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Introduction

Motivation

To build convergent numerical schemes for nonlinear PDE.

Example: Schrödinger equation

Similar problems for other dispersive equations: Korteweg de Vries, wave
equation,...

Goal: To cover the classes of NONLINEAR Schrödinger equation that can
be solved nowadays with fine tools from PDE theory and Harmonic
analysis.
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Introduction

Key point: To handle nonlinearities one needs to use hidden properties of
the underlying linear differential operators (Kato, Strichartz, Ginibre, Velo,
Cazenave, Weissler, Saut, Bourgain, Kenig, Ponce, Saut, Vega, Burq,
Gérard, Tzvetkov, ...)

This has been done successfully for the PDE models.
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Introduction

Nonlinear problems

Nonlinear problems are solved by using fixed point arguments on the
variation of constants formulation of the PDE:

ut(t) = Au(t) + f(u(t)), t > 0, u(0) = u0.

u(t) = eAtu0 +

∫ t

0
eA(t−s)f(u(s))ds.

Assuming f : H → H is locally Lipschitz, allows proving local existence
and uniqueness in

u ∈ C([0, T ];H)

But, often in applications, the property that f : H → H is locally Lipshitz
FAILS.
For instance H = L2(Ω) and f(u) = |u|p−1u, with p > 1.
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Introduction

Then, one needs to discover other properties of the underlying linear
equation (smoothing, dispersion): If eAt ∈ X, then look for solutions of
the nonlinear problem in

C([0, T ;H]) ∩X.

One then needs to investigate whether

C([0, T ;H]) ∩X → C([0, T ;H]) ∩X

is locally Lipschitz. This require extra work: We need to check the
behavior of f in the space X. But in the class of functions to be tested is
restricted to those belonging to X.

Typically in applications X = Lq(0, T ;Lr(Ω)). This allows enlarging the
class of solvable nonlinear PDE in a significant way.
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Introduction

If working in C([0, T ;H]) ∩X is needed for solving the PDE, for proving
convergence of a numerical scheme we will need to make sure that it
fulfills similar stability properties in X (or Xh)

THIS OFTEN FAILS!
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Introduction

Linear Schrödinger Equation

{
iut + ∆u = 0, x ∈ Rd, t 6= 0,
u(0, x) = ϕ(x), x ∈ Rd,

Conservation of the L2-norm

‖S(t)ϕ‖L2(Rd) = ‖ϕ‖L2(Rd)

Dispersive estimate

|S(t)ϕ(x)| ≤ 1

(4π|t|)d/2
‖ϕ‖L1(Rd)
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Introduction

Space time estimates

The admissible pairs
2

q
= d

(
1

2
− 1

r

)
Strichartz estimates for admissible pairs (q, r)

‖S(·)ϕ‖Lq(R, Lr(Rd)) ≤ C(q, r)‖ϕ‖L2(Rd)

Local Smoothing effect

sup
x0,R

1

R

∫
B(x0,R)

∫ ∞

−∞
|(−∆)1/4eit∆ϕ|2dtdx ≤ C‖ϕ‖2

L2(Rd)
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Introduction

Nonlinear Schrödinger Equation

{
iut + ∆u = |u|pu, x ∈ Rd, t 6= 0
u(0, x) = ϕ(x), x ∈ Rd

For initial data in L2(Rd), Tsutsumi ’87 proved the global existence and
uniqueness for p < 4/d

u ∈ C(R, L2(Rd)) ∩ Lqloc(R, L
r(Rd))

This result can not be proved by methods based purely on energy
arguments.
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Semidiscrete schemes

A first numerical scheme for NSE


i
duh

dt
+ ∆hu

h = |uh|2uh, t 6= 0,

uh(0) = ϕh.

Questions

Does uh converge to the solution of NSE?

Is uh uniformly bounded in Lqloc(R, l
r(hZd))?

Local Smoothing ?
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Semidiscrete schemes

Tools

Semidiscrete Fourier transform

v̂(ξ) = (Fhv)(ξ) = hd
∑
j∈Zd

e−iξ·jhvj, ξ ∈ [−π/h, π/h]d

Oscillatory integrals, Van der Corput Lemma, Fourier multipliers,
Poisson Integrals

Previous ideas of Keel & Tao ’98, Kenig, Ponce & Vega ’91, Christ &
Kiselev ’01, Constantin & Saut ’89 ...
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Semidiscrete schemes

A conservative scheme for LSE

 i
duh

dt
+ ∆hu

h = 0, t > 0,

uh(0) = ϕh.

