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Continuous fields of C∗-algebras

Let X be a (fixed) compact Hausdorff space.

Definition 1.1 (Dixmier; Fell; Tomiyama)
A unital continuous field over X of non zero C∗-algebras Ax (x ∈ X )

is a unital C∗-subalgebra A ⊂
∏

x∈X Ax such that :

(a) There exist a unital ∗-embedding C (X )→ A given by

f 7→ (f (x)1Ax ) for all f ∈ C (X )

(b) For all x ∈ X , the projection A→ Ax is surjective.

(c) ∀ (ax)x∈X ∈ A, x 7→ ‖ax‖Ax is continuous.
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C (X )-algebras

Definition 1.2 (Kasparov)
A unital C(X)-algebra is a unital C∗-algebra A endowed with a
unital ∗-morphism

C (X ) −→ Z (A)

∀ x ∈ X , Cx(X ) = {f ∈ C (X ) | f (x) = 0}

Ax := A/[Cx(X).A] and a ∈ A 7−→ ax ∈ Ax

x 7→ ‖ax‖ = ‖a + Cx(X )A‖
= inf{‖ [1− f + f (x)]a‖, f ∈ C (X )}

upper semi-continuous (u.s.c.)
Definition 1.3
A is a continuous field of C∗-algebras over X with fibres Ax

iff

∀ a ∈ A, the function x 7→ ‖ax‖ is continuous .



C (X )-algebras

Definition 1.2 (Kasparov)
A unital C(X)-algebra is a unital C∗-algebra A endowed with a
unital ∗-morphism

C (X ) −→ Z (A)

∀ x ∈ X , Cx(X ) = {f ∈ C (X ) | f (x) = 0}

Ax := A/[Cx(X).A] and a ∈ A 7−→ ax ∈ Ax

x 7→ ‖ax‖ = ‖a + Cx(X )A‖
= inf{‖ [1− f + f (x)]a‖, f ∈ C (X )}

upper semi-continuous (u.s.c.)
Definition 1.3
A is a continuous field of C∗-algebras over X with fibres Ax

iff

∀ a ∈ A, the function x 7→ ‖ax‖ is continuous .



C (X )-algebras

Definition 1.2 (Kasparov)
A unital C(X)-algebra is a unital C∗-algebra A endowed with a
unital ∗-morphism

C (X ) −→ Z (A)

∀ x ∈ X , Cx(X ) = {f ∈ C (X ) | f (x) = 0}

Ax := A/[Cx(X).A] and a ∈ A 7−→ ax ∈ Ax

x 7→ ‖ax‖ = ‖a + Cx(X )A‖
= inf{‖ [1− f + f (x)]a‖, f ∈ C (X )}

upper semi-continuous (u.s.c.)
Definition 1.3
A is a continuous field of C∗-algebras over X with fibres Ax

iff

∀ a ∈ A, the function x 7→ ‖ax‖ is continuous .



C (X )-algebras

Definition 1.2 (Kasparov)
A unital C(X)-algebra is a unital C∗-algebra A endowed with a
unital ∗-morphism

C (X ) −→ Z (A)

∀ x ∈ X , Cx(X ) = {f ∈ C (X ) | f (x) = 0}

Ax := A/[Cx(X).A] and a ∈ A 7−→ ax ∈ Ax

x 7→ ‖ax‖ = ‖a + Cx(X )A‖
= inf{‖ [1− f + f (x)]a‖, f ∈ C (X )}

upper semi-continuous (u.s.c.)

Definition 1.3
A is a continuous field of C∗-algebras over X with fibres Ax

iff

∀ a ∈ A, the function x 7→ ‖ax‖ is continuous .



C (X )-algebras

Definition 1.2 (Kasparov)
A unital C(X)-algebra is a unital C∗-algebra A endowed with a
unital ∗-morphism

C (X ) −→ Z (A)

∀ x ∈ X , Cx(X ) = {f ∈ C (X ) | f (x) = 0}

Ax := A/[Cx(X).A] and a ∈ A 7−→ ax ∈ Ax

x 7→ ‖ax‖ = ‖a + Cx(X )A‖
= inf{‖ [1− f + f (x)]a‖, f ∈ C (X )}

upper semi-continuous (u.s.c.)
Definition 1.3
A is a continuous field of C∗-algebras over X with fibres Ax

iff

∀ a ∈ A, the function x 7→ ‖ax‖ is continuous .



Tensor products of C (X )-algebras

Proposition 2.1 (Kirchberg, Wassermann)
Let X be a compact Hausdorff space and

A be a separable continuous C (X )-algebra.

(1) For all compact Hausdorff space Y and all cont. C (Y )-algebra B,

A
M
⊗B is a continuous C (X × Y )-algebra with fibres (A

M
⊗B)(x ,y)

∼= Ax

M
⊗By

m
(2) The C∗-algebra A is nuclear.

