Fibered products of continuous fields of C*-algebras

É. Blanchard (CNRS)

Let X be a (fixed) compact Hausdorff space.

Let **X** be a (fixed) compact Hausdorff space.

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital continuous field over X of non zero C^* -algebras A_x ($x \in X$)

is a unital C*-subalgebra $A \subset \prod_{x \in X} A_x$ such that :

Let **X** be a (fixed) compact Hausdorff space.

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital continuous field over X of non zero C^* -algebras A_x ($x \in X$)

is a unital C*-subalgebra
$$A \subset \prod_{x \in X} A_x$$
 such that :

(a) There exist a unital *-embedding $C(X) \rightarrow A$ given by

$$f\mapsto (f(x)1_{A_x})$$
 for all $f\in C(X)$

Let **X** be a (fixed) compact Hausdorff space.

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital continuous field over X of non zero C^* -algebras A_x ($x \in X$)

is a unital C*-subalgebra $A \subset \prod_{x \in X} A_x$ such that :

- (a) There exist a unital *-embedding C(X) o A given by $f \mapsto (f(x)1_{A_x})$ for all $f \in C(X)$
- (b) For all $x \in X$, the projection $A \to A_x$ is surjective.

Let **X** be a (fixed) compact Hausdorff space.

Definition 1.1 (Dixmier; Fell; Tomiyama) A unital continuous field over X of non zero C^* -algebras A_x ($x \in X$)

is a unital C*-subalgebra $A \subset \prod_{x \in X} A_x$ such that :

- (a) There exist a unital *-embedding C(X) o A given by $f \mapsto (f(x)1_{A_x})$ for all $f \in C(X)$
- (b) For all $x \in X$, the projection $A \to A_x$ is surjective.
- (c) $\forall (a_x)_{x \in X} \in A$, $\mathbf{x} \mapsto \|\mathbf{a_x}\|_{\mathbf{A_x}}$ is continuous.

Definition 1.2 (Kasparov)

$$C(X) \longrightarrow \mathcal{Z}(A)$$

Definition 1.2 (Kasparov)

$$C(X) \longrightarrow \mathcal{Z}(A)$$

$$\forall x \in X, \quad C_x(X) = \{f \in C(X) \mid f(x) = 0\}$$

Definition 1.2 (Kasparov)

$$C(X) \longrightarrow \mathcal{Z}(A)$$

$$\forall x \in X, \quad \boxed{C_x(X) = \{f \in C(X) \mid f(x) = 0\}}$$

$$A_x := A/[C_x(X).A]$$
 and $a \in A \longmapsto a_x \in A_x$

Definition 1.2 (Kasparov)

$$C(X) \longrightarrow \mathcal{Z}(A)$$

$$\forall x \in X, \quad C_x(X) = \{ f \in C(X) | f(x) = 0 \}$$

$$A_x := A/[C_x(X).A]$$
 and $a \in A \longmapsto a_x \in A_x$

$$x \mapsto ||a_x|| = ||a + C_x(X)A||$$

= $\inf\{||[1 - f + f(x)]a||, f \in C(X)\}$
upper semi-continuous (u.s.c.)

Definition 1.2 (Kasparov)

A unital C(X)-algebra is a unital C^* -algebra A endowed with a unital *-morphism

$$C(X) \longrightarrow \mathcal{Z}(A)$$

$$\forall x \in X, \quad C_x(X) = \{ f \in C(X) \mid f(x) = 0 \}$$

$$\mathbf{A}_{\mathbf{x}} := \mathbf{A}/[\mathbf{C}_{\mathbf{x}}(\mathbf{X}).\mathbf{A}]$$
 and $a \in A \longmapsto \mathbf{a}_{\mathbf{x}} \in \mathbf{A}_{\mathbf{x}}$

$$x \mapsto ||a_x|| = ||a + C_x(X)A||$$

= $\inf\{||[1 - f + f(x)]a||, f \in C(X)\}$

upper semi-continuous (u.s.c.)

Definition 1.3

A is a continuous field of C*-algebras over X with fibres A_X

iff

 $\forall a \in A$, the function $x \mapsto ||a_x||$ is continuous.

Proposition 2.1 (Kirchberg, Wassermann)

Let X be a compact Hausdorff space and

A be a separable continuous C(X)-algebra.

Proposition 2.1 (Kirchberg, Wassermann)

Let X be a compact Hausdorff space and A be a separable $\boxed{continuous}$ C(X)-algebra.

(1) For all compact Hausdorff space Y and all cont. C(Y)-algebra B, $A \overset{M}{\otimes} B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \overset{M}{\otimes} B)_{(x,y)} \cong A_x \overset{M}{\otimes} B_y$

Proposition 2.1 (Kirchberg, Wassermann)

Let X be a compact Hausdorff space and A be a separable continuous C(X)-algebra.

(1) For all compact Hausdorff space Y and all cont. C(Y)-algebra B, $A \otimes B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \otimes B)_{(x,y)} \cong A_x \otimes B_y$

- 1
- (2) The C^* -algebra A is **nuclear**.

Proposition 2.1 (Kirchberg, Wassermann)

Let X be a compact Hausdorff space and A be a separable continuous C(X)-algebra.

