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LIVIU I. IGNAT AND ENRIQUE ZUAZUA

Abstract. We analyze the boundary observability of the finite-difference space semi-discretizations
of the 2-d wave equation in the square. We prove the uniform (with respect to the mesh
size) boundary observability for the solutions obtained by a two-grid preconditioner, intro-
duced by Glowinski [6]. Our method uses previously known uniform observability inequality
for low frequency solutions and a diadic spectral time decomposition. The method can be
applied in any space dimension and for more general domains. As a consequence we prove
the convergence of the two-grid boundary controls.

1. Introduction

Let us consider consider the wave equation

(1)

 u′′ −∆u = 0 in Ω× (0, T ),
u = v1Γ0(x) on Γ× (0, T ),
u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

where Ω is the unit square Ω = (0, 1)× (0, 1) of R2 and its boundary Γ = Γ0 ∪ Γ0: Γ0 = {(x1, 1) : x1 ∈ (0, 1)} ∪ {(1, x2) : x2 ∈ (0, 1)},

Γ1 = {(x1, 0) : x1 ∈ (0, 1)} ∪ {(0, x2) : x2 ∈ (0, 1)}.

In equation (1), u = u(t, x) is the state, ′ is the time derivative and v is a control function
which acts on on the system through the boundary Γ1. Classical results of existence and
uniqueness of solutions of nonhomogeneous evolution equations (see for instance [15]) show
that for any v ∈ L2((0, T ) × Γ0) and (u0, u1) ∈ L2(Ω) × H−1(Ω) equation (1) has a unique
weak solution (u, u′) ∈ C([0, T ], L2(Ω)×H−1(Ω)).

Concerning the controllability of the above system the following exact controllability result
is well known (see [14]): Given T > 2

√
2 and (u0, u1) ∈ L2(Ω)×H−1(Ω) there exists a control

function v ∈ L2((0, T )× Γ0) such that the solution u = u(t, x) of (1) satisfies

u(T, ·) = ut(T, ·) = 0.

In fact, given (u0, u1) ∈ L2(Ω) × H−1(Ω) a control function v of minimal L2-norm may
be obtained by Hilbert Uniqueness Method (HUM). The HUM method introduced by J.-
L. Lions offers a way to solve this problem and another multi-dimensional similar problems.
This method reduces the exact controllability to an equivalent observability property for the
adjoint problem:

(2)

 u′′ −∆u = 0 in Ω× (0, T ),
u = 0 on Γ× (0, T ),
u(T, x) = u0(x), ut(T, x) = u1(x) in Ω.

1
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The observability property is the following: For any T > 2
√

2 there exists C(T ) > 0 such that

(3) ‖(u0, u1)‖H1
0 (Ω)×L2(Ω) ≤ C(T )

∫ T

0

∫
Γ0

∣∣∣∣∂u∂n
∣∣∣∣2 dσdt

for any (u0, u1) ∈ H1
0 (Ω)×L2(Ω) where u is the solution of (2) with initial data (u0, u1). The

condition imposed on T is due to the fact that the velocity of propagation of waves is one and
then any perturbation of the initial data needs some time in order to arrive at the observation
zone. The minimal time 2

√
2 coincides with the diameter of the domain, which is the one

that needs the largest time to reach the boundary. Observe that (2) is time invariant so we
can consider the observability inequality for the homogeneous wave equation with initial state
at t = 0 instead of final state at t = T .

The main objective of this paper is to introduce a convergent numerical approximation of
the control problem (1) using the HUM approach. This is equivalent that a similar to (3)
inequality holds at the semi-discrete level and in addition is independent with respect to the
mesh size h.

Trough the paper we deal with the two-dimensional case but all the arguments we present
here work also in any space dimension.

To fix the ideas let us consider the finite-difference semi-discretization of (2). Given N ∈ N
we set h = 1/(N + 1), Ωh = Ω ∩ hZ2 and Γh = Γ ∩ hZ2. In the same manner we define Γ0h

and Γ1h. The finite-difference semi-discretization of (2) is as follows:

(4)

 u′′h −∆huh = 0 in Ωh × [0, T ],
uh = 0, on Γh × (0, T )
uh(0) = u0

h, u
′
h(0) = u1

h in Ωh.

To simplify the presentation we will avoid the subscript h in the notation of the solution
uh unless will be necessary. Let us now introduce the discrete energy associated with system
(4):

(5) Eh(t) =
h2

2

N∑
j,k=0

[
|u′jk(t)|2 +

∣∣∣∣uj+1,k(t)− ujk(t)
h

∣∣∣∣2 +
∣∣∣∣uj,k+1(t)− ujk(t)

h

∣∣∣∣2
]
.

It is easy to see that the energy remains constant in time, i.e.

(6) Eh(t) = Eh(0), ∀ 0 < t < T

for every solution of (4).
Following [1] the discrete version of the energy observed on the boundary is given by:∫ T

0

∫
Γ0

∣∣∣∣∂u∂n
∣∣∣∣2 dσdt ∼ ∫ T

0

h N∑
j=1

∣∣∣ujN

h

∣∣∣2 + h
N∑

k=1

∣∣∣uNk

h

∣∣∣2
 dt.

In the following for any j = 1, ..., N and k = 1, ..., N , we denote

(∂h
nu)j,N+1 := −

ujN

h
, (∂h

nu)N+1,k := −uNk

h
.

Also, in order to simplify the presentation, we will use the following notation

(7)
∫

Γ0h

|∂h
nu|2dΓ0h := h

N∑
j=1

∣∣∣ujN

h

∣∣∣2 + h

N∑
k=1

∣∣∣uNk

h

∣∣∣2 .
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The discrete version of (3) is then an inequality of the form

(8) Eh(0) ≤ Ch(T )
∫ T

0

∫
Γ0h

|∂h
nu|2dΓ0hdt.

System (4) being finite, for all T > 0 and h > 0 there exists a constant Ch(T ) such that
inequality (8) holds for all the solutions of equation (2). But, as it was proved in [20], for all
T > 0 the best constant Ch(T ) necessarily blows-up as h → 0. More precisely the blow-up
of the observability constant in (8) is due to to solutions of (2) of the form u = exp(it

√
λ)ϕ,

λ being a sufficiently large eigenvalue of the eigenvalue problem associated to the system
(2). These high frequencies eigenfunctions are such that the energy concentrated on the
boundary Γ0h is asymptotically smaller than the total energy. In the one-dimensional case
the observability constant Ch(T ) blows-up exponentially. This was proved by Micu [17] by
using the explicit expression of a biorthogonal sequence of functions to the underlying time
complex-exponentials. This phenomenon was already observed by R. Glowinski et al. in [6],
[8] and [9], in connection with the exact boundary controllability of the wave equation and
the numerical implementation of the HUM method.

Several techniques have been introduced as possible remedies to the high frequencies spu-
rious oscillations: Tychonoff regularization [6], filtering of the high frequencies [11], [20], [21],
mixed finite elements [7], [4], [5] and the two-grid algorithm [18], [16].

As proved by Zuazua [20], inequality (8) holds uniformly in a class of low frequencies (initial
data where spurious high modes have been filtered). In the Section 2 we will make this concept
precise. The main result of Section 2 states that, once (8) holds uniformly for a class of low
frequencies, it also holds for all solutions in a larger class with their energy controlled by their
projection on the previous low frequencies components. The method we employ is different
from the ones of [18, 16] and consists in using the already well known observability inequality
for a class of low frequency data and a dyadic time spectral decomposition of the solutions.
The two-grid method that will precise below enters in this class.

