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IS THE CONTROL OF WAVES AND, MORE PARTICULARLY, OF
THE WAVE EQUATION RELEVANT?

The answer is, definitely, YES.



e Noise reduction in cavities and vehicles.
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Closed-loop control diagram.

http://www.ind.rwth-aachen.de/research/noise reduction.html



e Quantum control and Computing.

Laser control in Quantum mechanical and molecular systems to design
coherent vibrational states.

In this case the fundamental equation is the Schrodinger one. Most of
the theory we shall develop here applies in this case too. The Schrodinger
equation may be viewed as a wave equation with infinite speed of propa-

gation.



PULSE 1 PULSE 2

P. Brumer and M. Shapiro, Laser Control of Chemical reactions, Scientific
American, March, 1995, pp.34-39.



THE 1-D CONTROL PROBLEM

The 1-d wave equation, with Dirichlet boundary conditions, describing
the vibrations of a flexible string, with control at one end:

ytt — Yzx = 0O, O<z<1l, O0<t<T,
y(0,t) = 0;y(1,t) =v(t), 0<t<T,
y(z,0) = yO(z), y(z,0) = yl(z), 0<z<1

y = y(x,t) is the state and v = v(¢) is the control.

The goal is to stop the vibration, i.e. to drive the solution to equilibrium in
a given time T: Given initial data {y%(z),y!(z)} to find a control v = v(t)
such that

y(x,T) = y(x, T) =0, 0 <z < 1.



THE 1-D OBSERVATION PROBLEM

The control problem above is equivalent to the following one, on the
adjoint wave equation:

Ut — Uge = 0O, O<zx<l, O<Kt<LT,
u(0,t) = 0; u(1,t) =0, O<t< T,
w(z,0) = u9(z),u(z,0) =ul(x), O<az<1

The energy of solutions is conserved in time, i.e.

B =2 [ [luae, D + e, 0] de = B(0), vO<t<T.

The question is then reduced to analyze whether so called observability
inequality is true for all solutions wu:

E(0) < C(T) /OT ug(1,6)|2dt.



T he answer to this question is easy to guess: T he observability inequality
holds if and only if T" > 2.

f
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Wave localized at t = O near the extreme = 1 that propagates with
velocity one to the left, bounces on the boundary point x = 0 and reaches
the point of observation x =1 in a time of the order 2.



CONSTRUCTION OF THE CONTROL:

Once the observability inequality is known the control is easy to char-
acterize. Following J.L. Lions’'s HUM (Hilbert Uniqueness Method), the
control is

’U(t) — U’x(lat)a

where u is the solution of the adjoint system corresponding to initial data
(ug,u1) € H3(0,1) x L?(0,1) minimizing the functional

1 (T 1
I(uo,ur) =3 [ ua(1,6)Pdt+ [ yPulde — (v u®) s

, in the space HJ(0,1) x L?(0,1).



COERCIVITY OF J = OBSERVABILITY INEQUALITY
CONCLUSION:

The 1 —d wave equation is controllable from one end, in time 2, twice
the length of the interval.

Similar results are true in several space dimensions. The region in which
the observation/control applies needs to be large enough to capture all
rays of Geometric Optics. (Bardos-Lebeau-Rauch, Burg-Gérard)



THE PROBLEM:

EFFICIENTLY COMPUTE NUMERICALLY THE CONTROL



THE SEMI-DISCRETE PROBLEM: 1-D.

Set h=1/(N + 1) and consider the mesh

rg=0<z1 < <zj=jh<zy=1-h<z,41 =1,
which divides [0, 1] into N + 1 subintervals I; = [zj,z;41], j =0,..., N.

Finite difference semi-discrete approximation of the control problem

( 2
y!/ — Y1 WYl — g j=1,...,N,, 0<t<T,

yo(t) = 0; yN-|-1(t) —’U(t) 0<t<T,
Ly (0) =97,y5(0) =yi, j=1,...,N

and its adjoint

N\

/ 2 )
off - WY — g 0<t<T,j=1,...,N

uo(t) =0 ’U,N_|_1(t) =0 0<Kt<T,
u](O)—u u/(O)—u j=1,...,N,.

Y

7\

\



The energy of the semi-discrete system (a discrete version of the contin-
uous one)

hQY winq(t) —wi(t)]?
Ep(t) =5 Y |lWf@®)2 +|~F AIEp
2 — h
7=0
It is constant in time.
Is the following observability inequality true?
t
£, (0) < Ch(T)/ “N( | 4

ho h
YES! It is true for all h > 0 and for all time T'.

(_UN(t) _ un41(®) —un(@) u;,;(l,t))



Cp(T) — o0, h — 0.