(1) For all compact Hausdorff space Y and all cont. C(Y)-algebra B, $A \overset{M}{\otimes} B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \overset{M}{\otimes} B)_{(X,Y)} \cong A_X \overset{M}{\otimes} B_Y$

$$\overset{\scriptscriptstyle{M}}{\otimes}B$$
 is a continuous $C(X\times Y)$ -algebra with fibres $(A\overset{\scriptscriptstyle{M}}{\otimes}B)_{(x,y)}\cong A_x\overset{\scriptscriptstyle{M}}{\otimes}B$

(2) The C*-algebra A is **nuclear**.

(3) For all compact Hausdorff space Y and all cont. C(Y)-algebra B, $A \overset{m}{\otimes} B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \overset{m}{\otimes} B)_{(X,Y)} \cong A_X \overset{m}{\otimes} B_Y$

Proposition 2.1 (Kirchberg, Wassermann)

Let X be a compact Hausdorff space and

A be a separable continuous C(X)-algebra.

(1) For all compact Hausdorff space
$$Y$$
 and all cont. $C(Y)$ -algebra B , $A \otimes B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \otimes B)_{(x,y)} \cong A_x \otimes B_y$

(2) The C*-algebra A is **nuclear**.

- (3) For all compact Hausdorff space Y and all cont. C(Y)-algebra B, $A \overset{m}{\otimes} B$ is a continuous $C(X \times Y)$ -algebra with fibres $(A \overset{m}{\otimes} B)_{(X,Y)} \cong A_X \overset{m}{\otimes} B_Y$
- - (4) The C*-algebra A is **exact**.

Nuclearity and Exactness

A C*-algebra A is **nuclear** iff for any C*-algebra B, there is a unique C*-norm on $A \odot B$.

A C*-algebra A is **exact** iff for any closed two sided ideal J in a C*-algebra B, the sequence

$$0 \to A \mathop{\otimes}\limits_{\mathbb{C}}^m J \to A \mathop{\otimes}\limits_{\mathbb{C}}^m B \to A \mathop{\otimes}\limits_{\mathbb{C}}^m B/J \to 0$$

is exact.

Question 1. What can be written for the fibered tensor product of C(X)-algebras?

Question 1. What can be written for the fibered tensor product of C(X)-algebras?

Proposition 2.3 (B.) Let -X be a compact Hausdorff space

- -A, B be two unital C(X)-algebras
- $-A \underset{C(X)}{\odot} B := (A \odot B)/\mathcal{I}_X(A,B)$ with $\mathcal{I}_X(A,B) = \langle af \otimes b a \otimes fb \rangle$

Question 1. What can be written for the fibered tensor product of C(X)-algebras?

Proposition 2.3 (B.) Let -X be a compact Hausdorff space -A,B be two unital C(X)-algebras $-A \underset{C(X)}{\odot} B := (A \underset{C(X)}{\odot} B)/\mathcal{I}_X(A,B)$ with $\mathcal{I}_X(A,B) = \left\langle af \otimes b - a \otimes fb \right\rangle$ There are a minimal Hausdorff completion $A \underset{C(X)}{\overset{m}{\otimes}} B$ of $A \underset{C(X)}{\overset{m}{\otimes}} B$

and a maximal Hausdorff completion $A \overset{M}{\underset{C(X)}{\otimes}} B$ of $A \overset{\odot}{\underset{C(X)}{\odot}} B$

Question 1. What can be written for the fibered tensor product of C(X)-algebras?

Proposition 2.3 (B.) Let
$$-X$$
 be a compact Hausdorff space $-A,B$ be two unital $C(X)$ -algebras $-A \underset{C(X)}{\odot} B := (A \underset{C(X)}{\odot} B)/\mathcal{I}_X(A,B)$ with $\mathcal{I}_X(A,B) = \left\langle af \otimes b - a \otimes fb \right\rangle$. There are a minimal Hausdorff completion $A \underset{C(X)}{\overset{m}{\otimes}} B$ of $A \underset{C(X)}{\overset{m}{\otimes}} B$ and a maximal Hausdorff completion $A \underset{C(X)}{\overset{m}{\otimes}} B$ of $A \underset{C(X)}{\overset{m}{\otimes}} B$ given by $-\|d\|_{A \underset{C(X)}{\overset{m}{\otimes}} B} = \sup\{\|(\pi_x^A \underset{X}{\overset{m}{\otimes}} \pi_x^B)(d)\|, x \in X\}$ $-\|d\|_{A \underset{C(X)}{\overset{m}{\otimes}} B} = \sup\{\|(\pi_x^A \underset{X}{\overset{m}{\otimes}} \pi_x^B)(d)\|, x \in X\}$

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A be a separable continuous C(X)-algebra.

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A be a separable continuous C(X)-algebra.

(1) $A \underset{C(X)}{\overset{M}{\otimes}} B$ is a cont. C(X)-alg. with fibres $A_x \overset{M}{\otimes} B_x$ $(x \in X)$ for all continuous C(X)-alg. B.

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A be a separable continuous C(X)-algebra.

(1) $A \underset{C(X)}{\overset{M}{\otimes}} B$ is a cont. C(X)-alg. with fibres $A_X \overset{M}{\otimes} B_X$ $(X \in X)$

for all continuous C(X)-alg. B.