The two-grid method was proposed by Glowinski [8] and consists in using a coarse and a
fine grid, and interpolating the initial data in (4) from the coarse Gc grid to the fine one Gf .
This method eliminates the short wave-length component of the initial conditions (u0

h, u
1
h),

component that is responsable for the blow-up of constant Ch(T ) in (8).
In the one-dimensional case, the two-grid method was analyzed by Negreanu and Zuazua

in [18] with a discrete multiplier approach. The authors also proved the convergence of
the method as h → 0 for T > 4. In a recent work, Mehrenberer and Loreti [16], used a
fine extension of Ingham’s inequality to improve the minimal time of uniform observability
T > 2

√
2. However as far as we know there is no proof of the uniform observability in the

two-dimensional case. The main goal of this paper is to give the first complete proof of the
uniform observability inequality in the multi-dimensional case.

In contrast with the strategy adopted in [18] where the authors consider the ratio between
the size of the grids 1/2, we choose the quotient to be 1/4. This is done for merely technical
reasons and one may expect the same result should hold when the ratio of the grids is 1/2.
Our method works in any dimension by choosing a smaller quotient of the meshes.

This idea of considering the quotient of the grids to be 1/4 has been used successfully in
[10] when proving dispersive estimates for conservative semi-discrete approximation schemes
of the Schrödinger equation. When diminishing the ratio between grids, the filtering that the
two-grid algorithm introduces concentrates the solutions of the numerical problem on lower
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and lower frequencies for which the velocity of propagation becomes closer and closer to that
of the continuous wave equation. It is therefore natural to expect that proving the uniform
observability will be easier for smaller grid ratios.

We will introduce the space V h of functions defined on the fine grid Gh as linear inter-
polation of functions defined on the coarse grid G4h. In Section 3 we prove that (8) holds
uniformly for all T > 4, in the class of initial data V h × V h.

Once the observability inequality for solutions of (4) with initial data in V h × V h has
been proved, we introduce a numerical scheme for problem (1). This will be done by consid-
ering approximations (u0

h, u
1
h) of initial data belonging to the space V h × V h. By using the

HUM method in the semi-discrete setting we construct semi-discrete control functions vh that
approximate the control function v in (1). In Section 5 we prove the convergence of these
functions vh towards the continuous one v.

2. The observability problem

To make our statements precise, let us consider the eigenvalue problem associated to (4):

(9)
{
−∆hϕh = λϕh inΩh,

ϕh = 0 onΓh.

Denoting ΛN := [1, N ]2 ∩ Z2, the eigenvalues and eigenvectors of system (9) are

λk(h) =
4
h2

[
sin2

(
k1πh

2

)
+ sin2

(
k2πh

2

)]
, k = (k1, k2) ∈ ΛN

and {ϕk
h}k∈ΛN

:

ϕk
h(j) = sin(j1k1πh) sin(j2k2πh), k = (k1, k2) ∈ ΛN , j = (j1, j2) ∈ [0, N + 1]2 ∩ Z2.

The vectors {ϕk
h}k∈ΛN

form a basis for the functions defined on Gh and vanishing on its
boundary. Any real function φh defined on the grid Gh admits the Fourier representation:

φh =
∑

k∈ΛN

φ̂h(k)ϕk
h, φ̂(k) ∈ R.

In view of this representation, for every s ∈ R, we will denote by Hs
h(Ωh) the space of all

functions defined on the grid Gh, endowed with the norm

‖φh‖2
s,h =

∑
k∈ΛN

λs
k(h)|φ̂h(k)|2.

Let us consider {û0
h(j)}j∈ΛN

and {û1
h(j)}j∈ΛN

the coefficients of the initial data (u0
h, u

1
h) in

the basis {ϕj
h}j∈ΛN

. Then the solution of system (4) is given by

(10) uh(t) =
1
2

∑
j∈ΛN

[
eitωj(h)ûh

j+ + e−itωj(h)ûh
j−

]
ϕj

h,

where ωj(h) =
√
λj(h) and

ûh
j± = û0

h(j)±
û1

h(j)
i
√
λj(h)

.

Using the above notations, the energy is given by

Eh(uh) =
∑
j∈ΛN

ω2
j (h)(|ûh

j+|2 + |ûh
j−|2).
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Let us introduce the class of filtered solutions of (4) in which the high frequencies have
been truncated or filtered. More precisely, for any 0 < γ ≤ 2

√
2 we set

(11) Ih(γ) =

uh(t) =
∑

ωj(h)≤γ/h

[
eitωj(h)ûh

j+ + e−itωj(h)ûh
j−

]
ϕj

h with ûj+, ûj− ∈ C

 .

This space contains solutions of equation (4) that have been filtered along the level curves
of the frequencies ωj(h). The class Ih(γ) has been intensively used, in connection with the so-
called semi-classical analysis, for control problems [12], [2], [13] and the dispersive properties
of PDE’s [3]. For any solution uh of equation (4) we denote by Πh

γuh its projection on the
space Ih(γ).

The uniform observability in the class Ih(γ) has been analyzed in [20] by the multiplier
technique. In that article it is shown that for any 0 < γ < 2 and

(12) T > T (γ) =
8
√

2
4− γ2

there exists C(γ, T ) > 0 such that

(13) Eh(uh) ≤ C(γ, T )
∫ T

0

∫
Γ0h

|∂h
nuh(t)|2dΓ0hdt

holds for every solution u of (4) in the class Ih(γ) and h > 0. This observability result will
be systematically used along the paper. More than that for γ = 2 and T > 0 there is no
constant C(T ) (see [20]) such that (13) holds for all solutions u of (4), uniformly on h:

sup
u∈Ih(2)

Eh(uh)∫ T

0

∫
Γ0h

|∂h
nuh(t)|2dΓdt

→∞, h→ 0.

This is a consequence of fact that the presence of the frequencies near the points (π/h, 0),
(0, π/h) have group velocity of order h that spend a time of order 1/h to reach the boundary
and coresspond to eigenvalues with ωj(h) ∼ 2/h2.

In the following we give a general result that can be applied in a more general setting.
We will consider a numerical scheme such that the energy of their solutions is controlled by
the energy of its low frequency projection Πh

γ . We also assume that in the class Ih(γ) the
observability inequality holds uniformly with respect to the mesh size h. Then the same
observability result holds for the solutions of the considered numerical scheme.

Let us fix an positive M . For any 0 < γ ≤ 2
√

2 we define Kh
γ (M) as the subspace of

H1
h(Ωh)×H0

h(Ωh) consisting in all the functions (ϕ,ψ) such that their norm is controlled by
the one of its projection on Ih(γ):

Kh
γ (M) = {(ϕ,ψ) : ‖ϕ‖2

1,h + ‖ψ‖2
0,h ≤M(‖Πh

γϕ‖2
1,h + ‖Πh

γψ‖2
0,h)}.

We point out that the conservation of energy (6) guarantees that the solutions of equation
(4) with initial data (ϕ,ψ) ∈ Kh

γ (M) satisfy

(14) Eh(u) ≤MEh(Πh
γu),

and thus obviously (uh(t), u′h(t)) ∈ Kh
γ (M) for any t ≥ 0.