In the Fourier space the solution ûh can be written as

ûh(t, ξ) = eitph(ξ)ϕ̂h(ξ), ξ ∈
[
−π
h
,
π

h

]d
,

where

ph(ξ) =
4

h2

d∑
k=1

sin2

(
ξkh

2

)
.
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Semidiscrete schemes

The two symbols in dimension one

Lack of uniform l1 → l∞: ξ = ±π/2h
Lack of uniform local smoothing effect: ξ = ±π/h
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Semidiscrete schemes

Lemma

(Van der Corput) Suppose ψ is real-valued and smooth in (a, b), and that
|ψ(k)(x)| ≥ 1 for all x ∈ (a, b). Then∣∣∣∣∫ b

a
eiλψ(x)dx

∣∣∣∣ ≤ ckλ
−1/k

In dimension one:

‖uh(t)‖l∞(hZ)

‖uh(0)‖l1(hZ)
.

1

t1/2
+

1

(th)1/3
.

Liviu Ignat (UAM) Dispersive schemes for LSE & NSE 17 / 49



Semidiscrete schemes

These slight changes on the shape of the symbol are not an obstacle for
the convergence of the numerical scheme in the L2(R) sense for LSE. But
produce the lack of uniform (in h) dispersion of the numerical scheme and
consequently, makes the scheme useless for nonlinear problems.
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Semidiscrete schemes

Theorem

Let T > 0, r0 ≥ 1 and r > r0. Then

sup
h>0, ϕ∈lr(hZd)

‖Sh(·)ϕ‖L1((0,T ),lr(hZd))

‖ϕ‖lr0 (hZd)

= ∞.

Proof.

Wave packets concentrated at (π/2h)d
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Semidiscrete schemes

Filtering initial data

Initial data supported far from (±π/2h)d

‖Sh(t)ϕ‖l∞(hZd) . 1
|t|d/2 ‖ϕ‖l1(hZd)

Strichartz like estimates: ‖Sh(·)ϕ‖Lq(R,lr(hZd)) . ‖ϕ‖l2(hZd)

Initial data supported far from (±π/h)d

Gain of 1/2 local space derivative

�
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Semidiscrete schemes

Two-grid method, Glowinski ’90

A TWO-GRID ALGORITHM= A CONSERVATIVE SCHEME
Inspired on the method introduced by R. Glowinski (J. Compt. Phys.,
1992) for the numerical approximation of controls for wave equations.
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Semidiscrete schemes

Various type of two-grid methods: 1/2, 1/3, 1/4
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Semidiscrete schemes

The idea: To work on the grid of mesh-size h with slowly oscillating data
interpolated from a coarser grid of size 4h. The ratio 1/2 of meshes does
not suffice!
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Semidiscrete schemes

Expansion and restriction operators

I-multilinear interpolator on 4hZd
Π̃ : l2(4hZd) → l2(hZd) defined by (Π̃f)j = (If)j, j ∈ Zd

Π̃∗ : l2(hZd) → l2(4hZd): (Π̃f, g)l2(hZd) = (f, Π̃∗g)l2(4hZd)

Explicit expressions

(Π̃f)4j+r =
4− r

4
f4j +

r

4
f4j+4, j ∈ Z, r ∈ {0, 1, 2, 3}

(Π̃∗g)4j =
3∑
r=0

4− r

4
g4j+r +

r

4
g4j−4+r, j ∈ Z.
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Semidiscrete schemes

Fourier analysis

̂̃
Πψ(ξ) = 2ψ̂(ξ) cos2

(
ξh

2

)
, ψ ∈ l2(2hZ)

̂̃
Πψ(ξ) = 4ψ̂(ξ) cos2(ξh) cos2

(
ξh

2

)
, ψ ∈ l2(4hZd)
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Semidiscrete schemes

Key estimates

Dispersive estimate

‖eit∆hΠ̃ϕ‖l∞(hZd) ≤ C(d, p)|t|−d/2‖Π̃ϕ‖l1(hZd)

Proof: Careful application of Kenig, Ponce and Vega ’91 results
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Semidiscrete schemes