(2) The C^* -algebra A is **nuclear**.

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A be a separable continuous C(X)-algebra.

- (1) $A \underset{C(X)}{\overset{M}{\otimes}} B$ is a cont. C(X)-alg. with fibres $A_X \overset{M}{\otimes} B_X$ $(x \in X)$ for all continuous C(X)-alg. B.
- (2) The C^* -algebra A is **nuclear**.

(3) $A \underset{C(X)}{\overset{m}{\otimes}} B$ is a cont. C(X)-alg. with fibres $A_X \overset{m}{\otimes} B_X$ $(x \in X)$ for all continuous C(X)-alg. B.

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A be a separable continuous C(X)-algebra.

(1)
$$A \underset{C(X)}{\overset{M}{\otimes}} B$$
 is a cont. $C(X)$ -alg. with fibres $A_X \overset{M}{\otimes} B_X$ $(x \in X)$ for all continuous $C(X)$ -alg. B .

(2) The C^* -algebra A is **nuclear**.

(3)
$$A \underset{C(X)}{\overset{m}{\otimes}} B$$
 is a cont. $C(X)$ -alg. with fibres $A_X \overset{m}{\otimes} B_X$ $(x \in X)$

for all continuous
$$C(X)$$
-alg. B .

(4) The C^* -algebra A is **exact**.

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A be a separable continuous C(X)-algebra.

(1)
$$A \underset{C(X)}{\overset{M}{\otimes}} B$$
 is a cont. $C(X)$ -alg. with fibres $A_X \overset{M}{\otimes} B_X$ $(x \in X)$ for all continuous $C(X)$ -alg. B .

(2) The C^* -algebra A is **nuclear**.

(3)
$$A \underset{C(X)}{\overset{m}{\otimes}} B$$
 is a cont. $C(X)$ -alg. with fibres $A_X \overset{m}{\otimes} B_X$ $(X \in X)$

for all continuous
$$C(X)$$
-alg. B .

(4) The C^* -algebra A is **exact**.

N.B. Wrong if $X = \{x\}$

a) $\forall x \in X$, A_x exact C^* -algebra

- a) $\forall x \in X$, A_x exact C^* -algebra
- Let x_{∞} ∈ X and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x_{\infty}\} \cong \mathbb{N} \cup \{\infty\}$.

- a) $\forall x \in X$, A_x exact C^* -algebra
- Let x_{∞} ∈ X and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x_{\infty}\} \cong \mathbb{N} \cup \{\infty\}$.
- **Proposition 2.6** (Kirchberg, Wassermann) Let A be a continuous C(X)-algebra.
- (a) The C*-algebra $A_{x_{\infty}}$ is exact.
- \$
- (b) For all continuous C(Y)-algebra B, the C(Y)-algebra $B \overset{m}{\otimes} A_{\times_{\infty}}$ is continuous.

- a) $\forall x \in X$, A_x exact C^* -algebra
- Let x_{∞} ∈ X and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x_{\infty}\} \cong \mathbb{N} \cup \{\infty\}$.
- **Proposition 2.6** (Kirchberg, Wassermann) Let A be a continuous C(X)-algebra.
- (a) The C*-algebra $A_{x_{\infty}}$ is exact.
- \$
- (b) For all continuous C(Y)-algebra B,
- $\updownarrow \qquad \qquad \text{the } C(Y)\text{-algebra } B \overset{m}{\otimes} A_{x_{\infty}} \text{ is continuous.}$
- (c) For all continuous C(Y)-algebra B, the C(Y)-algebra $B \underset{C(Y)}{\overset{m}{\otimes}} A_{|Y}$ is continuous. (B.-W.)

- a) $\forall x \in X$, A_x exact C^* -algebra
- Let x_{∞} ∈ X and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x_{\infty}\} \cong \mathbb{N} \cup \{\infty\}$.
- **Proposition 2.6** (Kirchberg, Wassermann) Let A be a continuous C(X)-algebra.
- (a) The C*-algebra $A_{x_{\infty}}$ is exact.
- \$
- (b) For all continuous C(Y)-algebra B,
- $\updownarrow \qquad \qquad \text{the } C(Y)\text{-algebra } B \overset{m}{\otimes} A_{x_{\infty}} \text{ is continuous.}$
- (c) For all continuous C(Y)-algebra B,

the
$$C(Y)$$
-algebra $B \underset{C(Y)}{\overset{m}{\otimes}} A_{|Y}$ is continuous. (B.-W.)

Question. If B is a continuous C(Y)-algebra,

is there a continuous C(X)-algebra \mathcal{B} s.t. $\mathcal{B}_{|Y} \cong \mathcal{B}$?

- a) $\forall x \in X$, A_x exact C^* -algebra
- Let x_{∞} ∈ X and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x_{\infty}\} \cong \mathbb{N} \cup \{\infty\}$.
- **Proposition 2.6** (Kirchberg, Wassermann) Let A be a continuous C(X)-algebra.
- (a) The C*-algebra $A_{x_{\infty}}$ is exact.
- \$
- (b) For all continuous C(Y)-algebra B,
- $\updownarrow \qquad \qquad \text{the } C(Y)\text{-algebra } B \overset{m}{\otimes} A_{x_{\infty}} \text{ is continuous.}$
- (c) For all continuous C(Y)-algebra B,

the
$$C(Y)$$
-algebra $B \underset{C(Y)}{\overset{m}{\otimes}} A_{|Y}$ is continuous. (B.-W.)

