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Definition 1.1 (Dixmier; Fell; Tomiyama)
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is a unital C*-subalgebra | A C [, cx Ax |such that :
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(c) V(ax)xex € A, x> ||ax||a, is continuous.
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C(X)-algebras

Definition 1.2 (Kasparov)
A unital C(X)-algebra is a unital C*-algebra A endowed with a

unital x-morphism
C(X) — Z(A)

VxeX, \CX(X):{fe C(X)|f(x):0}‘

A, := A/[Cx(X).A] and ac€ Ar— ay € A,

x = ]l = lla+ G(X)Al
=inf{|| [1 =+ f(x)]al|, f € C(X)}
upper semi-continuous (u.s.c.)
Definition 1.3
A is a continuous field of C*-algebras over X with fibres A,
iff

Va € A, the function x — ||ax]| is .
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(1) For all compact Hausdorff space Y and all cont. C(Y)-algebra B,
M M M
A® B is a continuous C(X x Y)-algebra with fibres (A B)(y,,) = Ax® B,

0

(2) The C*-algebra A is nuclear.

(3) For all compact Hausdorff space Y and all cont. C(Y)-algebra B,
A B is a continuous C(X x Y)-algebra with fibres (A B)(, ) = A, @ B,

0

(4) The C*-algebra A is exact.



Nuclearity and Exactness

A C*-algebra A is nuclear iff for any C*-algebra B, there is a
unique C*-norm on A® B.
C

A C*-algebra A is exact iff for any closed two sided ideal J in a
C*-algebra B, the sequence

m m m
0-A®RJ—>ARB - A®B/J—0
C C C

is exact.
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Question 1. What can be written for the tensor product
of C(X)-algebras?

Proposition 2.3 (B.) Let — X be a compact Hausdorff space
— A, B be two unital C(X)-algebras

~ A © B:=(A® B)/Ix(A, B) with Ix(A, B) = (af @ b— a @ fb)
¢(x)

There are a Hausdorff completionA (% BofA® B
¢(X) c(x)

M
and a Hausdorff completion A ® Bof A ® B
c(X) c(X)

ghenby —[dll, 5 , =supll(wt & xB)(d)|.x € X}
c(x)
M
~lldll w = sup{li(x & 7E)(d)].x € X}
A ® B

a(x)
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Proposition 2.4 (B., Wassermann)

Let X be a compact metric space and
A be a separable C(X)-algebra.

M M
(1) A ((EQ)B is a cont. C(X)-alg. with fibres A, ® By (x € X)
c(X

0 for all C(X)-alg. B.

(2) The C*-algebra A is nuclear.

(3)A © Bisa cont. C(X)-alg. with fibres A, & By (x € X)
c(x)

0 for all C(X)-alg. B.

(4) The C*-algebra A is exact.

N.B. Wrong if X = {x}
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Corollary 2.5 Let X be a metric compact space and

A a separable C(X)-algebra.

Then (1) the C*-algebra A is exact
if and only if
(2) for all exact sequence of continuous C(X)-algebras
0—=J—=B—=D—0

the sequence

is exact.
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(2)=-(1) If Ais a unital continuous C(X)-algebra satisfying (2)

then for all exact sequence 0 — Jy — Bg — Dy — 0,

0— CX)®dh — CX)®By — C(X)®Dy —0  exact
| I I

J B D
AndA @ B=A®By ... ~ A exact.
c(X)

(1)=(2) If Ais a unital exact continuous C(X)-algebra,

CAX x X)AGJ — Ca(XxX)A®B — Ca(X x X)A®D

{ { {
A® J = A® B = A® D
{ { {
A® J . A& B N A& D
c(x) c(x) c(X)



X)

Amalgamated free product over C(
C(X) i A




Amalgamated free product over C(X)
C(X) ’A A
ip JA

\.
\

D
>

where A @ B::A@B/< fla— flg; f € C(X)
c(x) C



Amalgamated free product over C(X)
C(X) ’A A
ip JA

\.
\

D
>

where A @ B::A@B/< fla— flg; f € C(X)
c(x) C

=CX)aAaB @ (A @ B)® (B> ® A°)&...
c(x) c(X)



Amalgamated free product over C(X)
C(X) ’A A
ip JA

\.

\

D

where A ® B::A@B/<f1A—f13;f6C(X) >
C(X) C

=CX)pAaB ® (A ® B)®(B° @ A°)a...
c(X) c(X)
with A® :=kerp, ¢ : A — C(X) unital C(X)-linear positive map



Amalgamated free product over C(X)
C(X) ’A A
ip JA

\.
!
D
where A @ B::A@B/< fla— flg; f € C(X) >
c(x) C
=CX)pAaB ® (A ® B)®(B° @ A°)a...
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Amalgamated free product over C(X)

Assume that the unital C(X)-algebras A and B are continuous.

