THE TOPOLOGICAL SUBSTRATUM
OF THE DERIVATIVE (I)

AMARIUS BULIGA

From the carly days when the derivative was regarded as a velocily, a rate of
change, until the modern viewpoint, that of a local approximation of a map by
a map from a given class of operators, the concept of derivative has kept some topo-
logical features. These features are hidden in all kinds of geometrical interpreta-
iion of derivatives and one of our purpose is 1o show that these interpretations
lic on a topological substratum. Thus it secms 1o be natural to ask if there is any
way Lo find a class of differentiable maps using topological hypothesis. We named
this questions the topological issue of the derivative. In this paper we show that
the problem is to find a certain group of transformation which generates the deri-
vative ; this group describes the topological structure of the space in the neigh-
bourhood of one of its points.

1. THE G-DERIVATIVE

In the following pages we use the notation f: X' =Y for maps with
two arguments in X with valuesinY ; the trace of {1x the nsual map @Y —~
—Y by o) = fle, x). For f: X —»1 and g: Y - Z, gf : X - 7Z iz the
wmayp (2. ) — g(j{x, @), fle, ¥).

Let (G, .) be a group endowed with a compatibile partial-order rela-
tion which directs G, i. e. :

1.foranym €G,ifh < nthenm -7 <m-pandh-m < n-m

2. for anv m, h€G therecisage&G with g > h and g 2 m.

Also,let ()1 G x X' Xx X — X bean action of G on a Haurdortt space X, i.e.

1. the map y — () (g, &, ) = g(x, y) is continous and the trace of
(s ) = Gy ) 0% Ly

2 forany fy g € G fla, gle, y)) = (- 9w y) (or (g- ), y) Tor vight-
action);

3.03f fle, 1)y = g(xe, ) for any @, y then [ = ¢

4. 1, 1/) = y for any x, y.

DI 1. 1. Le f: X — X be a continnous map and let @, y e X. We
say that f is G derivable in « along » if the limit of the net

(g~ Y9y ¥)) (01' f{;“l z, u)),eG for righ-action) exists. In this case we
note lim g 1fq x, ¥y = (D¢f)(#, y), the G-derivative of fin x along y.

A natural extenxlon of ,l) L. 1.1, ix made like this:let f: ¥ - ¥ bea
continous map and x, y € X. Suppose that we have two groups G, and
G, with two actions on X and ¥ and a group-morphism % : G; — G, which
preserves the order-relations and i () is a subnet of (,. We say that f
18 a-derivablein x along  iff the net (x (g7 fg(2, #)),ec has a limit and
this limit is (D, f)(, y), the x-derivative of fin x along y.

11 : Let f: X — X be a G-derivable map in ¢ along y and let
I e l’zen is G-derivable in x along h(x, y) and

(L 1.1) KDef ), y) = (Daf i, 7).
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Proof. From D 1. 1.1, f is G-derivable in # along x and (Def) (2, )=

¢s(2) s0O
MDef)x, y) = k(o x), Defw, y) =1lm kb7 f0'(2, y) =
— (lim mYm)h(w, y) = (Def)k(2, ).

We shall see that P 1. 1.1 assures us that D¢ is a kind of “homo-
geneous’ operator.

PI112: Letf, g: X — X be two G-derivable maps in x, ox). If gf
18 a G-dertvable map in x then

(I 1.2) (Degf)(; ¥) = (Deg)(Def)(z, ¥) (the chain rule).
Proof.
Hm A7Ygflh(x, y) =lm R 1ghht fl(x, y) =

— (lim -tgh)(lim A=t fh)(x, y) = (Deg)(Daf)( 2y ¥)-

P 1. 1.3. G 18 a commutative group iff for any h € G Dgh = h.
Proof. If G is commutative then

lim m~%hm(z, y) = im m~tm(z, y) = h(z, ),
so (Dgh)x, ¥) = h(x, y). Conversely, if for any h € G, D;h exists then PI1.1
assures us about commutativity of G.

We shall give some examples of D, or D, derivatives.
Let G be the following group :

(I. 1.3) G, = {0} : R* - R* o}(x, y) =« + k(y—wx), k> 0}.
For any n we define an order-relation by
(I. 1.4) ot = ot iff & < 1.