(3) For all compact Hausdorff space Y and all cont. C (Y )-algebra B,

A
m
⊗B is a continuous C (X × Y )-algebra with fibres (A

m
⊗B)(x ,y)

∼= Ax

m
⊗By

m
(4) The C∗-algebra A is exact.
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Nuclearity and Exactness

A C∗-algebra A is nuclear iff for any C∗-algebra B, there is a
unique C∗-norm on A�

C
B.

A C∗-algebra A is exact iff for any closed two sided ideal J in a
C∗-algebra B, the sequence

0→ A
m
⊗
C

J → A
m
⊗
C

B → A
m
⊗
C

B/J → 0

is exact.



Fibered tensor products

Question 1. What can be written for the fibered tensor product
of C (X )-algebras?

Proposition 2.3 (B.) Let – X be a compact Hausdorff space
– A,B be two unital C (X )-algebras

– A �
C(X )

B := (A� B)/IX (A,B) with IX (A,B) =
〈
af ⊗ b − a⊗ fb

〉
There are a minimal Hausdorff completionA

m
⊗

C(X )
B of A �

C(X )
B

and a maximal Hausdorff completion A
M
⊗

C(X )
B of A �

C(X )
B

given by – ‖d‖
A

m
⊗

C(X )
B

= sup{‖(πAx
m
⊗ πBx )(d)‖, x ∈ X}

– ‖d‖
A

M
⊗

C(X )
B

= sup{‖(πAx
M
⊗ πBx )(d)‖, x ∈ X}
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Fibered tensor products of continuous C (X )-algebras

Proposition 2.4 (B., Wassermann)

Let X be a perfect compact metric space and

A be a separable continuous C (X )-algebra.

(1) A
M
⊗

C(X )
B is a cont. C (X )-alg. with fibres Ax

M
⊗Bx (x ∈ X )

for all continuous C (X )-alg. B.m
(2) The C∗-algebra A is nuclear.

(3) A
m
⊗

C(X )
B is a cont. C (X )-alg. with fibres Ax

m
⊗Bx (x ∈ X )

for all continuous C (X )-alg. B.m
(4) The C∗-algebra A is exact.

N.B. Wrong if X = {x}
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Proof of (3)⇒ (4) in Proposition 2.4

a) ∀ x ∈ X , Ax exact C∗-algebra

– Let x∞ ∈ X and set Y := {xn, n ∈ N} ∪ {x∞} ∼= N ∪ {∞}.
– Proposition 2.6 (Kirchberg, Wassermann)
Let A be a continuous C (X )-algebra.

(a) The C∗-algebra Ax∞ is exact.
m

(b) For all continuous C (Y )-algebra B,

the C (Y )-algebra B
m
⊗Ax∞ is continuous.m

(c) For all continuous C (Y )-algebra B,

the C (Y )-algebra B
m
⊗

C(Y )
A|Y is continuous. (B.-W.)

Question. If B is a continuous C (Y )-algebra,

is there a continuous C (X )-algebra B s.t. B|Y ∼= B ?

Answer. For all continuous C (Y )-algebra B,

∃ B continuous C (X )-algebra s.t. B|Y ∼= B ⊗ C0((0, 1]) (B.-W.)

⇒ Ax∞ exact
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Proof of (3)⇒ (4) in Proposition 2.4
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Fibered tensor products of continuous C (X )-algebras

Corollary 2.5 Let X be a perfect metric compact space and

A a separable continuous C (X )-algebra.

Then (1) the C∗-algebra A is exact

if and only if

(2) for all exact sequence of continuous C (X )-algebras

0→ J → B → D → 0

the sequence

0→ A
m
⊗

C(X )
J → A

m
⊗

C(X )
B → A

m
⊗

C(X )
D → 0

is exact.



Fibered tensor products of continuous C (X )-algebras

Corollary 2.5 Let X be a perfect metric compact space and

A a separable continuous C (X )-algebra.

Then (1) the C∗-algebra A is exact

if and only if

(2) for all exact sequence of continuous C (X )-algebras

0→ J → B → D → 0

the sequence

0→ A
m
⊗

C(X )
J → A

m
⊗

C(X )
B → A

m
⊗

C(X )
D → 0

is exact.



Fibered tensor products of continuous C (X )-algebras

Corollary 2.5 Let X be a perfect metric compact space and

A a separable continuous C (X )-algebra.

Then (1) the C∗-algebra A is exact

if and only if

(2) for all exact sequence of continuous C (X )-algebras

0→ J → B → D → 0

the sequence

0→ A
m
⊗

C(X )
J → A

m
⊗

C(X )
B → A

m
⊗

C(X )
D → 0

is exact.



Proof of Corollary 2.5

(2)⇒(1) If A is a unital continuous C (X )-algebra satisfying (2)

then for all exact sequence 0→ J0 → B0 → D0 → 0 ,

0→ C (X )⊗ J0 → C (X )⊗ B0 → C (X )⊗ D0 → 0 exact
| |
J

| |
B

| |
D

And A ⊗
C(X )

B = A
m
⊗B0 ...  A exact.