Question. If B is a continuous C(Y)-algebra,

is there a continuous C(X)-algebra $\mathcal B$ s.t. $\mathcal B_{|Y}\cong B$?

Answer. For all continuous C(Y)-algebra B,

lacksquare \mathcal{B} continuous $\mathcal{C}(X)$ -algebra s.t. $\mathcal{B}_{|Y}\cong \mathcal{B}\otimes \mathcal{C}_0((0,1])$ (B.-W.)

- a) $\forall x \in X$, A_x exact C^* -algebra
- Let $x_{\infty} \in X$ and set $Y := \{x_n, n \in \mathbb{N}\} \cup \{x_{\infty}\} \cong \mathbb{N} \cup \{\infty\}$.
- **Proposition 2.6** (Kirchberg, Wassermann)

Let A be a continuous C(X)-algebra.

- (a) The C*-algebra $A_{x_{\infty}}$ is exact.
- (b) For all continuous C(Y)-algebra B,
- the C(Y)-algebra $B \overset{m}{\otimes} A_{\times_{\infty}}$ is continuous.
- (c) For all continuous C(Y)-algebra B,

the
$$C(Y)$$
-algebra $B \underset{C(Y)}{\overset{m}{\otimes}} A_{|Y}$ is continuous. (B.-W.)

Question. If B is a continuous C(Y)-algebra,

is there a continuous C(X)-algebra \mathcal{B} s.t. $\mathcal{B}_{|Y} \cong \mathcal{B}$?

Answer. For all continuous C(Y)-algebra B,

 $oxed{\exists} \mathcal{B}$ continuous $\mathcal{C}(X)$ -algebra s.t. $\mathcal{B}_{|Y}\cong \mathcal{B}\otimes\mathcal{C}_0((0,1])$ (B.-W.)

$$\Rightarrow A_{x_{\infty}}$$
 exact

a) $\forall x \in X$, A_x exact C^* -algebra

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

c) If C is a continuous C(X)-algebra and $X \in X$, $(A \overset{m}{\otimes} C)_{x} \twoheadrightarrow (A_{x} \overset{m}{\otimes} C)_{x} \twoheadrightarrow A_{x} \overset{m}{\otimes} C_{x}$

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

- c) If C is a continuous C(X)-algebra and $x \in X$, $(A \underset{C(X)}{\overset{m}{\otimes}} C)_{x} \twoheadrightarrow (A_{x} \overset{m}{\otimes} C)_{x} \twoheadrightarrow A_{x} \overset{m}{\otimes} C_{x}$
- **d)** Let $K \triangleleft B$ and $d \in \ker\{A \overset{m}{\otimes} B \rightarrow A \overset{m}{\otimes} B/K\}$.

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

- c) If C is a continuous C(X)-algebra and $x \in X$, $(A \underset{C(X)}{\overset{m}{\otimes}} C)_X \twoheadrightarrow (A_X \overset{m}{\otimes} C)_X \twoheadrightarrow A_X \overset{m}{\otimes} C_X$
- **d)** Let $K \triangleleft B$ and $d \in \ker\{A \overset{m}{\otimes} B \to A \overset{m}{\otimes} B/K\}$. $d_x \in \ker\{(A \overset{m}{\otimes} B)_x \to (A \overset{m}{\otimes} B/K)_x\}$

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

- c) If C is a continuous C(X)-algebra and $X \in X$, $(A \underset{C(X)}{\otimes} C)_X \twoheadrightarrow (A_X \underset{C}{\otimes} C)_X \twoheadrightarrow A_X \underset{C}{\otimes} C_X$
- **d)** Let $K \triangleleft B$ and $d \in \ker\{A \overset{m}{\otimes} B \to A \overset{m}{\otimes} B/K\}$. $d_X \in \ker\{(A \overset{m}{\otimes} B)_X \to (A \overset{m}{\otimes} B/K)_X\}$ $= \ker\{A_X \overset{m}{\otimes} B \to A_X \overset{m}{\otimes} B/K\} \qquad \text{by } b)$

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

c) If C is a continuous C(X)-algebra and $X \in X$, $(A \underset{C(X)}{\otimes} C)_X \twoheadrightarrow (A_X \underset{X}{\otimes} C)_X \twoheadrightarrow A_X \underset{X}{\otimes} C_X$

d) Let
$$K \triangleleft B$$
 and $d \in \ker\{A \overset{m}{\otimes} B \to A \overset{m}{\otimes} B/K\}$.

$$d_X \in \ker\{(A \overset{m}{\otimes} B)_X \to (A \overset{m}{\otimes} B/K)_X\}$$

$$= \ker\{A_X \overset{m}{\otimes} B \to A_X \overset{m}{\otimes} B/K\} \qquad \text{by } b)$$

$$= A_X \overset{m}{\otimes} K \qquad \text{by } a)$$

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

c) If C is a continuous C(X)-algebra and $X \in X$, $(A \underset{C(X)}{\otimes} C)_X \twoheadrightarrow (A_X \overset{m}{\otimes} C)_X \twoheadrightarrow A_X \overset{m}{\otimes} C_X$

d) Let
$$K \triangleleft B$$
 and $d \in \ker\{A \overset{m}{\otimes} B \to A \overset{m}{\otimes} B/K\}$.