Now let A: G, — G, be the following group-morphism
(I 1.5) Mop) = of.

For f: B* — R? let f(x, ¥) = f(y). Then

Moy Vfor (@, y) = fla) + k (flx + My —x)) — f(a)), so0

(I. 1.6) D)y y) = fla) + D)y —a),

where Df(z)(v) is the Giteax-derivative of fin x along v. If we think
at Df(«) like a homogeneous map from the tangent-space in « to the tangent-
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space in f(z) the right-member of the previous equality forms the Ga-
teaux-derivative of f in «. It is also clear now that P I. 1.1 shows in this
case that the operator D is homogenous.

Another example is the following : let ¢, be the group of transfor-
mations defined by
(L 1.7) 0, € Gy HE 0 (), #y), (20, ¥y) = (@) +k(xy — @)y Yo +-Uya—11)),
where kI £ 0. We say that
(I. 1.8) Ory 2 Oy T E <mandl < n.

Let A be the group-morphism :
(I. 1.9) 11Gy = Gy by wop) = 0.

For any functional g : R? — R we define ¢ by
(L 1.9) g((21, 91), (@0, %)) = G0y 1) + G(20ar Yo) — gla1, Ys) — G5 3y

¢ is a continuous functional iff ¢ ix bidimensional continuous (see [3)).
If the limit exists we have the following equality :

(I. 1.10) liln-"(ol?,})!/(’k,l((-’1'1» i)y (Tgy o)) = {(Dug)ay, U xs — )Yz — Y1)y

where D,g(x, #) is the hyperbolic derivative of g in (u, y) (see [3])

L 1.11) Dygle, o) — lim LELIyER+9(@, 0) —glath, u)—g(a, i4+k).
( ) Dagle, y) Jm o

k-0

Let X be a Hausdorff space and M < X be an n-manifold in X ; also
let d be a maximal atlas of M.

For any map h ed we define
(1. 1.12) h:C(R", R") - €Y, R") by J(o) = oh
and for any parametrization p of J[ we define
(I. 1.13) P €, B") — &R, R") by p(f) = fp
In this way we can see a manifold in X like a sort of manifold in
€(X, R*) which has maps on €(R*, R*) instead R*and parametrizations de-

fined on ¢(R*, R") too. An atlas of M becomes a family of parametriza-
tions on €(R*, R*) and conversely.
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A curve ¢: B — M becomes ¢:€X, R*) — &R, R*) by e(f)(t) =
J(e(®)). Let G, be the following group of transformations of &X, B

(L 1.14)  o: €A, BY) — (X, RBY). o(f, g) = f+ k(g — f),
and G, be the group
(I 1.15) o, : €(R, R") - &R, R"), o,(r,w)(t) = r(t) + w(kt) — r(kt).

The order-relation and the morphism are detined like in (I. 1.4) and
(1. 1.5). The limit limi(o,) ¢oi'(f, g). where ¢ is a curve, exists only if
g(c(0)) = f(c(0)) because ‘

Moy o '(fy, g)t) = fle(®) + kN gle(k)y — fle(k)).

If the limit exists, for f, g € () = {f e 2f(2) = 0}, = e(0).

(I. 1.16) (DR)(fs (D) == fla) 4+ Xolg) — X0,

where X is the tangent vector in » at e.

If we want to make the same construction on M, not on the family
of functionals on M, we meet two problems : first — how to define a par-
ticular group when we do not know anyihing about .X' — and the second
— if we consider manifolds in normed vector spaces, we can easily see
that we request a group of transformations of .\, not of 2. Indeed, we
need the group of transformations with the following form :

(I. 1.17) oy ) =204+ My — a),

but if 2, y € M nothing assures us that o+ My — ) € M. That are the
reasons of working with funetionals.

We can say that the morphism 2 describes ihe usual differential ope-
rator used to define the notion of a tangent vector at J.

In the following example we will define another morphism for any
2-dimensional manifold M. This example will show the difference bet-
ween the manifold and the differential structure which arises on the mani-
fold.