Application to a nonlinear problem with L2(Rd) initial data

{
iut + ∆u = |u|pu, t > 0,
u(0, x) = ϕ(x), x ∈ Rd,

An approximation 
i
duh

dt
+ ∆hu

h = Π̃f(Π̃∗uh), t ∈ R

uh(0) = Π̃ϕh,

(1)

where f(u) = |u|pu

uh ∈ Gh → Π̃∗uh ∈ G4h → Π̃f(Π̃∗uh) ∈ Gh

Key point

(Π̃f(Π̃∗uh), uh)l2(hZd) = (f(Π̃∗uh), Π̃∗uh)l2(4hZd) ∈ R
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Semidiscrete schemes

Convergence of the method

Theorem

Let E be the piecewise constant interpolator. The sequence Euh satisfies

Euh
?
⇀u in L∞(R, L2(Rd)), Euh ⇀ u in Lqloc(R, L

p+2(Rd)),

Euh → u in L2
loc(Rd+1), EΠ̃f(Π̃∗uh) ⇀ |u|pu in Lq

′

loc(R, L
(p+2)′(Rd))

where u is the unique solution of NSE.

Main difficulty - passing to the limit in the nonlinear term
· ·
^ Local smoothing effect of the linear semigroup for two-grid data
7→ compactness ...

�
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Fully discrete schemes

Fully Discrete Schemes

Two level schemes satisfying stability and consistency:

Un+1 = AλU
n, n ≥ 0

where λ = k/h2 is keep constant
Two goals:

1 l1 − l∞ decay of solutions

2 local smoothing effect

Fourier analysis: Aλ has a symbol aλ = mλ exp(iψλ)
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Fully discrete schemes

Decay properties

Theorem

Let us assume that the symbol aλ has the following property

mλ(ξ0) = 1 ⇒ |ψ′′λ(ξ0)| > 0 or m′′
λ(ξ0) 6= 0.

Then there is a positive constant C(λ) such that

‖Sλ(n)ϕ‖l∞(hZ) ≤ C(λ)(nk)−
1
2 ‖ϕ‖l1(hZ)

holds for all n 6= 0, h, k > 0.
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Fully discrete schemes

Local smoothing effect

Theorem

There is a positive s and a constant C(s, λ) such that

k
∑
nk≤1

h ∑
|j|h≤1

|(−∆h)
s/2Un)j |2

 ≤ C(s, λ)

h∑
j∈Z

|U0
j |2

 (2)

holds for all ϕ ∈ l2(hZ) and for all h > 0 if and only if the symbol aλ
satisfies

ξ0 6= 0, ψ′λ(ξ0) = 0 ⇒ mλ(ξ0) < 1. (3)

Moreover if (3) holds then s = 1/2.
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Fully discrete schemes

Backward Euler

i
Un+1
j − Unj

k
+
Un+1
j+1 − 2Un+1

j + Un+1
j−1

h2
= 0, n ≥ 0, j ∈ Z,

aλ(ξ) =
1

1− 4iλ sin2 ξ
2

=
exp(i arctan(4λ sin2 ξ

2))(
1 + 16λ2 sin4 ξ

2

)1/2

The symbols ψ1 and m1

Liviu Ignat (UAM) Dispersive schemes for LSE & NSE 33 / 49



Fully discrete schemes

Crank-Nicolson scheme

i
Un+1
j − Unj

k
+
Un+1
j+1 − 2Un+1

j + Un+1
j−1

2h2
+
Unj+1 − 2Unj + Unj−1

2h2
= 0

aλ(ξ) =
1 + 2iλ sin2 ξ

2

1− 2iλ sin2 ξ
2

= exp

(
2i arctan

(
2λ sin2 ξ

2

))
The first two derivatives ψ′1 and ψ′′1
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Fully discrete schemes

Crank-Nicolson scheme

For any λ ∈ Q

There is no two-grid algorithm involving the grids phZ and hZ which
would provide a l1 − l∞ uniform decay

The involved function ψ′′λ has roots on [−π, π]\πQ, thus cyclothomic
polynomials ...