THE FOLLOWING CONJECTURES ARE FALSE:

1. The constant C,(T) blow-up for T' < 2 as h — 0 since the inequality
fails for the wave equation

2. The constant Cy(T) remains bounded for T > 2 as h — 0 and one
recovers in the limit the observability inequality for the wave equation.



CONCLUSION

The classical convergence (consistency—stability) does not guarantee
continuous dependence for the observation problem with respect to the
discretization parameter.

WHY?

Convergent numerical schemes do reproduce all continuous waves but,
when doing that, they create a lot of spurious (non-realistic, purely nu-
merical) high frequency solutions. These spurious solutions destroy the
observation properties and are an obstacle for the controls to converge
as the mesh-size gets finer and finer.



SPECTRAL ANALYSIS

Eigenvalue problem

{ —plwipr — 2wj+wja] = dwj, j=1,...,N
wo = wy41 = 0.

The eigenvalues are 0 < A\1(h) < ... < An(h) are

4 k'ﬂh
h __ : 2
)\k = 75 SN (—>

and the eigenvectors

wi = (W 1, wpN)’ © wg; = sin(krjh), k,j=1,...,N.



T he solutions of the semi-discrete system may be written in Fourier series
as follows:

N b
w = ) |ajcos (t\/AZ) + —khsin (t AZ) wh.
k=1 \/ Ak
Compare with the Fourier representation of solutions of the continuous
wave equation:

@)

by,
== CoS (kmt ——sin (kxt) | sin(k
U kzl ag (T‘-)_'_W (kmt) (kmx)
= k
The only relevant difference is that the time-frequencies do not quite
coincide, but they converges as h — 0.



Phase and group velocity:

p— ei(wt—ﬁx)

&-wave number, w-frequency
dispersion relation w = w(§) = £¢£ wp(€) = i% sin(%),f € [~7,7]

phase speed () = &) = +1 en(§) = £ sin(%)

group speed C(&) = %(&) = +1 Cp(€) = cos(%y)



SPURIOUS NUMERICAL SOLUTION

u = exp (z'\/AN(h)t) W — exp (i\/AN_l(h)t) W N_1.

Spurious semi-discrete wave combining the last two eigenvectors with very

little gap:
VAN(R) = An_1(h) ~ R
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h=1/61, N =60, 0 <t <120. The solution exhibits a time-periodicity
property with period 7 of the order of = ~ 50 which contradicts the time-
periodicity of period 2 of the wave equation. High frequency wave packets
travel at a group velocity ~ h.



FIRST REMEDY: FOURIER FILTERING (Zuazua, 99)

To filter the high frequencies, i.e. keep only the components of the
solution corresponding to indexes: k < é/h with 0 < 6§ < 1.

Filtering reestablishes the gap condition, then waves propagate with a

speed which is uniform with respect to h and the observability inequality
becomes uniform too.

OTHER REMEDIES:

1. mixed finite elements (Glowinski 89, Castro, Micu 2006)



2. Two-grid algorithm Glowinski 90

T > 4 - Negreanu & Zuazua 04 - Multiplies

T > 2+/2 - Loreti & Mehrenberger 05 - Ingham Inequalities for non har-
monic series

o

Ep(u) < 2E,(M jpu) Ep(u) < 4E,(Mq /4u)



Wave equation on the unit square with Dirichlet boundary conditions

ur — Au =20 in Q:QX(O,T),
w(0) = 0 on > = 09 x (0,T), (1)
w(z,0) = u9(z), w(z,0) =ul(z) in Q=%

(ug,u1) € HF(2) x L?(2) = u € C([0,T], HE(2)) N CL([0,T], L?(R2)).

Conservation of Energy

B = [ e, 02 + [ Vu(e, 0)Pldz (2)



Observability Inequality
For T > 24/2 there exists C(T) > 0 such that

2
Oul” ot (3)

BO) <o) [ [
I_O = {(:L‘l, 1) . T € (O, 1)} U {(1,%2) . T € (O, 1)}

\r
Va




Semi-discretization of the wave equation:

(WL T U1k~ 20 U1 U1 — 2uge
Uik K2 K2 D

O0<t<T, j=0,...N: k=0,....N,

wjp, =0, 0<t<T, j=0,..,N+1; k=0,..,N+1,

| ,(0) =u§?k, u’;;.(0) =u]1-k, j=0,.,.N+1; k=0,..,.N + 1.