Let 3= {(«w, ) € R¥x* - y* < 1! a submanifold of the canonical
manifold &% We define o 5 the following metric:

(I. 1.18) Gy ) = G i @iy,

where (i, i,) 1% the canonical base in R* and
1 —y? ay
(l — = yz): (l — a2 .”2)2

(I, 1.19) G =
xry 1 —
A —a?—u (1 — a2 —y?)
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This Riemannian manifold is the most familiar model for the hyperbolic
plane : the Poincaré ({4]). For our purposes we will choose another mani-
fold, diffeomorphic with ¥,

(1. 1.20) H = {(@y, vy, 73) € B3y > 0, 25 — af — a2 = 1},

reio

Let L, be the Lorentz proper group in #2 and L, the subgroup of L, form-
ed by transformations described in canonical base of £3 by the matrix :

VB — 1) Nttt X p — 1) — B

(I 1.21) (e HE = 1) BB — 1) B
=ty P 2
where ¢ = ¢+ 3 <1, 7, 1, € B are two real parameters, and 8 =

1
T2

(1 — o2)
For any » = (xy, x5, v;) € H there is a unique L, € L, with

(1. 1.22) L((0,0,1)) = (ay, a4, 23),

determined by the parameters v; = iy 233 v, = 2, 7% So. for any two
points .y, v, € H, there is a unique L, € L, with

(I. 1.23) Ly(ay) = 1.

For any r e Il we define (ey(a), e,(x)) a base of T,(H) by :

xi(ry; — 1 . Tyrg(ry — 1) .
el(.’l’) = (_]()—3_)_) _{_ 1) I + &“()1‘1)_). 1, — 415
x4 a3 I 4 X3
(I. 1.24)
ryle( s — 1) . X3(ary — 1) . .
ey() = 23 |+( B3 ])1 — i
: B4y iUty

The Frechét derivative of L, in (DL)(xy) : To (1D — T, (H), actions
like this: )

I. 1.25) (DLJ(r)(e)(17)) = e(ay).

lind »wed with the metric G = e, ® e; + ¢, ® e,. H becomesr a Riema-
nnian manifold aiffeoniorphic with 4 by :

1. 1.26) (T1y Toy g) > (2 251, oy 271).

We will look at I to see geometrical features and at H, where we have

the group L, for moving from a point to another. "L, is a hyperbolic ana-
logus of the euclidean group of translations.
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Let # € H. We define on H the transformation o(x, y) = 2, with
tone following properties :

Lokl dy(a, y) = d(z, 2).

2.1f k > 0 then 2z is on the k-ray determined by z and y and if
k <0 then z is on the opposite h-ray.
On X the metric determines the /-distance

(L. 1.27) o, g) = - G, 35 %, %),

where o*, y* are the intersection-pointx of the i-line determined by z, y,
which is an orthogonal circle on the circle @(0, 1), with the cirele €0, 1)
and

dy(a, a®)d(y, %)

I1.1.28 T,y ok, y¥) =
(1-1.28) s ) = e i 77)
So

1 1+ (il
1.1.29 dn((0, 0), (2, y)) = — In—1 1 70
( ) (0,00, (2,9) = I ool
whence
(I. 1.30) 0r((0. 0), {x, ¥)) =

@A ) — (= (e, n)ip* ( T y )
(LA My )0 4+ — [, )i (e ) 1 i 9

If we look on H by diffeomorphism (I. 1. 26) we can reach the form of
o, because

(I. 1.31) 0@, ¥) = Ly(04((0,0, 1), L7(y))

where L, eL_, LJ((0, 0, 1)) = «.

Let G, be the group of these transformations for all % eR, k > 0,
Let M be a 2-dimensional manifola in Y. ¢ has a maximal atlas on R2
containing a single map so we can work with maps on I instead R? In
this case we have the same correspondence for maps and parametriza-
tions on ¥ like in the previous case. Let &, be the family of functionals

f:M —%X. We define G, by :

(1. 1.32) 02 Fy = Fy € Gy it §u(f. ) (1) = o(f(2), g(x)),
and
(1. 1.33) A1 Gy = Gy bY AN§,) = o,.

The order-reltion on @, is like in (I. 1.4).
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We note the G-derivative determined by 2 with Dy - From (1. 1.16)

iv follows that Xg) = (Die) (0, g), We define the tangent k-vector af
¢in @ = ¢(0) by :

(1. 1.34) Xi(g) = (Dye) (0, 9), where 0 = (0, 0, 1).