$$d_X \in \ker\{(A \overset{m}{\otimes} B)_X \to (A \overset{m}{\otimes} B/K)_X\}$$

$$= \ker\{A_X \overset{m}{\otimes} B \to A_X \overset{m}{\otimes} B/K\} \qquad \text{by } b)$$

$$= A_X \overset{m}{\otimes} K \qquad \text{by } a)$$

$$= (A \overset{m}{\otimes} K)_X \qquad \text{by } (3)$$

- a) $\forall x \in X$, A_x exact C^* -algebra
- **b)** If B is a C*-algebra, $\mathcal{B} := C(X; B)$ and $D := A \overset{m}{\underset{C(X)}{\otimes}} \mathcal{B}$, then

c) If C is a continuous C(X)-algebra and $X \in X$, $(A \underset{C(X)}{\otimes} C)_X \twoheadrightarrow (A_X \overset{m}{\otimes} C)_X \twoheadrightarrow A_X \overset{m}{\otimes} C_X$

d) Let
$$K \triangleleft B$$
 and $d \in \ker\{A \overset{m}{\otimes} B \to A \overset{m}{\otimes} B/K\}$.

$$d_x \in \ker\{(A \overset{m}{\otimes} B)_x \to (A \overset{m}{\otimes} B/K)_x\}$$

$$= \ker\{A_x \overset{m}{\otimes} B \to A_x \overset{m}{\otimes} B/K\}$$

$$= A_x \overset{m}{\otimes} K$$
 by a)
= $(A \overset{m}{\otimes} K)_x$ by (3)

Hence $d \in A \otimes^m K$.

by **b**)

a) $\forall x \in X$, A_x exact C^* -algebra

b) If B is a C*-algebra,
$$\mathcal{B} := C(X; B)$$
 and $D := A \underset{C(X)}{\otimes} \mathcal{B}$, then

$$0 \to C_{x}(X)D \to D \to D_{x} \to 0 \quad \boxed{\text{exact}}$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$C_{x}(X)A \overset{m}{\otimes} B \qquad A \overset{m}{\otimes} B \qquad A_{x} \overset{m}{\otimes} \mathcal{B}_{x} = A_{x} \overset{m}{\otimes} B$$

c) If C is a continuous
$$C(X)$$
-algebra and $[x \in X]$, $(A \underset{C(X)}{\otimes} C)_X \rightarrow (A_X \underset{}{\otimes} C)_X \rightarrow A_X \underset{}{\otimes} C_X$

d) Let
$$K \triangleleft B$$
 and $d \in \ker\{A \overset{m}{\otimes} B \to A \overset{m}{\otimes} B/K\}$.

$$d_{x} \in \ker\{(A \overset{m}{\otimes} B)_{x} \to (A \overset{m}{\otimes} B/K)_{x}\}$$

$$= \ker\{A_{x} \overset{m}{\otimes} B \to A_{x} \overset{m}{\otimes} B/K\} \qquad \text{by } b)$$

$$= A_{x} \overset{m}{\otimes} K \qquad \text{by } a)$$

$$= (A \overset{m}{\otimes} K)_{x} \qquad \text{by } (3)$$

Hence $d \in A \overset{"''}{\otimes} K$. $\Rightarrow A$ exact

Fibered tensor products of continuous C(X)-algebras

Corollary 2.5 Let X be a perfect metric compact space and A a separable continuous C(X)-algebra.

Then (1) the C^* -algebra A is exact

Fibered tensor products of continuous C(X)-algebras

Corollary 2.5 Let X be a perfect metric compact space and A a separable continuous C(X)-algebra.

Then (1) the C*-algebra A is exact

if and only if

Fibered tensor products of continuous C(X)-algebras

Corollary 2.5 Let X be a perfect metric compact space and A a separable continuous C(X)-algebra.

Then (1) the C^* -algebra A is exact

if and only if

(2) for all exact sequence of continuous C(X)-algebras

$$0 \rightarrow J \rightarrow B \rightarrow D \rightarrow 0$$

the sequence

$$0 \to A \overset{m}{\underset{C(X)}{\otimes}} J \to A \overset{m}{\underset{C(X)}{\otimes}} B \to A \overset{m}{\underset{C(X)}{\otimes}} D \to 0$$

is exact.

(2) \Rightarrow (1) If A is a unital continuous C(X)-algebra satisfying (2)

then for all exact sequence $0 \to \textit{J}_0 \to \textit{B}_0 \to \textit{D}_0 \to 0$,

 $(2)\Rightarrow(1)$ If A is a unital continuous C(X)-algebra satisfying (2)

 $(2)\Rightarrow(1)$ If A is a unital continuous C(X)-algebra satisfying (2)

then for all exact sequence
$$0 \to J_0 \to B_0 \to D_0 \to 0$$
,
$$0 \to C(X) \otimes J_0 \to C(X) \otimes B_0 \to C(X) \otimes D_0 \to 0 \quad \text{exact}$$

And
$$A \underset{C(X)}{\otimes} B = A \overset{m}{\otimes} B_0 \dots$$

(2) \Rightarrow (1) If A is a unital continuous C(X)-algebra satisfying (2)

then for all exact sequence
$$0 \to J_0 \to B_0 \to D_0 \to 0$$
,
$$0 \to C(X) \otimes J_0 \to C(X) \otimes B_0 \to C(X) \otimes D_0 \to 0 \quad \text{exact}$$

And
$$A \underset{C(X)}{\otimes} B = A \overset{m}{\otimes} B_0 \dots$$
 $\longrightarrow A$ exact.