Discrete energy is preserved

En(t) = Y Z Iu;-k(t)|2 4 wit1 k( 2 u (1) U 41 il u g (t) ] |
J,k=0




Discrete version of the energy observed on the boundary

T N .
ool o [ [ 5
j:

T ou|?
/O /I_o 877,

[, as the set of grid points belonging to [ q:

r,={(Gh,N+1), j=1,... N}U{(N+1,kh), k=1,..,

Notation
N

/r oha2dry, ==h S

h —

N
|M‘2+h S |M2
j=1 h k=1 h

NY.

(5)



Question

B,(0) < (1) [ . 1okaiar . (6)

Answer: YES

The same problem: Cy(T) — oo as h — 0O



Eigenvalue problem associated to (4)

Pk T P11k~ 2Pk Pik+l T Pik—1 — 204k
h?2 2

\ j=1,..N; k=1,..,N,

e =0,3=0,.,N+1, k=0,..,N+ 1.

Eigenvalues: A\ (h) = iQ [sin2 (k”h) + sin <k2277h>] , k= (k1, ko)

Eigenvectors: ?; = sin(j1k1mh) sin(jokomh)

ﬂ(t) — %Z leit )\k(h),ak_l_ _I_ e—it )\k(h)ak_] @k
k

(7)



Filtering: Zuazua 99, Multipliers + reduction to 1 — d case

N+1
O N+1

1 : :
I_Iyu — = Z le’lt )\k(h)ak+ + e—lt )\k(h)ak_ ¢k77 < 4
Ak(h)<v/h?

T(v)
Bp(Myu) < [ [ |ol(Myu)ldrydt
h



New Idea : Low frequency estimates + Semi-classical decomposition fol-
lowing the level sets of the frequencies
Main Result: Let w be a solution of (4) and v > 0 be such that

Ey () < CER(Nya). (8)

Let us assume the existence of a time T'(y) such that for all T > T'(v)
there exists a constant C(T), independent of h, such that

@) <O [ . 10kuoara (9)

for all v € I;,(v). Then for all T > T(v) there exists a constant C1(T),
independent of h, such that

B <y [ . 10kalar (10)



Two-grid Method in 2 —d : G"

Fine and Coarse Grids, N =11

and G4h
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Why not using ratio 1/2 for the two-grids? The relevant zone of fre-
quencies intersects a level set of the phase velocity for which the group
velocity vanishes at some critical points.

(N+1)/2

0 (N+1)/2 N1 1 (N+1)/2 Ne1 01

Ep(a) < 4E,(N75,0) < 4E,(N47)



When using the mesh ratio 1/4 this pathology disappears:

N+1

(N+1)/2

(N+1)/4 2

(N+1)/4 (N+1)/2 N+1

Eh(ﬂ) < 16Eh(l"lcl’74ﬂ) < 16Eh(n85in2(ﬂ'/8)ﬂ)



Application to a two-grid method
Theorem 1. Let be T > 4. There exists a constant C(T) such that

T he 2
E, (@) < C(T) /O /I_ Oha|2dr ), dt
h

holds for all solutions of (4) with (u°,wl) € V" x V", uniformly on h > 0,
vh being the class of the two-grid data obtained with ratio 1/4.

To = 4 is not optimal one.

Its depends by the optimality of the time for the class I;,(8sin?(xn/8))

Analysis of the group velocity: expected time Ty = Cog(\g@




The main difficulty:
T
By (w) < 16 B, (N§4m) < O(T)/O /r N3l 2dr dt.
h

=

I he 2
Eh(ﬂ)gC(T)/O /l_ Ol 2dr, dt
h



Sketch of the proof

T
Ep(@) < CEy(Mya) < O(D) [ [ 1ohn,alar
h

! I h2
gC(T)/O /I_ &hw|2dr, dt + LOT
h

Diadic decomposition or Semi-classical decomposition:

Pa(t) = Y Fle Fw(m) [ Wa () +e ™ Wa (g
jez?



kp,

Ep(Nyu) < Y Ep(Pgu) + LOT (12)
k=kg
T—95 h 5
By, (Py) < C(T, ~, 6) /5 /r 80 Pya|2dr dt. (13)
h

Combining (12) and (13),

kn 1§
By (Ny@) < C(T,v,6) S /5 /r Oh P|2dr ) dt + LOT.
k=k h



Lebeau and Burqg :

T—6 T C(5.T
Z / / 0P Pyu|?drdt < 2 / / 00| 2dr, dt + (Q—L)Eh(ﬂ)
k=kg h 0 JIy c<R0

Thus
0(5 T)

By (@) < CE,(Nya) < C(T, 7, ) / / Oha|2dr; dt + E, (@) + LOT.

T
E; (w) < C(T,~,6) /O /r ha|2dr, dt + LOT.
h
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