So the same 2-dimensional manifold M has two different morphisms
which give to M wwo ditferent differential_ structures. The study of D,

intrinsic analysis on a hyper-

2. FINDING THE GROUP G BY TOPOLOGICAL H YPOTHESIS

Let (X, <) be a Hausdorff Space, with < the set of open neighbour-
hoods from X, and let X (7) be the set of all filters over + - X(~) is natura-
lly endowed with the topology °; X is embedded in X(x) by the map
z € X — ¥(x) € X(<), where Y(«) is the family of open neighbourhoods of
x. We shall identify X with {¥(2)|r € X} < X(x).

DI 21. Let §: X 2(X(7)) be a map. If

1. for any ze X, ¥a) £ 0,

2. for any ¥ e §(z), Flx)s 9,

3. for any ¥, %9, € §(x), PINT, # 0
| then 8 is a boundary map.

From D I. 2.1 it follows that for any v, € §(z,), °%, € ¥ a,), if o, #
#a, then ¥\, # @, so for any z € X the subspace

(1 21) X, = (XN {2}) 0 3(x)

of X(r) is a Hausdortf space. The space X, is, from a topological view-
'~ point, finer than X because the filter ¥(x) is replaced with a family of
finer filters.

We can imagine that a boundary map is a correspondence
r€X— X, where X, is homeomorphic with (AN A{a}) v 8(«).

Let f: X — X be a continuous map. There is a unique continuous
- extension of f,
(I. 2.2) §:X() - X(7), fIX =¥

DI 22 If f(X,)c X, then f is 3-continuous in z. For any 3-con-
tinucus map f we define

I 2.3) of :xg 3() -*%3(00), (%) = 7(9),

the boundary of f- If f maps (z, ¥) = f(z, y) then fis 3-continuous in gz

if {he exvension of the map > f(z, y) is 8-continous in z and the boun-
dary of f in & is

I 24) 3f(2) : 3(2) ~ ¥oda)), $f(x) (F) = fx,,) (¥).
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‘ The following example of a boundary map suggests the source of
this notion.
For any z € RB* and for any open ray
(1. 2.5) s ={x-+tv]t>0, v # 0} S
let ¥(z) be the family of all open sets W for whic exists 1" = V,U=10
with
(1. 2.6) Ve¥x), scU, VnUsW

%9(s) is a finer filter than *?(x) and for and different open rays s;, 8, € 8(x),
P(s)\F(s2) # 0. We define

(I 2.

S =

) $: R* — &(R(=)), 3x) = {9(s)] s € 8(a)}.

Let f: R* — R" be a continuous map. f ix 3-continous in g iff for
ahy net (2,), with :
) 1. a2, — o
Ty

——L) — v, the net
| ita — )
(f(#s))s has the same features 1 and 2. For any Irechét derivable map f,
if the Frechét-derivative in x € R* is invertible then it is obvious that f
is 3-continuous in a.

. Now we will iry to characterize the topological structure of X in a
neighbourhood of # € X, seen in the space .X,. Let i(xr) be a base of open
neighourhoods for () - i(z) is directed by the relation 2 :

for any V, U €i(x) thereris a W ei(x) with V2 W and U= W.

2. there is a veR" || =1, wilh (

We note
(I. 2.8) End 3a) = {h: X = X |(r) = o and RIX,: X, - X,
is a homeomorphism},

the group of endomorphisms of 3(«). There is a one-to-one correspondence
between the homeomorphisms of X, which does not move 3(z) and the

endomorphisms of 3(x).
The map 8 (I. 2.4) is a group-morphism from End 3(z) to

(I. 2.9) End(z) = {8h = k/8(z)| h € End(x)}
80
(1. 2.10) ker 8 = {h e Endz(w) | 8k = 15}

is a normal subgroup of End 3(x).
“The following set is another subgroup of End 3(z):

(L 2.11) End, 5(«) = {h € End 3x)|k(i(x))=i(x) and for any V, W ci(z)

WV) = R(W) iff V = W},
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where h(V) = {h(y)l y € V}. With the notation End (1) for the group of
endomorphisme of the nei i(x), the map

(I. 2.12) t: End3(z) — End(1), i(h)(1) = ney)
18 a group-morphism. We note

0 .:3(x) = ker 3 n Endy(z)
(I. 2.13)
Od(x) = ker &nker 4.
©3(z) is a normal subgroup of 0,3(x).
For any 3 the group
(I. 2.14) 0:3(x2)/08(x) = 1(0,;8x))
is called the fundamental group of i(z) relative to 8. If 3x) = {¥(x)} the

correponding group is named the fundamental group of i(x).
Let X = B* and for o = 0 let

(I. 2.15) 10) = {D(0, n)ir > 0}, DO, r) = {y|liy] <.