The main result of this section is given by the following theorem.
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Theorem 2.1. Let be γ > 0 and M positive. Assume the existence of a time T (γ) such that
for all T > T (γ) there exists a constant C(T ), independent of h, such that

(15) Eh(v) ≤ C(γ, T )
∫ T

0

∫
Γ0h

|∂h
nv(t)|2dΓdt

holds for all v ∈ Ih(γ). Then for all T > T (γ) there exists a constant C1(T, γ,M), such that

(16) Eh(uh) ≤ C1(γ, T,M)
∫ T

0

∫
Γ0h

|∂h
nuh|2dΓ0hdt

holds for all the solutions uh of problem (4) with initial data (u0
h, u

1
h) ∈ Kh

γ (M) and h > 0.

Remark 2.1. Inequalities (14) and (15) show that the uniform boundary observability

Eh(uh) ≤ C(T )
∫ T

0

∫
Γ0h

|∂h
nΠh

γuh|2dΓ0hdt

holds in the class Kh
γ (M) as well. Unfortunately, the right side term cannot be estimated

directly in terms of the energy of the solution u measured at the boundary Γ0h:∫ T

0

∫
Γ0h

|∂h
nuh|2dΓ0hdt.

A careful analysis is required to show that estimate.

Remark 2.2. In the proof of the above Theorem we use that the so-called “direct inequality”
holds. In fact (see [20]) for any T > 0 there exists a constant C(T ), independent of h, such
that

(17)
∫ T

0

∫
Γ0h

|∂h
nuh|2dΓ0hdt ≤ C(T )Eh(uh).

for all solutions u of the semi-discrete system (4) and for all h > 0.

Remark 2.3. In Theorem 2.1 we analyze the problem of boundary observability. But, in
fact, its proof applied in a much more general context. In particular it can be applied in the
problem of internal observability for which the measurement on solutions is done in an open
subset ω of the domain Ω.

The proof of Theorem 2.1 will be postponed until Section 6.

3. A Two-grid Method

In this section we introduce a two-grid method and prove the uniform observability in-
equality (8) in the class of two-grid data.

The two-grid algorithm we propose is the following: Let N be such that N ≡ 3 (mod 4)
and h = 1/(N + 1). We introduce a coarse grid of mesh-size 4h:

G4h : xj, xj = 4hj, j ∈
[
0,
N + 1

4

]2

∩ Z2

and a fine one of size h:

Gh : yj, yj = jh, j ∈ [0, N + 1]2 ∩ Z2.

We consider the space V h of all functions ϕ defined on the fine grid Gh as a linear inter-
polation of the functions ψ defined on the coarse grid G4h.
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We define now another class of filtered solutions, better adapted to the spectral analysis of
the two-grid functions. For any 0 < η ≤ 1 we set

(18) Jh(η) =

uh(t) =
∑

‖j‖∞≤η(N+1)

[
eitωj(h)ûh

j+ + e−itωj(h)ûh
j−

]
ϕj

h with ûh
j+, û

h
j− ∈ C

 ,

and for any solution uh of (4) we denote by Υh
ηu, its projection on the space Jh(η). The

class of filtered solutions Iγ(h), introduced in Section 2, is obtained through a filtering along
the level curves of the ωj(h). The second one consists in filtering the range of indices j to
the square of length side η(N + 1). Observe that, in dimension one there exists a one-to-one
correspondence between the two classes. In dimension two, excepting the case γ = 2

√
2, that

corresponds to η = 1, there is no one-to-one correspondence. However the two classes can be
easily compared with each other.

The second class of data is better adapted to the two-grid data. In fact we will prove that
the total energy of a solution uh of (4) with initial data in the space V h × V h is bounded
above by the energy of its projection on the space Jh(1/4):

(19) Eh(uh) ≤ 4Eh(Υh
1/4u).

Clearly any ωj(h) with ‖j‖∞ ≤ (N + 1)/4 satisfies

ωj(h) ≤
(

8
h2

sin2
(π

8

))1/2

≤ 2
√

2 sin(π/8)
h

,

and thus, in view of (19) the energy of the solution uh is bounded above by the energy of its
projection on the space Ih(2

√
2 sin(π/8)):

Eh(u) ≤ 4Eh(Υh
1/4u) ≤ 4Eh(Πh

2
√

2 sin(π/8)
u),

i.e. (uh(t), u′h(t)) ∈ Kh
γ (4) with γ = 2

√
2 sin(π/8).

The following theorem gives us the uniform boundary observability for the solutions uh on
system (4) with initial data (u0

h, u
1
h) ∈ V h × V h. This theorem is in fact a consequence of

Theorem 2.1.

Theorem 3.1. Let T > 4. There exists a constant C(T ) such that

(20) Eh(uh) ≤ C(T )
∫ T

0

∫
Γ0h

|∂h
nuh|2dΓ0hdt

holds for all solutions uh of (4) with (u0
h, u

1
h) ∈ V h × V h, uniformly on h > 0, V h being the

class of the two-grid data obtained with ratio 1/4.

Remark 3.1. The time T > 4 is given by the observability time obtained in [20] for the class
of solutions belonging to Ih(2

√
2 sin(π/8)), the smallest class Ih that contains Jh(1/4). We

recall that in view of (12) the observability time for the above class of solutions is given by:

T
(
2
√

2 sin
(π

8

))
=

2
√

2
1− 2 sin2

(
π
8

) =
2
√

2
cos

(
π
4

) = 4.

In fact, Theorem 3.1 holds for all T > T ∗ where T ∗ is the optimal time for uniform
observability in the class Ih(2

√
2 sin(π/8)). The estimates T (2

√
2 sin(π/8)) = 4 on T ∗ is not
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optimal. The expected minimal time T ∗ is

(21) T ∗ =
2
√

2
cos(π/8)

.

This can be easily derived analyzing the group velocity of wave packets in the class Ih(2
√

2 sin(π/8))
(see Trefethen [19] and [21]). Although the uniform observability in the class Ih(2

√
2 sin(π/8))

for all T > T ∗ with T ∗ as in (21) is very likely to hold, as far as we known it has not been
rigourously proved so far.

Remark 3.2. A two-grid algorithm involving the grids Gh and G2h implies

Eh(u) ≤ 2Eh(Υh
1/2u) ≤ 2Eh(Πh

2u)

for all solutions u obtained by this method. Indeed, the smallest γ such that Ih(γ) contains
all the frequencies ωj(h), ‖j‖∞ ≤ (N + 1)/2 is γ = 2. Unfortunately, as we pointed before,
inequality (15) does not hold in the class Ih(2). This is why we choose the ratio between
the fine and coarse grid in the two-grid method to be 1/4. This will guarantee that the two
hypotheses (14) and (15) are verified.

Proof of Theorem 3.1. Let uh be the solution of system (4) with initial data (u0
h, u

1
h) ∈ V h ×

V h. Using that Jh(1/4) ⊂ Ih(2
√

2 sin(π/8)) we obtain that

Eh(Υh
1/4uh) ≤ Eh(Πh

2
√

2 sin(π/8)
uh).