(1)⇒(2) If A is a unital exact continuous C (X )-algebra,

C∆(X × X )A
m
⊗ J → C∆(X × X )A

m
⊗B → C∆(X × X )A

m
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↓ ↓ ↓
A

m
⊗ J → A

m
⊗B → A

m
⊗D
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A

m
⊗

C(X )
J 99K A

m
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C(X )
B 99K A

m
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C(X )
D
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Amalgamated free product over C (X )

C (X )
iA //

iB

��

A

σA

��

jA

��

B
jB //

σB
00

A ~
C(X )

B

σA∗σB
C

C
C

C

!!C
C

C
C

D

where A ~
C(X )

B := A~
C

B
/
< f 1A − f 1B ; f ∈ C (X ) >

= C (X )⊕ A◦ ⊕ B◦ ⊕
(
A◦ ⊗

C(X )
B◦
)
⊕
(
B◦ ⊗

C(X )
A◦
)
⊕ . . .

with A◦ := kerϕ, ϕ : A→ C (X ) unital C (X )-linear positive map
and v .w := v ⊗ w , (v .w)∗ = w∗.v∗
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Amalgamated free product over C (X )

Assume that the unital C (X )-algebras A and B are continuous.

Question 2 Is the C (X )-algebra A
α∗

C(X )
B continuous?



Reduced amalgamated free product over C (X )

Assume that φ : A→ C (X ) and ψ : B → C (X ) are continuous

fields of faithful states on the unital C (X )-algebras A and B.

Definition 3.2 (Voiculescu)
(C , φ ∗ ψ) = (A, φ) ∗

C(X )
(B, ψ) is the only unital C (X )-algebra

endowed with a cont. field of states φ ∗ ψ : C → C (X ) such that:

– C is a unital C (X )-algebra generated by A and B;
– φ ∗ ψ|A = φ and φ ∗ ψ|B = ψ;
– the KGNS representation φ ∗ ψ is faithful on C ;
– A and B are free in (C , φ ∗ ψ).
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Proposition 3.3 (B.) If X is perfect and φ is a cont. field of

faithful states on the unital C (X )-algebra A, TFAE

(1) The continuous C (X )-algebra A is an exact C∗-alg.

(2) The C (X )-alg. (C , φ ∗ ψ) := (A, φ)
r∗

C(X )
(B, ψ) is continuous

for :
– all separable continuous C (X )-algebra B and
– all continuous field of faithful states ψ on B.

N.B. Wrong if X = {x}

Proof. Let D := A
m
⊗

C(X )
B and E := L2(D, φ⊗ ψ) ⊗

C(X )
D

TFAE
(1) D is a continuous C (X )-algebra.

(2) TD(E ⊕ D) ∼= C oα N is a continuous C (X )-algebra.

(Dykema-Schlyakhtenko)
(3) C is a continuous C (X )-algebra.
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Pimsner C∗-algebra

Definition 3.4
If D is a unital C∗-algebra and F is a Hilbert D-bimodule,

– FD(F ) = D ⊕ F ⊕ (F ⊗D F )⊕ (F ⊗D F ⊗D F )⊕ . . . . . .
full Fock Hilbert D-bimodule

– `(ξ) ∈ LD(FD(F )) creation operator given by

`(ξ).d = ξd and `(ξ)(ζ1 ⊗ . . .⊗ ζk) = ξ ⊗ ζ1 ⊗ . . .⊗ ζk
– TD(F ) = C ∗(< `(ξ), ξ ∈ F >) Pimsner C∗-algebra

Proposition 3.5 If D is a unital C (X )-algebra and
F is a countable generated Hilbert D-bimodule such that

D ↪→ LD(F ) and f .ζ = ζ.f for f ∈ C (X ), ζ ∈ F

then D is a continuous C (X )-algebra if and only if
TD(F ) is a continuous C (X )-algebra with fibres isomorphic to TDx (Fx).
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Full amalgamated free product over C (X )

Proposition 3.6 (Pedersen)

If the separable unital continuous C (X )-algebras A and B are nuclear ,
then

A
f∗

C(X )
B ⊂ C (X ; O2)

f∗
C(X )

C (X ; O2)

= C (X ; O2
f∗
C
O2)

Proposition 3.7 (B.)

The C (X )-algebra A
f∗

C(X )
B is always continuous.
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Full amalgamated free product over C (X )

Proposition 3.7 (B.)

The C (X )-algebra A
f∗

C(X )
B is always continuous.

Sketch of proof.
If d ∈ A �

C(X )
B ,

‖dx‖h = inf

{
‖
∑
i

aia
∗
i ‖

1
2 .‖
∑
i

b∗i bi‖
1
2 ; dx =

∑
i

ai ⊗ bi

}

= sup
{∣∣∣∣〈ξ,∑

i
π(ai ).σ(bi )η〉

∣∣∣∣ ; π , σ ∗ −rep. unifères
}