Liviu Ignat (UAM) Dispersive schemes for LSE & NSE 35 / 49



A splitting method

Outline

1 Introduction

2 Semidiscrete schemes

3 Fully discrete schemes

4 A splitting method

5 Conclusions

Liviu Ignat (UAM) Dispersive schemes for LSE & NSE 36 / 49



A splitting method

A simple construction

Define the flow S(t) of the linear Schrödinger equation{
iut + ∆u = 0, x ∈ Rd, t 6= 0,

u(0, x) = ϕ(x), x ∈ Rd

and the flow N(t) for the differential equation
du

dt
= i|u|pu, x ∈ R, t > 0,

u(x, 0) = ϕ(x), x ∈ R.

Z(nτ) := (S(τ)N(τ))nϕ, 0 ≤ nτ ≤ T.
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A splitting method

May we guarantee that Z belongs to auxiliary space lq(0, T ;Lr(R))?

In general no! There exists ϕ ∈ L2(R) such that for any r > 2

Z(τ) = S(τ)N(τ)ϕ /∈ Lr(R).
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A splitting method

A new construction

Remedy: consider discrete spaces instead of continuous one. Thus all the
quantities make sense since l1(hZ) ⊂ l2(hZ) ⊂ l∞(hZ).
New approximation:

Zh(nτ) = (Sh(τ)Nh(τ))nϕh, 0 ≤ nτ ≤ T

where Sh is a fully discrete approximation of the LSE (Backward Euler)
and Nh solves the discrete ODE:

duhj
dt

= i|uj |puj , j ∈ Z, t > 0,

uj(0) = ϕj , j ∈ Z.
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A splitting method

How to prove the uniform boundedness in the space lq(0, T ; lr(hZ))?

Write in semigroup like formulation and use the qualitative properties of
the approximation Sh:

Zh(nτ) = Sh(nτ)Nh(τ)ϕh +
n−1∑
k=1

Sh((n− k)τ)(Nh(τ)− I)Zh(kτ)
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A splitting method

Uniform boundedness

Theorem

Let p < 4, τ and h be such that τ/h2 is keep constant. Also let Sh be an
approximation of S(·) given by a consistent and L2-stable numerical
scheme that has an l1(hZ)− l∞(hZ)-decay as t−1/2. The approximate
solution Zh satisfies

‖Zh(·τ)‖l∞(Z; l2(hZ)) ≤ ‖ϕh‖l2(hZ). (4)

Moreover, for any T > 0 and (q, r) admissible-pair there exists a positive
constant C(T, r) such that

‖Zh(·τ)‖lq(|n|τ≤T ; lr(hZ)) ≤ C(T, r)‖ϕh‖l2(hZ). (5)
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A splitting method

Sketch of the proof

Choose C > 0 such that

Λ =

{
N ∈ Z, N ≥ 0,

(
τ

N∑
k=0

‖Zh(kτ)‖qlr(hZ)

)1/q
≤ C‖ϕh‖l2(hZ)

}
.

is no empty: 0 ∈ Λ
Prove that its maximal element N∗ is either infinity or

N∗τ ≥ C(‖ϕh‖l2(hZ))
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A splitting method

Convergence

Theorem

Let ϕ ∈ L2(R) and ϕh such that ϕh → ϕ in L2(R). Then there exists
T = T (‖ϕ‖L2(R)) such that for any ε > 0 there exists h0 = h0(ε) such that

‖Zh − uh‖l∞(|n|τ≤T ; l2(hZ)) + ‖Zh − uh‖lq(|n|τ≤T ; lr(hZ)) ≤ ε (6)

holds for all h ≤ h0.
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A splitting method

An experiment

We work with initial data the ϕ = χ(−2,2) and the computational domain
(−10, 10).

Figure: Solutions obtained with backward Euler and Crank-Nicolson scheme,
h = 0.1, τ = 0.01
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A splitting method

Figure: Solutions obtained with backward Euler and Crank-Nicolson scheme,
h = 0.05, τ = 0.0025
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Conclusions

Conclusions

Fourier filtering (and some other variants like numerical viscosity, and
two-grid filtering, ...) allow building numerical schemes for an efficient
approximation of linear and nonlinear Schrödinger equations.

these new schemes allow capturing the right dispersion properties of
the continuous models and consequently provide convergent
approximations for nonlinear equations too.

the computational cost for the nonlinear problem is the same as for
the linear one

MUCH REMAINS TO BE DONE
BOUNDARY-VALUE PROBLEMS, NONREGULAR MESHES,
OTHER PDE’S,...
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Conclusions
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Conclusions

THANKS!
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