(2) \Rightarrow (1) If A is a unital continuous C(X)-algebra satisfying (2)

then for all exact sequence
$$0 \to J_0 \to B_0 \to D_0 \to 0$$
, $0 \to C(X) \otimes J_0 \to C(X) \otimes B_0 \to C(X) \otimes D_0 \to 0$ exact
$$\begin{array}{cccc} || & & || & & || \\ || & & B & & D \end{array}$$

And
$$A \underset{C(X)}{\otimes} B = A \overset{m}{\otimes} B_0 \dots$$
 $\longrightarrow A$ exact.

(1) \Rightarrow (2) If A is a unital exact continuous C(X)-algebra,

 $(2) \Rightarrow (1)$ If A is a unital continuous C(X)-algebra satisfying (2)

then for all exact sequence $0 \to J_0 \to B_0 \to D_0 \to 0$,

$$0 \rightarrow C(X) \otimes J_0 \rightarrow C(X) \otimes B_0 \rightarrow C(X) \otimes D_0 \rightarrow 0 \quad \text{exact}$$

And $A \underset{C(X)}{\otimes} B = A \overset{m}{\otimes} B_0 \dots$ $\rightsquigarrow A$ exact.

(1) ⇒(2) If A is a unital exact continuous C(X)-algebra,

$$C_{\Delta}(X \times X)A \overset{m}{\otimes} J \quad \rightarrow \quad C_{\Delta}(X \times X)A \overset{m}{\otimes} B \quad \rightarrow \quad C_{\Delta}(X \times X)A \overset{m}{\otimes} D$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where
$$A\underset{C(X)}{\circledast}B:=A\underset{\mathbb{C}}{\circledast}B\Big/< f1_A-f1_B\,;\,f\in C(X)>$$

where
$$A\underset{C(X)}{\circledast} B := A\underset{\mathbb{C}}{\circledast} B \Big/ < f1_A - f1_B$$
; $f \in C(X) >$

$$= C(X) \oplus A^{\circ} \oplus B^{\circ} \oplus \left(A^{\circ} \underset{C(X)}{\otimes} B^{\circ} \right) \oplus \left(B^{\circ} \underset{C(X)}{\otimes} A^{\circ} \right) \oplus \dots$$

where
$$A \underset{C(X)}{\circledast} B := A \underset{\mathbb{C}}{\circledast} B / \langle f1_A - f1_B ; f \in C(X) \rangle$$

= $C(X) \oplus A^{\circ} \oplus B^{\circ} \oplus (A^{\circ} \underset{C(X)}{\otimes} B^{\circ}) \oplus (B^{\circ} \underset{C(X)}{\otimes} A^{\circ}) \oplus \dots$

with $A^{\circ} := \ker \varphi$, $\varphi : A \to C(X)$ unital C(X)-linear positive map

and

where
$$A\underset{C(X)}{\circledast} B := A\underset{\mathbb{C}}{\circledast} B / \langle f1_A - f1_B ; f \in C(X) \rangle$$

= $C(X) \oplus A^{\circ} \oplus B^{\circ} \oplus (A^{\circ} \underset{C(X)}{\otimes} B^{\circ}) \oplus (B^{\circ} \underset{C(X)}{\otimes} A^{\circ}) \oplus \dots$

with $A^{\circ} := \ker \varphi$, $\varphi : A \to C(X)$ unital C(X)-linear positive map $v.w:=v\otimes w$, $(v.w)^*=w^*_{-}v^*_{-}v^*_{-}$

Assume that the unital C(X)-algebras A and B are continuous.

Question 2 Is the C(X)-algebra $A \underset{C(X)}{\overset{\alpha}{\mapsto}} B$ continuous?

Assume that $\phi: A \to C(X)$ and $\psi: B \to C(X)$ are continuous fields of faithful states on the unital C(X)-algebras A and B.

$$(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$$
 is the **only** unital $C(X)$ -algebra endowed with a cont. field of states $\phi * \psi : C \to C(X)$ such that:

Assume that $\phi: A \to C(X)$ and $\psi: B \to C(X)$ are continuous fields of faithful states on the unital C(X)-algebras A and B.