To apply Theorem 2.1 with γ = 2
√

2 sin(π/8) it remains to prove (19). The conservation of
energy implies that

Eh(uh) = ‖u0
h‖2

1,h + ‖u1
h‖2

0,h

and

Eh(Υh
1/4u) = ‖Υh

1/4u
0
h‖2

1,h + ‖Υh
1/4u

1
h‖2

0,h.

We make use of the following Lemma, which will be proved in Appendix B.

Lemma 3.1. For any v ∈ V h the following holds:

(22) ‖v‖s,h ≤ 2(s+1)/2‖Υh
1/4v‖s,h, 0 ≤ s ≤ 2.

Applying this Lemma to u0
h ∈ V h and u1

h ∈ V h we get

‖u0
h‖1,h ≤ 2‖Υh

1/4u
0
h‖1,h and ‖u1

h‖0,h ≤ 2‖Υh
1/4u

1
h‖0,h.

This proves that

Eh(uh) ≤ 4Eh(Υh
1/4uh)

and finishes the proof.
�
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4. Construction of the Control

In this section we introduce a numerical approximation for the HUM control v of the
continuous wave equation (1) based on the two-grid method.

The idea of approximating the HUM control v for the continuous problem (1) is to consider
the following discrete problem

(23)

 u′′h −∆huh = 0 in Ωh × (0, T ),
uh = vh1Γ0h

on Γh × (0, T ),
uh(0) = u0

h, ∂tuh(0) = u1
h in Ωh.

,

where the initial data (u0
h, u

1
h) ∈ V h × V h are approximations of (u0, u1). In this way we will

obtain a function vh that approximate the continuous control function v and the projection
of the solution uh on the coarse grid G4h vanishes at the time T . To be more precisely let us
consider the spaces Gh, G4h of all the functions defined on the fine grid Gh, respectively the
coarse one G4h. We also introduce the extension operator Π which associate to any function
ψ ∈ G4h a new function Πψ ∈ Gh obtained by an interpolation process:

(Πψ)j = (P1ψ)(j), j ∈ Z2,

where P1ψ is the piecewise linear interpolator of ψ ∈ G4h. It is easy to see that the space V h

represents the image of the operator Π. Also it is possible to define a restriction operator
which carries any function of Gh to G4h. The most natural way is to define it as the formal
adjoint of the operator Π:

(ψ,Πφ)h = (Π∗ψ, φ)4h, ∀ φ ∈ G4h,

where (·, ·)h denote the H0
h(Ωh) inner product:

(u, v)h = h2
∑

jh∈Ωh

ujvj.

Let us introduce the adjoint discrete problem:

(24)

 φ′′h −∆hφh = 0 in Ωh × (0, T ),
φh(t) = 0 on Γh × (0, T ),
φh(T ) = φ0

h, ∂tφh(T ) = φ1
h in Ωh.

We define the duality product between H0
h(Ωh)×H−1

h (Ωh) and H1
h(Ωh)×H0

h(Ωh) by

〈(ϕ0, ϕ1), (u0, u1)〉h = (ϕ1, u0)h − (ϕ0, u1)h.

Concerning the HUM control of the discrete control problem (23) the following theorem
gives us the existence of a sequence {vh}h>0 which will constitute a convergent approximation
of the continuous one v.

Theorem 4.1. Let be T > 4. There exists a constant C(T ) such that for any h > 0 and
(u0

h, u
1
h), there exists a function vh with

(25) ‖vh‖2
L2((0,T )×Γ0h) ≤ C(T )(‖u0

h‖2
0,h + ‖u1

h‖2
−1,h)

such that the solution uh of system (23) with (u0
h, u

1
h) as initial data and vh acting as control

satisfies:

(26) Π∗uh(T ) = Π∗u′h(T ) = 0.
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Following the same steps as in the continuous case, i.e. multiplying the control problem
(23) by solutions of the adjoint problem (24) and integrating (summing) by parts we obtain
the following description of the solutions of system (23):

Lemma 4.1. Let uh be a solution of system (23). Then the following

(27)
∫ T

0

∫
Γ0h

vh(t)∂h
nφh(t)dΓ1hdt+ 〈(uh, u

′
h), (φh, φ

′
h)〉h

∣∣∣T
0

= 0

holds for all solutions φh of the adjoint problem (24).

In the sequel we introduce the following notations∫
Ωh

udΩh = h2
∑

jh∈Ωh

uj and
∫

Γh

udΓh := h
∑

jh∈Γh

uj.

Proof of Lemma 4.1. Multiplying (23) and (24) by φh, respectively uh, and integrating on
[0, T ] and summing on Ωh yields to∫ T

0

∫
Ωh

(u′′hφh − φ′′huh)dtdΩh =
∫ T

0

∫
Ωh

[(∆huh)φh − (∆hφh)uh]dtdΩh.

Integration by parts in the left hand term gives us∫ T

0

∫
Ωh

(u′′hφh − φ′′huh)dtdΩh =
∫

Ωh

(
u′hφh

∣∣∣T
0
− φ′huh

∣∣∣T
0

)
dΩh = 〈(uh, u

′
h), (φh, φ

′
h)〉h

∣∣∣T
0
.

For the second term, replacing the parameter h in the notation, we have the following explicit
computations:∫ T

0

∫
Ωh

[(∆huh)φh − (∆hφh)uh]dtdΩh = h
N∑

i,j=1

[
(ui−1,j + ui+1,j)φij − (φi−1,j + φi+1,j)uij

]
+ h

N∑
i,j=1

[
(ui,j−1 + ui,j+1)φij − (φi,j−1 + φi,j+1)uij

]
= h

N∑
j=1

(u0jφ1j + uN+1,jφN,j) +
N∑

i=1

(ui0φi1 + ui,N+1φi,N ) = h
N∑

j=1

uN+1,jφN,j +
N∑

i=1

ui,N+1φi,N

= −
∫ T

0

∫
Γ0h

vh(t)∂h
nφh(t)dtdΓ1h.

�

Proof of Theorem 4.1. First, using variational methods we will prove the existence of a func-
tion vh such that

(28)
∫ T

0

∫
Γ0h

vh(t)∂h
nφh(t)dΓ0hdt = 〈(u0

h, u
1
h), (φh(0), φ′h(0))〉h

for all solutions φh of the adjoint problem (24) with final state (φ0
h, φ

1
h) ∈ V h × V h.

We consider the space Fh = V h × V h endowed with the norm

‖(φ0
h, φ

1
h)‖Fh

= ‖φ0
h‖1,h + ‖φ1

h‖0,h
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and the functional Jh : Fh → R defined by

(29) Jh((φ0
h, φ

1
h)) =

1
2

∫ T

0

∫
Γ0h

|∂h
nφh|2dΓ0hdt+ 〈(u0

h, u
1
h), (φh(0), φ′h(0))〉h

where φh is the solutions of the adjoint problem (24) with final state (φ0
h, φ

1
h). The existence

of the function vh will be obtained by minimizing Jh on the space Fh. In the following in
order to apply the fundamental theorem of calculus of variations we prove that the functional
Fh is continuous and uniformly coercive (with respect to the parameter h) on Fh.

The linear term in the right side of (29) satisfies

|〈(u0
h, u

1
h), (φh(0), φ′h(0))〉h| ≤ ‖u1

h‖−1,h‖φh(0)‖1,h + ‖u0
h‖0,h‖φ′h(0)‖0,h

≤ (‖u1
h‖−1,h + ‖u0

h‖0,h)‖(φh(0), φ′h(0))‖Fh
.

