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Enveloping structures: C∗-algebras are usually studied within a
bigger object (usually B(H)).

One also considers “tighter” structures:

the double dual
the multiplier algebra

For certain C∗-algebras, we study two other enveloping objects:

Injective envelopes

Local Multipliers
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1. Injective Envelopes

An operator system S is injective: for any ϕ completely positive,

E
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ϕ
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ϕ̃

Equivalently: if S ⊂ B(H), ∃ φ : B(H)→ S conditional expectation.

Examples of injective operator algebras:
• Type I von Neumann algebras (Arveson, 1969)
• AFD von Neumann algebras (Connes, 1976)
• A′′, where A is nuclear (Choi & Effros, 1976)
• Type I AW∗-algebras (Hamana, 1981)
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Question (Arveson 1969): Is any operator system embedded in a
minimal injective operator system?

Definition
An injective envelope for an operator system E is a pair (I, κ) such that
(a) I is an injective operator system
(b) κ : E → I is completely isometric
(c) If I1 is injective and κ(E) ⊆ I1 ⊆ I, then I1 = I.

Theorem
(Hamana, 1979) Every operator system E admits an injective
envelope, and any two injective envelopes of E are completely
isometrically isomorphic (as operator systems!).

Choi & Effros (1977): Each injective operator system I is completely
order isomorphic to a C∗-algebra.
Therefore, the injective envelope I(E) of E is unique, as a C∗-algebra,
up to isomorphism. Henceforth, we consider I(E) as a C∗-algebra.
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Injective envelopes of C∗-algebras are subtle.

1 If A is separable and injective, then A is finite dimensional.
2 B(H) = I(K (H)).
3 if A = C([0,1]), what is I(A)? Injective C∗-algebras are monotone

complete: they contain suprema and infima of bounded monotone
nets of selfadjoints.So maybe L∞[0,1]? No

I(A) = The Dixmier Algebra = B[0,1]/J,

where

J = {f ∈ B[0,1] : ∃M meagre with f |Mc = 0}.

4 The hyperfinite II1-factor is injective, but is not the injective
envelope of any separable C∗-algebra (A & Farenick, 2005)

5 If A = UHF (2∞), B=hyperfinite II1-factor, then A ⊂ B, B injective,
and a closure of A. But I(A) " I(B): I(B) = B, while I(A) is a type
III non-W∗ AW∗-factor.
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2. Local Multipliers

An ideal K of a C∗-algebra A is essential if K ∩ J 6= {0} for every
nonzero ideal J of A.

Examples
• K (H) is an essential ideal of B(H).
• If Y is locally compact and Hausdorff, then K is an essential ideal

of C0(Y ) if and only if
K = C0(X ) ,

for some open, dense subset X ⊆ Y .
• If A is a type I AW∗-algebra, then the ideal K generated by the

abelian projections of A is an essential ideal of A.

Argerami, Farenick, Massey (U of R & UNLP) Weakly Continuous Hilbert Bundles Timisoara 2010 6 / 18



2. Local Multipliers

An ideal K of a C∗-algebra A is essential if K ∩ J 6= {0} for every
nonzero ideal J of A.

Examples
• K (H) is an essential ideal of B(H).
• If Y is locally compact and Hausdorff, then K is an essential ideal

of C0(Y ) if and only if
K = C0(X ) ,

for some open, dense subset X ⊆ Y .
• If A is a type I AW∗-algebra, then the ideal K generated by the

abelian projections of A is an essential ideal of A.

Argerami, Farenick, Massey (U of R & UNLP) Weakly Continuous Hilbert Bundles Timisoara 2010 6 / 18



Local Multiplier Algebras (continued)

If K1 and K2 are essential ideals of A such that K1 ⊆ K2, then there is
an embedding

M(K2)→ M(K1) .

Definition
The local multiplier algebra of A is the direct limit C∗-algebra

Mloc(A) = lim
→

M(K ) .