Definition 3.2 (Voiculescu)

 $(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$ is the **only** unital C(X)-algebra endowed with a cont. field of states $\phi * \psi : C \to C(X)$ such that:

-C is a unital C(X)-algebra generated by A and B;

Assume that $\phi: A \to C(X)$ and $\psi: B \to C(X)$ are continuous fields of faithful states on the unital C(X)-algebras A and B.

$$(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$$
 is the **only** unital $C(X)$ -algebra endowed with a cont. field of states $\phi * \psi : C \to C(X)$ such that:

- C is a unital C(X)-algebra generated by A and B;
- $-\phi * \psi|_A = \phi$ and $\phi * \psi|_B = \psi$;

Assume that $\phi: A \to C(X)$ and $\psi: B \to C(X)$ are continuous fields of faithful states on the unital C(X)-algebras A and B.

$$(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$$
 is the **only** unital $C(X)$ -algebra endowed with a cont. field of states $\phi * \psi : C \to C(X)$ such that:

- C is a unital C(X)-algebra generated by A and B;
- $-\phi * \psi|_{A} = \phi$ and $\phi * \psi|_{B} = \psi$;
- the KGNS representation $\phi * \psi$ is faithful on C;

Assume that $\phi: A \to C(X)$ and $\psi: B \to C(X)$ are continuous fields of faithful states on the unital C(X)-algebras A and B.

$$(C, \phi * \psi) = (A, \phi) \underset{C(X)}{*} (B, \psi)$$
 is the **only** unital $C(X)$ -algebra endowed with a cont. field of states $\phi * \psi : C \to C(X)$ such that:

- C is a unital C(X)-algebra generated by A and B;
- $-\phi * \psi|_A = \phi$ and $\phi * \psi|_B = \psi$;
- the KGNS representation $\phi * \psi$ is faithful on C;
- A and B are free in $(C, \phi * \psi)$.

Proposition 3.3 (B.) If X is perfect and ϕ is a cont. field of faithful states on the unital C(X)-algebra A, TFAE

- (1) The continuous C(X)-algebra A is an exact C^* -alg.
- (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \mathop{\circ}_{C(X)}^{r} (B, \psi)$ is continuous for :
 - all separable continuous C(X)-algebra B and
 - all continuous field of faithful states ψ on B.

Proposition 3.3 (B.) If X is perfect and ϕ is a cont. field of faithful states on the unital C(X)-algebra A, TFAE

- (1) The continuous C(X)-algebra A is an exact C^* -alg.
- (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \mathop{\circ}_{C(X)}^{r} (B, \psi)$ is continuous for :
 - all separable continuous C(X)-algebra B and
 - all continuous field of faithful states ψ on B.

N.B. Wrong if $X = \{x\}$

Proposition 3.3 (B.) If X is perfect and ϕ is a cont. field of faithful states on the unital C(X)-algebra A, TFAE

- (1) The continuous C(X)-algebra A is an exact C^* -alg.
- (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) {r \atop K(X)} (B, \psi)$ is continuous for :
 - all separable continuous C(X)-algebra B and
 - all continuous field of faithful states ψ on B.

N.B. Wrong if $X = \{x\}$

Proof. Let
$$D := A \underset{C(X)}{\overset{m}{\otimes}} B$$
 and $E := L^2(D, \phi \otimes \psi) \underset{C(X)}{\otimes} D$

Proposition 3.3 (B.) If X is perfect and ϕ is a cont. field of faithful states on the unital C(X)-algebra A, TFAE

- (1) The continuous C(X)-algebra A is an exact C^* -alg.
- (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) {r \choose C(X)} (B, \psi)$ is continuous for :
 - all separable continuous C(X)-algebra B and
 - all continuous field of faithful states ψ on B.

N.B. Wrong if $X = \{x\}$

Proof. Let
$$D := A \underset{C(X)}{\overset{m}{\otimes}} B$$
 and $E := L^2(D, \phi \otimes \psi) \underset{C(X)}{\overset{\otimes}{\otimes}} D$

TFAE

- (1) D is a continuous C(X)-algebra.
- (2) $\mathcal{T}_D(E \oplus D) \cong C \rtimes_{\alpha} \mathbb{N}$ is a continuous C(X)-algebra. (Dykema-Schlyakhtenko)

Proposition 3.3 (B.) If X is perfect and ϕ is a cont. field of faithful states on the unital C(X)-algebra A, TFAE

- (1) The continuous C(X)-algebra A is an exact C^* -alg.
- (2) The C(X)-alg. $(C, \phi * \psi) := (A, \phi) \mathop{*}_{C(X)}^{r} (B, \psi)$ is continuous for :
 - all separable continuous C(X)-algebra B and
 - all continuous field of faithful states ψ on ${\cal B}.$

N.B. Wrong if $X = \{x\}$

Proof. Let
$$D := A \underset{C(X)}{\overset{m}{\otimes}} B$$
 and $E := L^2(D, \phi \otimes \psi) \underset{C(X)}{\otimes} D$

TFAE

- (1) D is a continuous C(X)-algebra.
- (2) $\boxed{\mathcal{T}_D(E \oplus D) \cong C \rtimes_{\alpha} \mathbb{N}}$ is a continuous C(X)-algebra. (Dykema-Schlyakhtenko)
- (3) C is a continuous C(X)-algebra.