Using the direct inequality (17) and the conservation of the energy Eh(φh) we get

|Jh((φ0
h, φ

1
h))| ≤ ‖(φ0

h, φ
1
h)‖Fh

(
C(T )‖(φ0

h, φ
1
h)‖Fh

+ ‖u1
h‖−1,h + ‖u0

h‖0,h

)
which proves the continuity of the functional Jh.

In view of the observability inequality (20), for any T > 4, the functional Jh is uniformly
(with respect to h) coercive on Fh:

|Jh((φ0
h, φ

1
h))| ≥ ‖(φ0

h, φ
1
h)‖Fh

(
C(T )‖(φ0

h, φ
1
h)‖Fh

− ‖u1
h‖−1,h − ‖u0

h‖0,h

)
,

where C(T ) is a constant obtained in (20).
Applying the fundamental theorem of calculus of variations we obtain the existence of a

minimizer (φ0,∗
h , φ1,∗

h ) ∈ Fh such that

Jh((φ0,∗
h , φ1,∗

h )) = min
((φ0

h,φ1
h))∈Fh

Jh((φ0
h, φ

1
h)).

This implies that J ′
h, the Gateaux derivative of Jh, satisfies

J ′
h((φ0,∗

h , φ1,∗
h ))(φ0

h, φ
1
h) = 0

for all (φ0
h, φ

1
h) ∈ Fh. This implies that φ∗h solution of (24) with final state (φ0,∗

h , φ1,∗
h ) satisfies∫ T

0

∫
Γ0h

(∂h
nφ

∗
h)∂h

nφ(t)dΓ0hdt+ 〈(u0
h, u

1
h), (φh(0), φ′h(0))〉h = 0

for all φ solution of the adjoint problem (24) with final state belonging to Fh.
We set

vh(t) = ∂h
nφ

∗
h(t), t ∈ [0, T ]

and then (28). In view of Lemma 4.1, the solution uh of system (23) with the above function
vh acting as control on Γ1h satisfies

(u′h(T ), φ0
h)h − (uh(T ), φ1

h)h = 0

for all function (φ0
h, φ

1
h) ∈ V h × V h. Using that V h = Π(G2h) we obtain

(uh(T ),Πψ)h = (u′h(T ),Πψ)h = 0

for all functions ψ ∈ G2h. Then

(Π∗uh(T ), ψ)2h = (Π∗u′h(T ), ψ)2h = 0

for all ψ ∈ G2h and obviously
Π∗uh(T ) = Π∗u′h(T ) = 0.
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It remains to prove estimate (25). Using that (φ0,∗
h , φ1,∗

h ) is a minimizer of Jh we have
Jh((φ0,∗

h , φ1,∗
h )) ≤ Jh((0h, 0h)), where 0h is the function that vanishes identically on the mesh

Gh. Consequently∫ T

0

∫
Γ0h

|∂h
nφ

0,∗
h |2dΓ0hdt ≤ (‖u1

h‖−1,h + ‖u0
h‖0,h)(‖φ0,∗

h ‖1,h + ‖φ1,∗
h ‖0,h).

Applying the direct inequality (17) to the solution φ∗h we obtain that

‖vh‖2
L2((0,T )×Γ1h) =

∫ T

0

∫
Γ1h

|∂h
nφ

∗
h|2dΓ1dt ≤ C(T )(‖u1

h‖−1,h + ‖u0
h‖0,h)2

where the constant C(T ) is independent of h.
The proof is now complete. �

5. Convergence of the method

Let us consider the family {uh}h>0 of solutions of (4) and let us denote by P1uh their
piecewise linear interpolator. Given the fact that the solutions of the continous problem
belong to H1

0 (0, 1) is then natural to consider a interpolator with enough regularity.
The following propositions describes how a uniformly bounded family of solutions of (4)

weakly converges as h→ 0 to a solution of finite energy of the continuous wave equation (2).

Proposition 5.1. (Proposition 4.1, [20]) Let {φh}h>0 be a family of solutions of (24) de-
pending on the parameter h→ 0, whose energies are uniformly bound, i.e.

(30) Eh(0) ≤ C, ∀h > 0.

Then there exists a solution φ ∈ C([0, T ],H1
0 (Ω))∩C1([0, T ], L2(Ω)) of problem (2) such that

by extracting a suitable subsequence h→ 0 we may guarantee that

P1φh ⇀ φ in H1([0, T ], L2(Ω)) ∩ L2([0, T ],H1
0 (Ω)),(31)

E(0) ≤ lim inf
h→0

Eh(0)(32)

and

‖P1φh(t)‖L2(Ω) → ‖φ(t)‖2
L2(Ω) in L∞(0, T ).(33)

Also the normal derivatives of P1φh converges to the continuous one.

Proposition 5.2. (Proposition , [20]) Let {φh(t)}h be a family of solutions of (24) satisfying
(30). Let φ be any solution of (4) obtained as limit when h → 0 as in the statement of
Proposition 5.1. Then

(34)
∫ T

0

∫
Γ1

∣∣∣∣∂φ∂n
∣∣∣∣2 dσdt ≤ lim inf

h→0

∫ T

0

∫
Γ1h

|∂h
nφh(t)|2dΓ1hdt.

and

(35)
∂(P1φh)
∂n

⇀
∂φ

∂n
onL2((0, T ),Γ0).

Concerning the convergence of the discrete control problem we have the following result.
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Theorem 5.1. Let (u0, u1) ∈ L2(Ω)×H−1(Ω) and (u0
h, u

1
h) such that

P1u
0
h ⇀ u0 in L2(Ω), P1u

1
h ⇀ u1 in H−1(Ω).

Then for any T > 4 the solution (uh(t), ∂tuh(t)) and its partial controls vh ∈ L2(0, T ) given
by Theorem 4.1 satisfy

P1uh
∗
⇀u in L∞([0, T ], L2(Ω)), (P1uh)t

∗
⇀ut in L∞([0, T ],H−1(Ω)),

P1vh ⇀ v in L2([0, T ], L2(Γ0)),

where (u, ut) solves (1), with the control v(t), and u(T ) = ut(T ) = 0. The limit control v is
given by

v(t) = ∂nφ
∗ on Γ0,

where φ∗ is solution of (2), with data (φ0,∗, φ1,∗) ∈ H1
0 (Ω)×L2(Ω) minimizing the functional

(36) J((φ0, φ1)) =
1
2

∫ T

0

∫
Γ0

|∂nφ|2dt+ 〈(u0, u1), (φ0, φ1)〉

in H1
0 (Ω)× L2(Ω).

Proof. For each h > 0 we consider the minimization problem associated with (u0
h, u

1
h), i.e.

(29) on Fh. In view of Theorem 4.1 there exists a function vh = ∂h
nφ

∗
h(t), that depends on

(u0
h, u

1
h) and satisfies (25). Recall that φ∗h solves (24) with final state (φ0,∗

h , φ1,∗
h ) ∈ V h × V h

minimizing the function Jh.
Moreover, as a consequence of the observability inequality (20) we have

‖φ0,∗
h ‖1,h + ‖φ1,∗

h ‖0,h ≤ C(T )‖vh‖L2((0,T )×Γ1h) ≤ C(T )(‖u1
h‖0,h + ‖u0

h‖−1,h) ≤ C(T ).

