainable?

(e) What is the spectral behaviour of the contractions in L1(H)?

AcCD, By={by,:a€ A}

Va €D, b, € B4, H®]y < ac A

If [Ba, H®]o = F(T) for some T € L1(H), then
o(T)ND =D\ A, and so A must be open.
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Example
G={re :Vi<r<l,0<t<m} (0<&<1)

Riemann & Charathéodory Theorems —
F99: D7 — G~ homeomoprhism,

Yo|D analytic, 9o(¢) =( for (=1,7,—1.

T =9(S) € L(H?), where 9 = 13
Spectral mapping theorems —
T € L1(H?),
o(T)=9(D)” = {re":§ <r <1,0 <t <27}

F(T)={ge€L>®:go(VT+)=nh|T4 for some h € H*®}.
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