Why Mloc(A)? Pedersen (1978): any derivation on A extends to an
inner derivation of Mloc(A).
Natural question: is Mloc(Mloc(A)) = Mloc(A)?
Plus more applications (cfr. Ara & Mathieu)
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Example of a local multiplier algebra

Mloc (C[0,1]) = B[0,1]/J

B[0,1]/J = C(∆), ∆Stonean. So Mloc(C[0,1]) = I(C[0,1]).

For A = C[0,1]⊗ K (H), Mloc(A) 6= I(A) (more on this soon).

Fact of Life: Mloc(A) is difficult to determine explicitly.
M(A) “lives” naturally in A′′ (as the idealizer of A in A′′)
Where does Mloc(A) live ?
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3. Iterates of Mloc(·)
Theorem
(Frank & Paulsen, 2002)

A ⊆ Mloc(A) ⊆ Mloc (Mloc(A)) ⊆ I(A) ,

where each inclusion is an inclusion of C∗-subalgebras.

If Mloc(A) is an AW∗-algebra, then

( † ) Mloc(A) = Mloc [Mloc(A)] .

Question: Is (†) true for all C∗-algebras A ?

Theorem
(Ara & Mathieu, 2006) There is a separable, AFD, prime, antiliminal
C∗-algebra A such that

Mloc(A) 6= Mloc [Mloc(A)] .
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Remarks
• (A & Farenick, 2005) If A is a separable, prime, antiliminal

C∗-algebra A, then I(A) is a wild type III AW∗-factor.

• (Somerset, 2000) If A is separable and postliminal, then
Mloc [Mloc(A)] = I(A), a type I AW∗-algebra.

Question: Is Mloc(A) = Mloc [Mloc(A)], for every separable, postliminal
C∗-algebra A ?

Theorem
(A, Farenick, Massey, 2007) If H is separable and infinite-dimensional,
and if A = C([0,1])⊗ K (H), then

Mloc(A) 6= Mloc [Mloc(A)] .

Such an A is a particular example of a Fell Algebra.
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4. Bundles

Definition
A continuous Hilbert bundle is a triple (T , {Ht}t∈T ,Ω), where Ω is a set
of vector fields on T with fibres Ht such that:

(I) Ω is a C(T )-module with the action (f · ω)(t) = f (t)ω(t);
(II) for each t0 ∈ T , {ω(t0) : ω ∈ Ω} = Ht0 ;
(III) the map t 7→ ‖ω(t)‖ is continuous, for all ω ∈ Ω;
(IV) Ω is closed under local uniform approximation.
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Bundles (continued)

Definition
A vector field ν : T →

⊔
t Ht is said to be weakly continuous with

respect to (T , {Ht}t∈T ,Ω) if the function

t 7−→ 〈ν(t), ω(t)〉

is continuous for all ω ∈ Ω. The set of all bounded weakly continuous
vector fields with respect to a given Ω will be denoted by Ωwk, that is

Ωwk = {ν : T →
⊔

t

Ht : sup
t
‖ν(t)‖ <∞ and ν is weakly continuous}.
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Going Stonean

Assumption: T Stonean, further denoted by ∆.

Why?

Remark
t 7→ 〈ν1(t), ν2(t)〉 is generally not continuous for arbitrary ν1, ν2 ∈ Ωwk.

But it is lower-semicontinuous, and with ∆ stonean, it differs from a
continuous function off a meagre set.
Thus, one can canonically define 〈ν, ξ〉 ∈ C(∆) for ν, ξ ∈ Ωwk.