In these conditions, Proposition 5.1 guarantees the existence of a function φ∗ that solves (2)
and in addition

P1vh(t) = P1∂
h
nφ

∗
h(t) = ∂n(P1φ

∗
h) ⇀ ∂nφ

∗ in L2(0, T ) as h→ 0.

Step II. Let us now consider equation (23) with initial data (u0
h, u

1
h) and vh as above.

Then for any solution φh of the adjoint problem (24) with final state at T = s the following

(37)
∫ s

0

∫
Γ1h

vh(t)∂h
nφh(t)dΓ1hdt+ 〈(uh, u

′
h), (φh, φ

′
h)〉h

∣∣∣s
0

= 0

holds for all 0 < s < T . Thus in view of direct inequality (17) and the conservation of the
energy applied to φh we get for any s < T that

|〈(uh(s), u′h(s)), (φ0
h, φ

1
h)〉h| ≤ |〈(u0

h, u
1
h), (φh(0), φ′h(0))〉h|+ ‖vh‖L2((0,T )×Γ1h)‖∂h

nφh‖L2((0,T )×Γ1h)

≤ C(T )(‖u0
h‖0,h + ‖u1

h‖−1,h)(‖φ0
h‖1,h + ‖φ1

h‖0,h).

This means that
‖uh(s)‖0,s + ‖u′h(s)‖−1,s ≤ C.

We deduce the existence of a subsequence of indexes {h} such that

(38) P1uh
∗
⇀u in L∞([0, T ], L2(Ω))

and

(39) P1u
′
h
∗
⇀u′ in L∞([0, T ],H−1(Ω)).
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Also using that uh verifies equation (23) we also obtain

(40) ‖P1u
′′
h(s)‖L2([0,T ], H−2(Ω)) ≤ C.

Using (38), (39) and (40) we get

u ∈ C([0, T ], L2(Ω)) and u′ ∈ C([0, T ],H−1(Ω)).

Moreover, from (38,39) and (39,40) and Aubin-Lions compactness lemma, we deduce that

P1uh → u in C([0, T ], L2(Ω)) ∩ C1([0, T ],H−1(Ω)).

Thus
P1uh(0) ⇀ u(0) in L2(Ω)

and
P1u

′
h(0) ⇀ u′(0) in H−1(Ω).

Observe that, by hypothesis of the theorem u(0) = u0 and u′(0) = u1. Using (37) we have∫ s

0

∫
Γ1

P0vh(t)∂n(P1φh)(t)dσdt+ 〈(uh, u
′
h), (φh, φ

′
h)〉h

∣∣∣s
0

= 0.

Getting h→ 0 we obtain∫ s

0

∫
Γ0

∂nφ
∗∂nφdσdt+ 〈(u, u′), (φ, φ′)〉h

∣∣∣s
0

= 0, ∀ s < T,

where φ is solution of problem (2) with final state (φ0, φ1). Thus u is a solution by transpo-
sition of (1) with control v = ∂nφ

∗.
Let us prove that u(T ) = u′(T ) = 0. We prove that u(T ) = 0 the other case being similar.

Since (uh(T ), vh)h = 0 for all functions vh ∈ V h we obtain that∫
Ω

P1uh(T )P1vhdx→ 0 as h→ 0.

Using that P1(V h) is dense in L2(Ω) we get∫
Ω

P1uh(T )vdx→ 0 as h→ 0

for any function v ∈ L2(Ω) that implies u(T ) ≡ 0.
Finally, using the uniqueness results for problem (1) we obtain that control v obtained

before satisfies v = ∂nψ
∗ where ψ∗ is the solution of problem (2) with final state minimizing

functional (36).
�

6. Proof of Theorem 2.1

Proof of Theorem 2.1. In view (13), for any T > T (γ) there exists two positive constants δ
and ε such that

(41) Eh(vh) ≤ C(T, γ, ε, δ)
∫ T−2δ

2δ

∫
Γ0h

|∂h
nvh|2dΓ0hdt

for all vh ∈ Ih(γ + ε). More precisely, using the continuity of the map γ → T (γ) we obtain
the existence of a small constant ε such that T > T (γ + ε). Sequently we choose a positive δ
such that T − 4δ > T (γ + ε). Then, a time translation guarantees that (41) holds.
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With ε verifying (41) let us choose positive constants a, b, c and µ satisfying

(42) 1 < c <
b− µ

a+ µ
and

b

a+ µ
<
γ + ε

γ
.

In the following we make precise the time projectors Pk which give us the a time-spectral
decomposition of u. These are essentially the ones introduced in [12].

Let F ∈ C∞c (R) be supported in (a, b), 0 ≤ F ≤ 1 such that F ≡ 1 in [a + µ, b − µ]. Set
P (τ) = F (τ) + F (−τ). For any function f ∈ L1(R) and k ≥ 0 we consider the projector Pkf
defined by

(43) (Pkf)(t) =
∫

Rτ

∫
Rs

P (c−kτ)f(s)ei(t−s)τdsdτ.

In view of (10) the Fourier transform of uh, in the t variable, reads

ûh(τ) =
∑
j∈Z2

[
δ(τ − ωj(h))ûh

+(j) + δ(τ + ωj(h))ûh
−(j)

]
ϕj

h.

Therefore, the projector Pkuh satisfies

(44) Pkuh(t) =
∑
j∈Z2

F (c−kωj(h))
[
eitωj(h)û+(j) + e−itωj(h)û−(j)

]
ϕj

and its energy is given by

(45) Eh(Pkuh) =
∑
j∈Z2

F 2(c−kωj(h))ω2
j (h)(|ûj+|2 + |ûj−|2).

Conditions (42) guarantee that (Pkuh)k≥0 covers all the frequencies occurring in the repre-
sentation of uh. Also Pkf = f for all functions f that contains only frequencies in the range
[−(b− µ)ck,−(a+ µ)ck] ∪ [(a+ µ)ck, (b− µ)ck].

We first give the main ideas of the proof. Let us choose two positive integers k0 and
kh, k0 ≤ kh, k0 independent of h, such that {Pkuh}kh

k=k0
covers, except possibly for a finite

number, all the frequencies occurring in Πh
γuh. The precise value of k0 and kh will be specified

later.
Firstly we will prove that

(46) Eh(Πh
γuh) ≤

kh∑
k=k0

Eh(Pkuh) + LOT

where LOT is a lower order term, involving all the frequencies smaller than ck0(a + µ), in
particular this LOT will be compact when passing to the limit h→ 0.

Next we use that each projection Pkuh, k0 ≤ k ≤ kh belongs to the class Ih(γ + ε) and,
consequently, according to (41), satisfies the observability inequality:

(47) Eh(Pkuh) ≤ C(T, γ, δ, ε)
∫ T−2δ

2δ

∫
Γh

|∂h
nPkuh|2dΓhdt.

