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• Mécanica de Fluidos-D. Juan Luis Vázquez

• Ecuaciones en Derivadas Parciales-D. Juan Ramón Esteban
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Asymptotic Behavior of The Porous Medium Equation

on Lattices

Trabajo de investigación dirigido por Juan Luis Vázquez



Porous Medium Equation




ut = ∆(um) in QT ,
u(x,0) = u0(x) in Ω,
u(x, t) = 0 in ΣT .

(1)

Ω ⊂ Rd, d ≥ 1, QT = Ω× (0, T ), ΣT = ∂Ω× [0, T ].

Theorem 1. Every weak solution u of PME is bounded in Qσ =

Ω× [σ,∞) for every σ > 0. Moreover, we have an absolute decay

estimate of the form

u(x, t) ≤ C(m, d)R
2

m−1t
− 1

m−1, (2)

where C(m, d) > 0 and R is the radius of a ball containing Ω.
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Theorem 2. There exists a unique self-similar solution of the

PME of the form

U(x, t) = t−αf(x), α = 1/(m− 1), (3)

such that if u ≥ 0 is any weak solution of PME we have

lim
t→∞ tα|u(x, t)− U(x, t)| = lim

t→∞ |t
αu(x, t)− f(x)| = 0, (4)

unless u is trivial, u ≡ 0. Moreover, the asymptotic profile f is

the unique nonnegative solution of the stationary problem

∆(fm) + αf = 0, in f = 0 on ∂Ω. (5)
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Semidiscretization in a Bounded Interval




uj,t =
|uj+1|m−1uj+1 − 2|uj|m−1uj + |uj−1|m−1uj−1

h2,
j = −N, .., N, t > 0,

uh
j (0) = ϕh

j , j = −N, .., N,

u−N−1(t) = uN+1(t) = a, t ≥ 0.
(6)

Our Results

• Existence and Uniqueness

• Continuous Dependence of Initial Data

• Continuous Dependence of Boundary Data
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Maximum Principle

Definition 1. We will call U a supersolution if it satisfies




u−N−1(t) ≥ 0, uN+1(t) ≥ 0, t ≥ 0,

uj,t ≥
|uj+1|m−1uj+1 − 2|uj|m−1uj + |uj−1|m−1uj−1

h2
, j = −N, .., N, t > 0,

uj(0) ≥ ϕj, j = −N, .., N.
(7)

Analogously, we say that U is a subsolution if it satisfies (7) with

the reverse inequalities.

Lemma 1. Let U and U be a supersolution and a subsolution

respectively, then

U ≥ U ≥ U. (8)
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Theorem 3. Every solution of (6) satisfies

uj(t) ≤ c(m)R
2

m−1t
− 1

m−1 (9)

where c(m) > 0 and R > (N + 1)h.

Theorem 4. If u is the solution of (6) then there exists

lim
t→∞ t

1
m−1uj(t) = fj (10)

where fj is the unique nonnegative solution of the stationary

problem




fm
j+1 − 2fm

j + fm
j−1

h2
+

1

m− 1
fj = 0, j = −N, .., N,

fN+1 = f−N−1 = 0.
(11)
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Semidiscretization of the Cauchy Problem

{
uj,t = ∆h(|u|m−1u)j j ∈ Z3, t > 0,

uh
j (0) = ϕh

j , j ∈ Z3.
(12)

• Existence

• Uniqueness
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L∞ Norm Decay Properties in Dimension d ≥ 3

Theorem 5. Let p0 ≥ 1 and u0 ∈ Lp0(Z3). Then the solution of

(12) belongs to L∞(Z3) and




‖u‖m
L∞(Z3)

≤ t−δ(φp0(u0))
σ, t > 0

δ = 3m
2mp0+m−1, σ = 2mp0

2p0m+(m−1)

(13)
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Proof’s Ideas

Jp(u) =
1

m(p− 1) + 1

∑

j∈Z3

h3|uj|m(p−1)+1 (14)

lim
p→∞(Jp(u))

1
p = ‖u‖m

L∞(Z3) (15)

Jp(s) ≥ c
p− 1

p2
(t− s)J

1/3
q (t)

for all t > s where q = 3p + m−1
m .
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Dispersive Properties for the Approximations

of the Schrödinger Equation

Trabajo de investigación dirigido por Enrique Zuazua



The Linear Schrödinger Equation
{

iut + ∆u = 0 x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R.

(16)

Dispersive Properties

• L1 → L∞ decay

‖u(t)‖L∞(R) . t−
1
2‖ϕ‖L1(R)

‖u(t)‖Lp(R) . t
−(1

2−1
p)‖ϕ‖

Lp′(R)
,2 ≤ p ≤ ∞.
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• Local gain of 1/2-derivative : If the initial datum ϕ is in

L2(R) then u(t) belongs to H
1/2
loc (R) for a.e. t ∈ R.