Definition 3.4

If D is a unital C*-algebra and F is a Hilbert D-bimodule,

$$-\mathscr{F}_D(F) = D \oplus F \oplus (F \otimes_D F) \oplus (F \otimes_D F \otimes_D F) \oplus \dots$$
full Fock Hilbert D -bimodule

Definition 3.4

If D is a unital C*-algebra and F is a Hilbert D-bimodule,

$$-\mathscr{F}_D(F) = D \oplus F \oplus (F \otimes_D F) \oplus (F \otimes_D F \otimes_D F) \oplus \dots \dots$$
full Fock Hilbert D-bimodule

$$-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F))$$
 creation operator given by $\ell(\xi).d = \xi d$ and $\ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$

Definition 3.4

If D is a unital C*-algebra and F is a Hilbert D-bimodule,

$$-\mathscr{F}_D(F) = D \oplus F \oplus (F \otimes_D F) \oplus (F \otimes_D F \otimes_D F) \oplus \dots$$
full Fock Hilbert D-bimodule

$$-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F))$$
 creation operator given by $\ell(\xi).d = \xi d$ and $\ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$ $-\mathcal{T}_D(F) = C^*(<\ell(\xi), \, \xi \in F>)$ Pimsner C*-algebra

Definition 3.4

If D is a unital C^* -algebra and F is a Hilbert D-bimodule,

$$-\mathscr{F}_D(F) = D \oplus F \oplus (F \otimes_D F) \oplus (F \otimes_D F \otimes_D F) \oplus \dots$$
full Fock Hilbert D-bimodule

$$-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F))$$
 creation operator given by $\ell(\xi).d = \xi d$ and $\ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$ $-\mathcal{T}_D(F) = C^*(\langle \ell(\xi), \xi \in F \rangle)$ Pimsner C*-algebra

Proposition 3.5 If D is a unital C(X)-algebra and F is a countable generated Hilbert D-bimodule such that

$$D \hookrightarrow \mathcal{L}_D(F)$$
 and $f.\zeta = \zeta.f$ for $f \in C(X)$, $\zeta \in F$

Definition 3.4

If D is a unital C^* -algebra and F is a Hilbert D-bimodule,

$$-\mathscr{F}_D(F) = D \oplus F \oplus (F \otimes_D F) \oplus (F \otimes_D F \otimes_D F) \oplus \dots$$
full Fock Hilbert D-bimodule

$$-\ell(\xi) \in \mathcal{L}_D(\mathscr{F}_D(F))$$
 creation operator given by $\ell(\xi).d = \xi d$ and $\ell(\xi)(\zeta_1 \otimes \ldots \otimes \zeta_k) = \xi \otimes \zeta_1 \otimes \ldots \otimes \zeta_k$ $-\mathcal{T}_D(F) = C^*(\langle \ell(\xi), \xi \in F \rangle)$ Pimsner C*-algebra

Proposition 3.5 If D is a unital C(X)-algebra and F is a countable generated Hilbert D-bimodule such that

$$D \hookrightarrow \mathcal{L}_D(F)$$
 and $f.\zeta = \zeta.f$ for $f \in C(X)$, $\zeta \in F$

then D is a continuous C(X)-algebra if and only if $\mathcal{T}_D(F)$ is a continuous C(X)-algebra with fibres isomorphic to $\mathcal{T}_{D_x}(F_x)$.

Proposition 3.6 (Pedersen)

If the separable unital continuous C(X)-algebras A and B are $\boxed{\text{nuclear}}$, then

$$A \underset{C(X)}{\overset{f}{*}} B \subset C(X; \mathcal{O}_2) \underset{C(X)}{\overset{f}{*}} C(X; \mathcal{O}_2)$$

Proposition 3.6 (Pedersen)

If the separable unital continuous C(X)-algebras A and B are $\boxed{\text{nuclear}}$, then

$$A \underset{C(X)}{\overset{f}{*}} B \subset C(X; \mathcal{O}_2) \underset{C(X)}{\overset{f}{*}} C(X; \mathcal{O}_2) = C(X; \mathcal{O}_2 \underset{\mathbb{C}}{\overset{f}{*}} \mathcal{O}_2)$$

Proposition 3.6 (Pedersen)

If the separable unital continuous C(X)-algebras A and B are $\boxed{\text{nuclear}}$, then

$$A \underset{C(X)}{\overset{f}{\ast}} B \subset C(X; \mathcal{O}_2) \underset{C(X)}{\overset{f}{\ast}} C(X; \mathcal{O}_2) = C(X; \mathcal{O}_2 \underset{\mathbb{C}}{\overset{f}{\ast}} \mathcal{O}_2)$$

Proposition 3.7 (B.)

The C(X)-algebra $A \underset{C(X)}{\overset{f}{*}} B$ is **always** continuous.

Proposition 3.7 (B.)

The C(X)-algebra $A \overset{f}{\underset{C(X)}{*}} B$ is **always** continuous.

Sketch of proof.

If
$$d \in A \underset{C(X)}{\odot} B$$
,

$$\begin{aligned} \|d_{x}\|_{h} &= \inf \left\{ \|\sum_{i} a_{i} a_{i}^{*}\|^{\frac{1}{2}} . \|\sum_{i} b_{i}^{*} b_{i}\|^{\frac{1}{2}} ; \ d_{x} = \sum_{i} a_{i} \otimes b_{i} \right\} \\ &= \sup \left\{ \left| \langle \xi, \sum_{i} \pi(a_{i}) . \sigma(b_{i}) \eta \rangle \right| ; \ \pi, \ \sigma \ *-\text{rep. unifères} \right\} \end{aligned}$$