Thus, combining (46) and (47) we obtain the following estimate:

Eh(Πh
γuh) ≤ C(T, γ, δ, ε)

kh∑
k=k0

∫ T−2δ

2δ

∫
Γh

|∂h
nPkuh|2dΓhdt+ LOT.
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Using the previous ideas of [12] and [2] the right hand side sum can be estimated in terms of
the energy of uh measured on Γ0h. More precisely, we will prove the existence of a constant
C(ε, δ, T ) such that

(48)
∑
k≥k0

∫ T−2δ

2δ

∫
Γh

|∂h
nPkuh|2dΓhdt ≤ 2

∫ T

0

∫
Γ0h

|∂h
nuh|2dΓhdt+

C(ε, δ, T )
c2k0

Eh(uh)

holds for any k0 ≥ 0 and uh solution of (4) uniformly on h > 0. Then the following holds:

(49) Eh(uh) ≤ CEh(Πh
γuh) ≤ C(T, γ, δ, ε)

∫ T

0

∫
Γ0h

|∂h
nuh|2dΓ0hdt+

C(ε, δ, T )
c2k0

Eh(uh) + LOT.

Choosing h small and k0 sufficiently large, but still independent of h, the energy term from
the right side may be absorbed and then we obtain

(50) Eh(uh) ≤ C(T, γ, δ, ε)
∫ T

0

∫
Γ0h

|∂h
nuh|2dΓ0hdt+ LOT.

Finally classical arguments of compactness-uniqueness allow us to get rid of the lower order
term.

In the following we give the details of the proofs of the above steps.
Step I. Upper bounds of Eh(Πh

γuh) in terms of {Eh(Pkuh)}k≥0.
The condition 1 < c < b/a imposed in (42) shows that

⋃
k≥0(ac

k, bck) = (a,∞). This means
that any frequency ωj(h) ≥ a occurs in at least one of the projections Pkuh, k ≥ 0.

Let us choose a positive integer kh such that

(51) ckh(a+ µ) ≤ γ/h < ckh+1(a+ µ).

Also let us fix a positive integer k0 ≤ kh independent of h. Its precise value will be chosen
later on in the proof. The choice of kh is always possible for small parameter h. Using that
c < (b− µ)/(a+ µ) (see (42)) we obtain that the following inequality holds

ckh(a+ µ) ≤ γ/h ≤ ckh+1(a+ µ) ≤ ckh(b− µ).

Then any frequency ωj(h) belonging to [(a + µ)ck0 , γ/h] is contained in at least one interval
of the form [ck(a + µ), ck(b − µ)] with k0 ≤ k ≤ kh where the function F (c−k·) is identically
one. Then any frequency ωj(h) ∈ [(a+ µ)ck0 , γ/h] we get

(52) 1 ≤
kh∑

k=k0

F (c−kωj(h))2.

In view of (45) and (52) the energy of Πh
γuh excepting a low order term, can be bounded from

above by the energy of all the projections (Pkuh)kh
k=k0

:

Eh(Πh
γuh) ≤ c2k0(a+ µ)2

∑
ωj(h)<(a+µ)ck0

(
|ûh

j+|2 + |ûh
j−|2

)

+
kh∑

k=k0

∑
j∈Z2

F 2(c−kωj(h))ω2
j (h)

(
|ûh

j+|2 + |ûh
j−|2

)

= C(a, k0, µ)
∑

ωj(h)<(a+µ)ck0

(
|ûh

j+|2 + |ûh
j−|2

)
+

kh∑
k=k0

Eh(Pkuh).(53)
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Step II. Observability inequalities for the projections (Pkuh)kh
k≥k0

.
The next step is to apply the observability inequality (41) to each projection Pkuh, k0 ≤ k ≤

kh. To do that we have to prove that each of them belongs to the class Ih(γ + ε) where (41)
holds. We remark that the projector Pkuh(t) contains only the frequencies ωj(h) ∈ (cka, ckb).
For any given k ≤ kh any frequency ωj(h) involved in the decomposition (44) of Pkuh, in view
of (51), satisfies

ωj(h) ≤ ckhb <
γb

h(a+ µ)
<
γ + ε

h
,

which shows that Pkuh(t) ∈ Ih(γ + ε).
Step III. The final step. Now we apply inequality (41) to each projection Pkuh:

(54) Eh(Pkuh) ≤ C(T, δ, ε, γ)
∫ T−2δ

2δ

∫
Γ0h

|∂h
n(Pkuh)|2dΓ0hdt, k0 ≤ k ≤ kh.

Using (53) and the above inequalities we obtain that

Eh(Πh
γuh) ≤ C(T, γ, δ, ε)

kh∑
k=k0

∫ T−2δ

2δ

∫
Γ0h

|∂h
n(Pkuh)|2dΓ0hdt

+C(k0, a, µ)
∑

ωj(h)<(a+µ)ck0

[
|ûh

j+|2 + |ûh
j−|2

]
.(55)

It remains to prove (48). Once this inequality holds then (49) and (50) hold as well, which
finishes the proof.

The key point is the following Lemma which will be proved in Appendix A.

Lemma 6.1. Let µ be a Borel measure and Ω a µ-measurable set such that µ(Ω) < ∞. We
set X = Lp(Ω, dµ), 1 ≤ p ≤ ∞. Then for any positive δ and T there is a constant C(δ, T )
such that the following holds

(56)
∑
k≥k0

∫ T−2δ

2δ
‖Pka‖2

Xdt ≤ 2
∫ T

0
‖a‖2

Xdt+
C(δ, T )
c2k0

sup
l∈Z

‖a‖L2((lT,(l+1)T ), X)

for all positive integer k0 and a ∈ L2
loc(R, X).

We now apply Lemma 6.1 with a = ∂h
nu and X = l2(Γ0h). Using that Pk(∂h

nu) = ∂h
n(Pku),

we obtain the existence of a constant C(δ, T ) such that

∑
k≥k0

∫ T−2δ

2δ

∫
Γ0h

|∂h
nPku(t)|2dΓ0hdt ≤ 2

∫ T

0

∫
Γ0h

|∂h
nu(t)|2dt

+C(δ, T ) sup
l∈Z

∫ (l+1)T

lT

∫
Γ0h

|∂h
nu(t)|2dΓ0hdt.

At this point we apply the so-called “direct inequality” (17), which holds for all solutions
u of (4). Thus, a translation in time in (17) together with the conservation of energy shows
that

(57) sup
l∈Z

∫ (l+1)T

lT

∫
Γ0h

|∂h
nu(t)|2dΓ0hdt ≤ C(T )Eh(u).

and then (48).
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�

Appendix A. Proof of Lemma 6.1

In this Appendix we prove Lemma 6.1. The main ingredient is the following lemma inspired
in ideas of [12], [2] and adapted to our context. In the sequel X denote the space Lp(Ω, dµ),
where µ is a Borel measure and µ(Ω) < ∞. In our problem X = l2(Γ0h). The following
lemmas can be applied also for internal observability, for instance by choosing X = l2(Oh),
Oh being the internal observability zone.

Lemma A.1. Let ϕ ∈ C∞0 (0, T ), and ψ ∈ L∞(R) be such that ψ ≡ 1 on (0, T ) and (Pk)k≥0

be defined as above. There exists a constant C = C(T, ϕ, ψ, F ) such that

(58)
∫

R
‖ϕ(t)Pk(a)(t)‖2

Xdt ≤ 2
∫

R
‖ϕ(t)Pk(ψa)(t)‖2

Xdt+ Cc−2k sup
l∈Z

‖a‖2
L2((lT,(l+1)T ), X)

holds for all a ∈ L2
loc(R, X) and for all k ≥ 0.

