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We will be concerned with the so called HRT Conjecture

Conjecture (L2 HRT conjecture: Heil, Ramanathan and Topiwala,
1996)

Let (tj , ξj)
n
j=1 be n ≥ 2 distinct points in the plane. Then there is

no nontrivial L2 function f : R → C satisfying a nontrivial linear
dependence

n∑

j=1

di f (x + tj)e
2πiξj x = 0,

for a.e. x ∈ R.

A weaker version of this is

Conjecture (The Schwartz HRT Conjecture)

Let (tj , ξj)
n
j=1 be n ≥ 2 distinct points in the plane. Then the

above equation has no Schwartz solution.
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These conjectures are far from being resolved, but a few cases are
known. It is easy to see that the L2 HRT is true if the shifts
(t̃j , ξ̃j )

n
j=1 are collinear. Indeed, via metaplectic transforms, we can

assume they lie on the time axis, so ξj = 0. Then the equation
becomes ∑

j

dj f (x + tj) = 0.

By taking the Fourier transform we get

f̂ (ξ)(
∑

j

dje
2πiξtj ) = 0.

The key is that the zeros of the trig polynomial
∑

j dje
2πiξtj are

discrete (in particular, they have measure 0)
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A nice result, of a reasonably general nature is

Theorem (Linnell, 1999)

The L2 HRT Conjecture holds for any configuration of points that
sit on a lattice (any discrete subgroup of R

2).

Linnell’s argument uses von Neumenn algebra techniques.
Zubin Gautam and I have an alternative argument, inspired by the
proof of a.e. invariance of spectra of random Schrödinger
oparators. Our argument was motivated by Nazarov and Volberg’s
observation that the almost Mathieu operator provides a
counterexample to the analogue of the HRT conjecture on the
group Z (The HRT Conjeture can be asked on any

topological Abelian group)
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Let e(x) := e2πix .
Recall the almost Mathieu operator

Hω,λ,θΨ(n) := Ψ(n+1)+Ψ(n−1)+λ[e(ωn+θ)+e(−ωn−θ)]Ψ(n).

The next result follows from a much stronger theorem due to
Jitomirskaya, 1999.
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Theorem

Let ω be Diophantine and let λ > 1. Then for a.e. θ ∈ [0, 1], there
exists at least one eigenfunction Ψθ ∈ l2(Z). In other words

Ψθ(n+1)+Ψθ(n−1)+λ[e(ωn+θ)+e(−ωn−θ)]Ψθ(n) = EθΨθ(n)

Thus, for fixed λ, θ, ω, we get a linear dependence on Z

f (n + 1) + f (n − 1) + Ae(ωn)f (n) + Be(−ωn)f (n) = Ef (n),

where f (n) := ψθ(n),A = λe(θ),B = λe(−θ)
If Eθ did not depend on θ, say Eθ = E , then we would obtain a
linear dependence on R (by patching together solutions along
individual orbits), using the following 5 shifts

(−1, 0), (0, 0), (0, ω), (0,−ω), (1, 0).

(Incidentally, these points sit on the lattice Z × ωZ, so we know
this is impossible, since it would contradict Linnell’s result!)
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How about HRT for non-lattice configurations?
Linnell’s result implies that HRT holds true for arbitrary 3 shifts,
since any 3 points sit on a lattice. However, the conjecture is open
for arbitrary 4 shifts.

Definition (D. 2010)

We will call an (n,m) configuration, any collection of n + m
distinct points in the plane, such that there exist 2 distinct parallel
lines such that one of them contains exactly n of the points, and
the other one contains exactly m of the points.

Notation: ‖x‖ =distance to the nearest integer
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Theorem (D. 2010)

The Schwartz-HRT Conjecture holds for all (1, 3) and (2, 2)
configurations.

Theorem (D. 2010)

The L2-HRT Conjecture holds for special (1, 3) configurations

(0, 0), (1, 0), (1, α), (1, β)

(a) if β
α

is sufficiently non-Diophantine, more exactly, if there exists
γ > 1 such that

lim inf
n→∞

nγ‖n
β

α
‖ <∞

(b) if at least one of α, β is rational
In either case, no solution f can exist satisfying minimal decay

lim
|n|→∞

|f (x + n)| = 0, a.e. x
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Theorem (D., Zaharescu, 2010)

The L2-HRT Conjecture holds for all (2, 2) configurations.
Moreover, when the points sit in a special (2, 2) configuration
(0, 0), (1, 0), (0, α), (1, β), no nontrivial solution f can exist
satisfying minimal decay

lim
|n|→∞

n∈Z

|f (x + n)| = 0, a.e. x
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The main ideas in the proof:

Via metaplectic transforms, one can easily reduce to standard
(m, n) configurations, where m of the points sit on the y axis and
n of the points sit on the line x = 1.
The crucial property of any such standard (m, n) configuration is
that any hypothetical linear dependence between the shifts of f
can be investigated via scalar recurrences. For example, the
recurrences become

f (x + 1) = f (x)(C0 + C1e(αx) + C2e(βx)).

for (1, 3) configurations and

f (x + 1)(A + Be(αx)) = f (x)(C + De(βx))

for (2, 2) configurations.
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I will now show you the details for

Theorem (D. 2010)

The Schwartz-HRT Conjecture holds for all (1, 3) configurations.