These properties are non only relevant for a better understanding

of the dynamics of the linear system but also to derive well-

posedness results for nonlinear Schrödinger equation (NSE).
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Preliminaries

If v ∈ l2h(Z), then the semidiscrete Fourier transform

u
v(ξ) = h

∑

j∈Z

e−ijhξvj, ξ ∈ [−π

h
,
π

h
]

belongs to L2
h, and v can be recovered from

u
v by the inverse

semidiscrete Fourier transform

vj =
1

2π

∫ π/h

−π/h
eijhξuv(ξ)dξ, j ∈ Z.

The l2h-norm of v and the L2
h-norm of

u
v are related by Parseval’s

equality,

‖uv‖L2
h
=
√

2π‖v‖l2h.
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Basic Elements of Classical Numerical Analysis

Consider the finite difference approximation




i
duh

dt
+ ∆huh = 0, t > 0,

uh(0) = ϕh.

(17)

Here uh stands for the infinite vector unknown {uh
j }j∈Z,, uj(t)

being the approximation of the solution at the node xj = jh,

and ∆h being the classical second order finite difference approx-

imation of ∂2
x :

(∆hu)j =
1

h2
[uj+1 − 2uj + uj−1].
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The scheme is consistent + stable in L2(R) and, accordingly, it

is also convergent.

The same convergence result holds for semilinear equations
{

iut + uxx = f(u), t > 0, x ∈ R
u(0, x) = ϕ, x ∈ R.

(18)

provided that the nonlinearity f : R → R is globally Lipschitz.

The proof is completely standard and only requires the L2-conservation

property of the continuous and discrete equation.
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But the NSE is also well-posed for some nonlinearities that grow

superlinealy at infinity,

But this well-posedness result may not be proved simply as a

consequence of the L2-conservation property. The dispersive

properties of the LSE play a key role.

Accordingly, one may not expect to prove convergence of the nu-

merical schemes without similar dispersive estimates, that should

be uniform on the mesh-size parameter h → 0.
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There are “slight” but important difference between the symbols

of the operators −∆ and −∆h:

p(ξ) = ξ2, ξ ∈ R, ph(ξ) =
4

h2
sin2(

ξh

2
), ξ ∈ [−π

h
,
π

h
].

For a fixed frequency ξ, obviously, ph(ξ) → p(ξ), as h → 0 but

this is far from being sufficient for our goals.
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Theorem 6. Let T > 0, q0 ≥ 1 and q > q0. Then

sup
h>0,ϕh∈l

q
h(Z)

‖Sh(T )ϕh‖lqh(Z)

‖ϕh‖
l
q0
h (Z)

= ∞ (19)

and

sup
h>0,ϕh∈l

q
h(Z)

‖Sh(·)ϕh‖L1((0,T ),lqh(Z)

‖ϕh‖
l
q0
h (Z)

= ∞. (20)

Theorem 7. Let q ∈ [1,2] and s > 0. Then

sup
h>0,ϕh∈l

q
h(Z)

‖Sh(t)ϕh‖~s
loc(Z)

‖ϕh‖lqh(Z)

= ∞. (21)
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Filtering of the frequencies close to ± π
2h suffices to recover the

right decay properties :

Theorem 8. Let δ > 0. Then there is a constant c(δ) such that

‖uh(t)‖l∞h (Z) ≤
c(δ)√

t
‖ϕh‖l1h(Z)

for all ϕ ∈ l1h(Z) with supp
u
ϕ

h ∩ [± π
2h − δ,± π

2h + δ] = ∅, uniformly

in h > 0.
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Concerning the local smoothing we have :

Theorem 9. Let δ > 0, ψ ∈ D(R) and Eh be a piecewise linear

interpolant. Then there is constant C(δ, ψ) such that

‖ψEhuh‖
L2(R,H1/2(R)) ≤ c(δ, ψ)‖ϕh‖l2h(Z)

for all ϕh ∈ l2h(Z) with supp
u
ϕ

h ⊂
[
−π−δ

h , π−δ
h

]
, uniformly in h > 0.
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But Fourier filtering is of little use in nonlinear problems.

As an alternative remedy we propose adding some artificial nu-

merical viscosity term. This should be done so that:

• The new scheme should be convergent for LSE;

• It should posses the dispersivity properties of the LSE

The second property , the much more subtle one, should be

achievable if the numerical viscosity term is efficient enough to

damp out the high frequencies that are responsible of the lack

of dispersivity of the simplest conservative scheme.
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Consider




i
duh

dt
+ ∆huh = ia(h)∆huh, t > 0,

uh(0) = ϕh,

where a(h) > 0 is such that

a(h) → 0

as h → 0.

This scheme generates a semigroup Sh
+(t), for t > 0. Similarly

one may define Sh−(t), for t < 0.

The semigroup is dissipative in L2. Thus the L2-stability and

convergence is guaranteed.
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Discrete Heat Equation




duh
j

dt
=

uh
j+1 − 2uh

j + uh
j−1

h2
, t > 0 , j ∈ Z

uh
j (0) = ϕh

j , j ∈ Z,

(22)

Decay Properties

Theorem 10. Let 1 ≤ q ≤ p ≤ ∞. Then there exists a positive

constant c(p, q) such that

‖uh(t)‖lph(Z) ≤ c(p, q)t
−1

2(
1
q−1

p)‖ϕh‖lqh(Z). (23)
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Back to LSH

The main dispersive properties are as follows :

Theorem 11. (Lp decay) Let fix p ∈ [2,∞] and α ∈ (1/2,1] .