The fundamental group of 4(0) is isomorphic with the group (1. 2.18).
Indeed, fe ©i(0), (for the simplest boundary map we neglect the
notation with 8) if f(x) = f(y) ift o) = lyll, so for any @ # 0

r
|l

ing Q(x)Q%(z) == 1, Q is continuoun
Je0(0) iff lxi = |if(w)] so
(1. 2.17) Ha) = Q(a)z, Q is continous and Q(2)Q7(w) = 1.

1t is obvious now that the factor group is isomorphic with the group of
transiormations

(I 2.16) flz) = k(| 2l) Q)

+ k: R, R, is continuously increas-

x
i
For any group of continucus maps x+ Q(2) and for any group-

morphism £( )—Qu( ) there is a group isomorphic with the fundamental
group formed by

(I 2.19) J2) = k([jz ) Qu(a)a.

From the previous example we can see that the group G thai we
are trying to reach at is isomorphic with a fundamental group of a 4(0).
Supposing that there iz a subgroup

(I 2.20) 0:3(2) € 0:3(2), 0,5(z) = ©,3(x)/O(z)

that subgroup may notbe unique. The selection will be made by the
boundary maps.

(I. 218)  flz) = k(llz|)a’, k is continuously increasing, a’—
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Let I<9(X) be a net with the order-relation <. Then there is at
most one point x € X with

1. for any V €°9(x) there isan Ael, AcV.

2. for any y € X with 1. ¥(y) =%(x), only if g ¢ 1. We denote

(I. 2.21) 2 = Lim I.
Let $ be a boundary map for which there is a V € i(x) withfor any

W ei(x) there is a map h € 0,8(x), (V)= W
For any group 0;3(x) with (1. 2.20) we construct

(1. 2.22) Wy = {h € 0,8(z)/ (V)<= U},
for any U €i(z). For any ¥ € X(r) i
N
(I 223) . YU(%: (}I( )' he Y{r}.
Let
(1. 2.24) GZ\% = Lim Y (%), G = 0,3(x).

be the limit-function of G relative to ¥.
P I 21:1. For any he@ and for any 8 7G(F) = G(9);
2. h(°9) = ¢ for any h € G iff G(¥) = ¥ ;
3. GG(?) = G(*) for any ¥.
Proof : 1. Forany h € G i (h)is a one-lto-one map so
thgi g € Xo} = Yunwr-
Also, because h is a continuous map,
R(Lim Yy(*%)) = Lim R Y,{°?) = Lim ¥,'¥).

2. Suppose that]z(%‘?) = 9 for any h € G. Then Y4(°¥) = {(*9)} for any
U so G(79) = 9. I G(¥) =Y then, from 1, it follows that R(°?) =
=RG(¥) = G(¥) =Y for any h.

3. Results after 1 and 2.

Let 3(z) be the family of the subgroups of @i(x) which satisfies
(1. 2.20). For any G, H € ¥(x) we say that & is finer than H if the limit-func-
tion of G is finer than the limit-function of H, i. e.

(1. 2.25) for any % G(°%)2 H(?).
For a fixed group G €J(x) we have the order-relation defined by

(I 2.26) h o> g iff K(V)<Sg(V).
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With our hypothesis the relation < directs @ and @ conserves <.
Therefore we can define the G-derivative in X. We make the notation
Def(@, y)= Def(y) and for the moment we are working onl y with G-deri-
vative in z.

PI. 2.2:1. For any % there s a °® with
(I 2.27) (Def) (G(9)) = G(®) i (Dgf) is continuous
2. For any 9 — T(y)
(L. 2.28) (D)%) = 7).
Proof. 1. We saw, from P I. 1.1, that for any # e @
]I(Dcf) = (I)Gf)h
The previous equality holds for extensions, so
W(Def) = (Def)i.
Now, let ¥ be a filter. Then
HDef)GP)) = (D) RE(T) = (Dafy @)
because of P I. 2.1, 1. Therefore, the filter (D;}‘) ((i(”&?ll is conserved by
any h €G; from P 1. 2.1 it follows that the filter W =(Def)(G(°9)) satisfies
(I."2.27).