Assume for contradiction that there exists a Schwartz solution f .
Let (I ,S , d) be a triple such that d > 0 and I ⊂ [0, 1) is an
interval such that

lim
|n|→∞

n∈Z

|n|C f (x + n) = 0, for each x ∈ I and each C > 0, (1)

d < |f (x)|, for each x ∈ I ∪ (I + 1), (2)

f (x + 1) = f (x)P(x), for each x ∈ I + Z. (3)

where
P(x) = C0 + C1e(αx) + C2e(βx)
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We will construct triples (xk , x
′
k ,Pk) with xk , x

′
k ∈ I , Pk → ∞ and

apply the recurrence for the Z-orbits of xk (forwards) and x ′
k

(backwards)

f (xk + [Pk ]) = f (xk)

[Pk ]−1∏

n=0

P(xk + n) (4)

f (x ′
k − [Pk ]) = f (x ′

k)[

[Pk ]∏

n=1

P(x ′
k − n)]−1. (5)

The selection is in such a way that

∏[Pk ]−1
n=0 |P(xk + n)|

∏[Pk ]
n=1 |P(x ′

k − n)|
& P−L

k ,

for some universal L, independent of k. Using (3), and multiplying
(4) and (5) we get (and this contradicts f Schwartz, as k → ∞)

|f (xk + [Pk ])f (x ′
k − [Pk ])| & d2P−L

k
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The difficult part is to construct triples (xk , x
′
k ,Pk) with xk , x

′
k ∈ I ,

Pk → ∞ such that

∏[Pk ]−1
n=0 |P(xk + n)|

∏[Pk ]
n=1 |P(x ′

k − n)|
& P−L

k .

It turns out that it’s very difficult to control a product such as

N∏

n=0

P(x + n) =

N∏

n=0

[C0 + C1e(αx + αn) + C2e(βx + βn)]

along any given orbit.
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Thus, since estimating products along one orbit is too difficult,
the new idea is to compare products along 2 different orbits.
Recall that our goal is to construct triples (xk , x

′
k ,Pk) with

xk , x
′
k ∈ I , Pk → ∞ such that

∏[Pk ]−1
n=0 |P(xk + n)|

∏[Pk ]
n=1 |P(x ′

k − n)|
& P−L

k .

It will be clear later that we need to estimate averages along a
fixed orbit

1

Pk

[Pk ]−1∑

n=0

1

|P(x + n)|
,

where
P(x) = C0 + C1e(αx) + C2e(βx)

The proof will rely on the almost periodicity of P .
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The main technical lemma is the following

Lemma

Let (Nk) be a sequence of integers such that
(ii) Nk‖Nk

α
β
‖ . min1≤n≤Nk

n‖nα
β
‖,

(iii) Nk‖Nk
α
β
‖ . 1 (i.e. Nk |

α
β
− pk

Nk
| . 1 for some pk ∈ Z)

Define 1
Mk

:= Nk‖Nk
α
β
‖ . 1, and let Pk := Nk

β
. Then for each k

and each δ > 0, there exists an exceptional set Ek,δ ⊂ [0, 1] such
that

|Ek,δ | < δ

and

1

MkPk

[Pk ]−1∑

n=0

1

|P(x + n)|
.δ,C0,C1,C2,α,β log Pk ,

for each x ∈ [0, 1] \ Ek,δ .
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I will not prove this lemma, but let’s first see how it implies
(together with almost periodicity) the following comparison
between 2 orbits.

Proposition

Assume

1

MkPk

[Pk ]−1∑

n=0

1

|P(x + n)|
.δ,C0,C1,C2,α,β log Pk ,

for some x, and let x − Pk = y . Then we have

|

[Pk ]−1∏

n=0

P(y + n)| ≤ PL
k |

[Pk ]−1∏

n=0

P(x + n)|.
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Proof.

Let as before 1
Mk

:= Pk‖Pk
α
β
‖ . 1. Then, we have (Pk := Nk

β
)

|e(αx) − e(αy)| = |e(Pkα) − 1| .
1

PkMk

|e(βx) − e(βy)| = |e(Pkβ) − 1| .
1

PkMk

.

Thus, for each n ∈ N, |P(y + n)| ≤ |P(x + n)| + C
MkPk

Use the fact a + b ≤ ae
b
a for each a, b > 0 to get

|P(y + n)| ≤ |P(x + n)|e
C

MkPk |P(x+n)| ,

and thus

|

[Pk ]−1∏

n=0

P(y + n)| ≤ |

[Pk ]−1∏

n=0

P(x + n)|e
C

MkPk

∑[Pk ]−1
n=0

1
|P(x+n)| .
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Two things play a critical role in the estimate

1

MkPk

[Pk ]−1∑

n=0

1

|P(x + n)|
.δ,C0,C1,C2,α,β log Pk .

1. The fact that p(x , y) = C0 + C1e(x) + C2e(y) has at most two

real zeros (γ
(j)
1 , γ

(j)
2 ) ∈ [0, 1)2, j ∈ {1, 2}, and for each x , y ∈ R,

|p(x , y)| &C0,C1,C2

2
min
j=1

(‖x − γj
1‖

2 + ‖y − γj
2‖

2).
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2. The second important fact is the geometry of the points
(nα, nβ), since

P(x+n) = C0+C1e(αx+αn)+C2e(βx+βn) = p(αx+αn, βx+βn).

The heuristic behind the proof is that if α/β is less Diophantine,
then the estimate

1

MkPk

[Pk ]−1∑

n=0

1

‖αx − γj
1 + αn‖2 + ‖βx − γj

2 + βn‖2
. log Pk .

holds (for each j) because Mk is large, while if α/β is Diophantine,
it holds because of the extra regularity the points (nα, nβ).
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Questions:

1. This approach fails for (1, 4) configurations like
(0, 0), (1, 0), (1, α), (1, β), (1, γ). This is because the best one can
guarantee in general is the existence of arbitrarily large P such that
max{‖Pα‖, ‖Pβ‖, ‖Pγ‖} . 1√

P
. It is not clear whether working

with 3 or more orbits would have more to say about this case.

2. How to deal with configurations sitting on 3, rather than 2
lines? Here, matrix (rather than scalar) recurrences occur.
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