Theorem (A, Farenick, Massey 2009)

Ωwk is a Kaplansky–Hilbert module over C(∆). Moreover, Ω is a
C∗-submodule of Ωwk and Ω⊥ = 0.
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What is a Kaplansky-Hilbert module? (also called faithful AW∗-module
by Kaplansky)

It is a C(∆)-Hilbert module such that
(i) if ei · ν = 0 for some family {ei}i ⊂ C(∆) of pairwise-orthogonal

projections and ν ∈ E , then also e · ν = 0, where e = supi ei ;

(ii) if {ei}i ⊂ C(∆) is a family of pairwise-orthogonal projections such
that 1 = supi ei , and if {νi}i ⊂ E is a bounded family, then there is
a ν ∈ E such that ei · ν = ei · νi for all i ;

(iii) if ν ∈ E , then g · ν = 0 for all g ∈ C(∆) only if ν = 0.
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Definition

An operator field a : ∆→
⊔

s∈∆ K (Hs) is:
1 almost finite-dimensional if for each s0 ∈ ∆ and ε > 0 there exist

an open set U ⊂ ∆ 3 s0 and ω1, . . . , ωn ∈ Ω such that
(a) ω1(s), . . . , ωn(s) are linearly independent for every s ∈ U, and
(b) ‖psa(s)ps − a(s)‖ < ε for all s ∈ U, where

ps = [Span {ωj (s) : 1 ≤ j ≤ n}];
2 weakly continuous if s 7−→ 〈a(s)ω1(s), ω2(s)〉 is continuous for

every ω1, ω2 ∈ Ω.

Let Γ be the set of all weakly continuous, almost finite-dimensional
operator fields a : ∆→

⊔
s∈∆ K (Hs) for which s 7→ ‖a(s)‖ is C0,

Theorem (Fell 1961)
(∆, {K (Hs)}s∈∆, Γ) is a continuous C∗-bundle and the C∗-algebra A of
this bundle is a continuous trace C∗-algebra with spectrum Â ' ∆.
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(a) ω1(s), . . . , ωn(s) are linearly independent for every s ∈ U, and
(b) ‖psa(s)ps − a(s)‖ < ε for all s ∈ U, where

ps = [Span {ωj (s) : 1 ≤ j ≤ n}];
2 weakly continuous if s 7−→ 〈a(s)ω1(s), ω2(s)〉 is continuous for

every ω1, ω2 ∈ Ω.

Let Γ be the set of all weakly continuous, almost finite-dimensional
operator fields a : ∆→

⊔
s∈∆ K (Hs) for which s 7→ ‖a(s)‖ is C0,

Theorem (Fell 1961)
(∆, {K (Hs)}s∈∆, Γ) is a continuous C∗-bundle and the C∗-algebra A of
this bundle is a continuous trace C∗-algebra with spectrum Â ' ∆.
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5. Some results
Define

Θν1,ν2 (ν) = 〈ν, ν1〉 · ν2 , ν ∈ Ωwk .

(“rank-one operators”).

B(Ωwk) = {adjointable C(∆)− endomorphisms of Ωwk} ,

K (Ωwk) = SpanC {Θν1,ν2 : ν1, ν2 ∈ Ωwk}
‖ ‖ ⊆ B(Ωwk) ,

K (Ω) = SpanC {Θω1,ω2 : ω1, ω2 ∈ Ω}‖ ‖ ⊆ K (Ωwk) .

Theorem (A, Farenick, Massey 2009)

There exists a sequence of C∗-algebra embeddings such that

K (Ω) ⊆ A ⊆ B(Ω) ⊆ B(Ωwk) = I(A) . (1)
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What about local multipliers?

Theorem (A, Farenick, Massey 2009)

M(A) ⊆ M(K (Ω)) = B(Ω) ⊆ Mloc(K (Ω)) ⊆
∗

Mloc (Mloc(K (Ω))) = B(Ωwk) .

The inclusion (*) is known to be proper even for trivial bundles with
appropriate choice of ∆ (Ara-Mathieu 2008)
For K (Ωwk), the situation is radically different:

M(K (Ωwk)) = B(Ωwk) (Kasparov),

so
Mloc(K (Ωwk)) = Mloc (Mloc(K (Ωwk))) = B(Ωwk)

regardless of the choice of Ω.
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Further Results

Detailed structure of the product in B(Ωwk), extending Hamana’s work
on the product structure of C(∆)⊗B(H).

Thank you!
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