2. We know that
(1. 2.20) (Daf) (/) (4) = Lim {&Ya(y) ()< 0

so for any m e @
Defhm(y) = m(Def) ()= Lim{mh-1fh(y)n(T) < 0.
Because we supposed that (Def) is continuous
(DGR ))) = Lim{Lim{mhfh(y) h(V) < UYjm(V) < 0}
For the Lim operator the theorem of iterated limits assures us that
(Def )G () < Lim{fayyi(¥y < 17

and because f is continuous the right member of the previous equality
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For any subgroup G of G which is directed by (1. 2.26) the previous
two propositions holds if we use the G’-derivative and G'. In the second
part of this paper we shall prove that any G'-derivative is a G'"-derivative,
Where G'’-is a cominutative subgroup of G with the following qualitity :
any member of G which commutes with any member of G’ is a member of
G". For the group (1. 2.18) G, plays the part of G and the G”-derivative
is the Gateaux derivative. P 1. 2.2 shows us what we called the topological
substratum of geometrical interpretations of derivative. The filters detined
by (I. 2.7) are conserved by G so P 1. 2.2, 1. assures us that the family
8(x) (1. 2.5) is locally conserved by the Gateaux derivative of any map
f with f(a) = . Alzo 2 shows ux that on the same family of filters (Dgf)
and f act in the same way ; this is, in a few words, the geometrical inter-
pretation of the Giateaux derivative.

Let G €J (&) and let § be a boundary map with 3(x) conserved by
G. Then G is a subgroup of @8 (r).

It is obvioux that

(1. 2.30) 0,5(2)/O 1) € Oi(2)[O(r) == G
[0
(I. 2.31) G 0,50)/08(0)

G is isemorphic with the fundamenial group of i(w) relative 1o 3. Ro 3§
makes a selecticn in the family (a). In our pariicular caxe the boundary
map (I. 2.7) makes a strong selection. Indeed, under xome meaningiul
hypothesis, as we shail prove in the second part of this paper, the group
G'"is unique and the G”-derivative is in our caxe the Gitcaux derivative
for any G(I. 2.31).

We shall find the group G, (1. 1.7). Let, on R% the following base
of ¢ (0):

(1. 2.32) i(0) = {D(a, b, r)je, b, r>0} where D(«, b, r)= e (@) (bag)2<<r?)
The fundamental group of {(0) is isomorphic with the group of maps

(1. 2.33) (i}, 2p) — (k(ap) ™ wyy Way) el ™ xy) where L, 1 arve continu-
ously increaxing and L (0,) == [(0.) == 0.

Let
(I. 2.34) S(0) == (Vi j = 1,2}
and

%, = {Vitherearek, ! > 0 with (v, + &, 1) X (25,0, + DEV}

0, = {Vithere are k>0, 1<0 with (x, o+ k) X (2 2o+ DEV}
(1. 2.35)

¥,, = {V|there are k, 1 <0 with (zy, @+ k) X (xg @ + )=V}

°9,, = {V|there are k<0, 1 > 0 with (&, & +k) X (@ @, + NSV}
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The group ©(0) is a finite group isomorphic with Z, and, asin the
previous case, for any group ¢ €3 8(0) the G-derivative is the hyperbolic
derivative,

If we want to construct a G-derivalive in any point we have to make
the same construction everywhere. The problem which arises is the connec-
tion between the groups G(z) and G(v) and between 3(xr) and 3(y) (which
means a characterisation of the boundary map). The simplest way is to
suppose that there is a map («, y) — f((x, y) which is a local homeomor-
phism (i. e. for any x the map y — flx, ¥) is a local homeomorphisin) and
for any x f(x, y) = x,; also f is G-derivable and D¢f = f. In our par-
ticular cases such a map exists ; it is the affine correspondence (o, ¥) >
—1 — .

In the end, the extended notion of s-derivative arises no problems
and P I. 2.2, 2. is still true.
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