Then for

a(h) = h2−1/α,

Sh±(t) maps continuously l
p′
h (Z) to l

p
h(Z) and there exists some

positive constants c(p) such that

‖Sh±(t)ϕh‖lph(Z) ≤ c(p)(|t|−α(1−2
p) + |t|−

1
2(1−2

p))‖ϕh‖
l
p′
h (Z)

(24)

holds for all |t| 6= 0, ϕ ∈ l
p′
h (R) and h > 0.
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Theorem 12. (Smoothing) Let q ∈ [2α,2] and s ∈ [0,1/2α−1/q].

Then for any bounded interval I and ψ ∈ C∞c (R) there exists a

constant C(I, ψ, q, s) such that

‖ψEhuh(t)‖L2(I,Hs(R)) ≤ C(I, ψ, q, s)‖ϕh‖lqh(Z)

for all ϕh ∈ l
q
h(Z) and all h < 1.
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Putting these price together we conclude that the evolution op-

erator

Th(t) =





Sh
+(t) t > 0

I t = 0
Sh−(t) t < 0,

which provides a convergent approximation of the LSE in the

L2-sense also satisfies :

Theorem 13. For r ≥ 2 and α ∈ (1/2,1], there exists a constant

c(r) such that

‖Th(t)∗Th(s)fh‖lrh(Z) ≤ c(r)|t− s|−α(1−2
r)‖fh‖

lr
′

h (Z)
(25)

holds for all reals numbers t 6= s which satisfy |t− s| ≤ 1.

Dispersive Properties for the Approximations of the Schrödinger Equation



Let I be an interval of R with |I| ≤ 1. The following properties

hold :

1. t → Th(t)ϕh maps continuously l2h(Z) to Lq(I ,lrh(Z))∩C(I, l2h(Z))

for every α-admissible pair (q, r).

2. A similar result holds for the non-homogenous equation.
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The pair (q, r) is said to be α-admissible if

1

q
= α

(
1

2
− 1

r

)

with 2 ≤ r ≤ ∞.

For the LSE, the admissible pairs are those that correspond to

α = 1/2.

Note that, for the numerical scheme under consideration, we can

not take α = 1/2. Otherwise, the scheme would not converge

to the LSE but rather to a viscous LSE.

But we can take α = α(h) in such way that

α(h) → 1

2
as h → 0.
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NUMERICAL APPROXIMATION OF THE NSE



Consider now :
{

iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R,

which can also be rewritten be the means of the variation of

constants formula :

u(t) = S(t)ϕ− i
∫ t

0
S(t− s)|u(s)|pu(s)ds,

where S(t) = eit∆ is the Schrödinger operator.

Let us recall the following classical result:

Theorem 14. (Global existence in L2, Tsutsumi, 1987). For

0 ≤ p < 4 and ϕ ∈ L2(R), there exists a unique solution u in

C(R, L2(R)) ∩ L
q
loc(L

p+2(R)) with q = 4(p + 1)/p that satisfies

the L2-norm conservation and depends continuously on the initial

condition in L2.
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Consider now the semi-discretization





i
duh

dt
+ ∆huh = ia(h)∆huh + |uh|puh, t > 0

uh(0) = ϕh,

i
duh

dt
+ ∆huh = −ia(h)∆huh + |uh|puh, t < 0.

(26)

with 0 ≤ p < 4 and

a(h) = h
2− 1

α(h)

such that

α(h) ↓ 1/2, a(h) → 0

as h ↓ 0.
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Theorem 15. (Global well-posedness of the numerical problem)

Let p ∈ (0,4) and α(h) ∈ (1/2,2/p]. Let q(h) be such that

(q(h), p + 2) is an α(h) -admissible pair.

Then for every ϕh ∈ l2h(Z), there exists a unique global solution

uh ∈ C([0,∞), l2h(Z)) ∩ L
q
loc([0,∞); l

p+2
h (Z))

of the problem (26) which satisfies the following estimates

‖uh‖L∞(R,l2h(Z)) ≤ ‖ϕ‖l2h(Z) (27)

and

‖uh‖
Lq(h)(I,l

p+2
h (Z))

≤ c(I)‖ϕ‖l2h(Z) (28)

where the above constants are independent of h.
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Theorem 16. (Convergence as h → 0) The sequence Euh satis-

fies

Euh ?
⇀ u in L∞([0,∞), L2(R)), (29)

Euh ⇀ u in Ls
loc([0,∞), Lp+2(R)),∀ s < q, (30)

Euh → u in L2
loc([0,∞)×R), (31)

|Euh|p|Euh| → |u|pu in L
q′
loc([0,∞), L(p+2)′(R)) (32)

where u is the unique weak solution of (NSE).
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Conclusions

• The method of numerical viscosity also works in order to

approximate the N- dimensional NLS Cauchy problem

• The same methods seem to work in the case of periodic LSE
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