Question 2 |s the C(X)-algebra Ac%x) B continuous?
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Assume that ¢ : A — C(X) and ¢ : B — C(X) are continuous
fields of | faithful states | on the unital C(X)-algebras A and B.

Definition 3.2 (Voiculescu)
(C, o =) = (A, gi)) >x< (B 1) is the only unital C(X)-algebra

endowed with a cont fleld of states ¢ x ) : C — C(X) such that:

— C is a unital C(X)-algebra generated by A and B;
—¢x1pla= ¢ and ¢ x1lp = 1P;

— the KGNS representation ¢ x 1) is faithful on C;

— A and B are free in (C, ¢ *x ).
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Proposition 3.3 (B.) If X is and ¢ is a cont. field of
faithful states on the unital C(X)-algebra A, TFAE

(1) The continuous C(X)-algebra A is an C*-alg.

(2) The C(X)-alg. (C,¢+v) :=(A¢) * (B,4) is[continuous]

c(x)

for :
— all separable continuous C(X)-algebra B and
— all continuous field of faithful states ¢ on B.
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Reduced amalgamated free product over C(X)

Proposition 3.3 (B.) If X is and ¢ is a cont. field of
faithful states on the unital C(X)-algebra A, TFAE

(1) The continuous C(X)-algebra A is an C*-alg.

(2) The C(X)-alg. (C,¢+v) :=(A¢) * (B,4) is[continuous]

c(x)

for :
— all separable continuous C(X)-algebra B and
— all continuous field of faithful states ¢ on B.

N.B. Wrong if X = {x}

Proof. Let D:=A ® Band E:=[%(D,¢®%) © D
9] cx)

TFAE
(1) D is a continuous C(X)-algebra.

(2) ‘TD(E ® D)= C x, N‘ is a continuous C(X)-algebra.
(Dykema-Schlyakhtenko)




Reduced amalgamated free product over C(X)

Proposition 3.3 (B.) If X is and ¢ is a cont. field of
faithful states on the unital C(X)-algebra A, TFAE

(1) The continuous C(X)-algebra A is an C*-alg.

(2) The C(X)-alg. (C,¢+v) :=(A¢) * (B,4) is[continuous]

c(x)

for :
— all separable continuous C(X)-algebra B and
— all continuous field of faithful states ¢ on B.

N.B. Wrong if X = {x}

Proof. Let D:=A ® Band E:=[%(D,¢®%) © D
9] cx)

TFAE

(1) D is a continuous C(X)-algebra.

(2) ‘TD(E @ D) = C x, N‘ is a continuous C(X)-algebra.
(Dykema-Schlyakhtenko)

(3) C is a continuous C(X)-algebra.
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If D is a unital C*-algebra and F is a Hilbert D-bimodule,
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full Fock Hilbert | D-bimodule
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Pimsner C*-algebra

Definition 3.4
If D is a unital C*-algebra and F is a Hilbert D-bimodule,

- Fp(F)=D®F®(FopF)®(FRp FRp F)®......
full Fock Hilbert | D-bimodule
- 4(&) € Lp(Zp(F)) ’creation operator‘ given by

€).d=¢&d and ()1 ®...0%) =R ®...® (k
-Tp(F)=C* (< §), £ € F>) ’Pimsner C*-algebra‘

Proposition 3.5 If D is a unital C(X)-algebra and
F is a countable generated Hilbert D-bimodule such that

D Lp(F) and f.(=C(fforfeC(X), CEF

then D is a continuous C(X)-algebra if and only if
To(F) is a continuous C(X)-algebra with fibres isomorphic to 7p,(F).



Full amalgamated free product over C(X)

Proposition 3.6 (Pedersen)

If the separable unital continuous C(X)-algebras A and B are [ nuclear |
then
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Full amalgamated free product over C(X)

Proposition 3.6 (Pedersen)

If the separable unital continuous C(X)-algebras A and B are [ nuclear |
then

Ak BCCX:0)) & C(X;00)=C(X; 0k 0)
cx) c(x) ¢

Proposition 3.7 (B.)
The C(X)-algebra A C(iX) B is always continuous.



Full amalgamated free product over C(X)

Proposition 3.7 (B.)
The C(X)-algebra A C(ix) B is always continuous.

Sketch of proof.

fdeA © B,
c(X)

Il = inf{\za,-a:-wﬁ.uzbrb,-ui do=Y a,-®b,-}

= sup{‘@, > m(ai).o(bi)n)| i ™, o * —rep. uniféres}