Proof of Lemma A.1. We denote Il = [lT, (l + 1)T ) and al = 1Il
a. We claim the existence of

a positive constant C = C(P ) such that for all ϕ ∈ C∞0 (R) and l ∈ Z with dist(Il, supp(ϕ)) ≥
δ > 0 the following holds:

(59) sup
t∈R

‖ϕ(t)Pk(al)‖X ≤ Cc−kδ−2T 1/2‖ϕ‖L∞(R) sup
l∈Z

‖al‖L2(R,X),

uniformly in h > 0.
Using estimate (59) we will prove the existence of a positive constant C = C(T, ϕ, ψ, P )

such that

(60) sup
t∈R

‖ϕ(t)(Pk(a)− Pk(ψa))(t)‖X ≤ Cc−k sup
l∈Z

‖al‖L2(R, X).

Then, (58) will be a consequence of Cauchy’s inequality:∫
R
‖ϕ(t)Pk(a)(t)‖2

Xdt ≤ 2
∫

R
‖ϕ(t)Pk(ψa)(t)‖2

Xdt+ 2
∫

R
‖ϕ(t)Pk(a− ψa)(t)‖2

Xdt

≤ 2
∫

R
‖ϕ(t)Pk(ψa)(t)‖2

Xdt+ 2T sup
t∈R

‖ϕ(t)(Pk(a− ψa))(t)‖2
X

≤ 2
∫

R
‖ϕ(t)Pk(ψa)(t)‖2

Xdt+ Cc−k sup
l∈Z

‖al‖2
L2(R, X).

In the following we prove (60). Observe that on I0, a ≡ aψ. This yields to the following
decomposition of the difference Pk(a)− Pk(ψa):

(61) Pk(a)− Pk(ψa) =
∑
|l|≥1

Pk(al − (ψa)l) =
∑
|l|≥1

Pk(bl),

with bl = al − (ψa)l. Let us choose an δ > 0 such that ϕ is supported on (δ, T − δ). Thus
for all |l| ≥ 2, the function bl satisfies dist(supp(ϕ), Il) ≥ T (|l| − 1). Also, for |l| = 1:
dist(supp(ϕ), Il) ≥ δ. By (59) we obtain the existence of a constant C = C(T, ϕ, ψ, P ) such
that

(62) sup
t∈R

‖ϕ(t)Pk(bl)(t)‖X ≤ Cc−k sup
l∈Z

‖bl‖L2(R, X)


1

(|l|−1)2
, |l| ≥ 2,

1
δ2 , |l| = 1.
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Finally, (61) and (62) give for any t ∈ R

‖ϕ(t)[Pk(a)− Pk(ψa)]‖X ≤
∑
|l|≥1

‖ϕ(t)Pk(bl)‖X ≤ C(δ)c−k sup
l∈Z

‖bl‖L2(R, X)

≤ C(δ)c−k sup
l∈Z

‖a‖L2(R, X).

We now prove estimate (59). The definition of the projector Pk and integration by parts
give us

ϕ(t)Pk(al)(t) =
∫

Rτ

∫
Rs

eiτ(t−s)P (c−kτ)ϕ(t)al(s)dsdτ

=
∫

Rτ

∫
Rs

eiτ(t−s)i2∂2
τ [P (c−k)τ ]

ϕ(t)al(s)
(t− s)2

dsdτ.

Thus, for any t in the support of ϕ, Minkowsky’s inequality yelds

‖ϕ(t)Pk(al)(t)‖X ≤ c−2k‖ϕ‖L∞(R)

∫
Rτ

|(∂2
τP )(c−kτ)|dτ

∫
Il

‖al(s)‖X

(t− s)2
ds

≤ c−kδ−2‖ϕ‖L∞(R)

∫
Rτ

|(∂2
τP )(τ)|dτ

∫
Il

‖al(s)‖Xds.

Applying Cauchy’s inequality in time we get

(63) ‖ϕ(t)Pk(al)(t)‖2
X ≤

(
c−kδ−2‖ϕ‖L∞(R)

∫
Rτ

|(∂2
τP )(τ)|dτ

)2

T

∫
Il

‖al(s)‖2
Xds

which finishes the proof.
�

Proof of Lemma 6.1. Let us choose a function ϕ ∈ C∞0 (0, T ) such that ϕ ≡ 1 on [2δ, T − 2δ].
Applying Lemma A.1 to the function u and ψ = 1(0,T ), we obtain∫ T−2δ

2δ
‖Pku‖2

Xdt ≤
∫

R
ϕ2‖Pk(u)‖2

Xdt

≤ 2
∫

R
ϕ2‖Pk(ψu)‖2

Xdt+ Cc−2k sup
l∈Z

‖u‖L2((lT,(l+1)T,X)).

Summing all these inequalities we get

(64)
∑
k≥k0

∫ T−2δ

2δ
‖Pku‖2

Xdt ≤ 2
∑
k≥k0

∫
R
ϕ2‖Pk(ψu)‖2

Xdt+
C(δ, T )
c2k0

sup
l∈Z

‖u‖L2((lT,(l+1)T ),X).

In the following we prove that∑
k≥0

∫
R
ϕ2‖Pk(ψu)‖2

Xdt ≤
∫ T

0
‖u(t)‖Xdt.

Observe that any real number τ belongs either to a finite number of intervals of the form
(±ack,±bck) or to none of them. Then there is a positive constant C such that

(65) sup
τ∈R

∑
k≥0

P 2(c−kτ) ≤ C.
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Applying Plancherel’s identity in time variable we obtain∑
k≥0

∫
R
ϕ2(t)‖Pk(ψu)(t)‖2

Xdt ≤ ‖ϕ‖2
L∞(R)

∑
k≥0

∫
R
‖Pk(ψu)(t)‖2

Xdt

= ‖ϕ‖2
L∞(R)

∑
k≥0

∫
R
P 2(c−kτ)‖ψ̂u(τ)‖2

Xdτ

≤ ‖ϕ‖2
L∞(R) sup

τ∈R

∑
k≥0

P 2(c−kτ)
∫

R
‖ψ̂u(τ)‖2

Xdτ

≤ C‖ϕ‖2
L∞(R)

∫
R
‖(ψu)(t)‖2

Xdt = C‖ϕ‖2
L∞(R)

∫ T

0
‖u(t)‖2

Xdt.

�

Appendix B. Spectral analysis of V h-functions

Let M be a positive integer, N = 4M − 1 and h = 1/(N + 1). Let us consider a function
v ∈ V h and its projection Υh

1/4u. For each positive s the norm of the projection satisfies
‖Υh

1/4v‖s,h ≤ ‖v‖s,h. Lemma 3.1 shows that the converse inequality

(66) ‖v‖s,h ≤ C‖Υh
1/4v‖s,h

also holds for all 0 ≤ s ≤ 2 and v in the space V h.
We first obtain in the following Lemma a description of the Fourier coefficients v̂(k) of a

function v ∈ V h and then prove Lemma 3.1.

Lemma B.1. Let v ∈ V h. Then for any k = (k1, k2) ∈ Λ4M−1 the k-th Fourier coefficient
satisfies

(67) v̂(k) =
64

(4M − 1)2

2∏
l=1

cos2
(
klπh

2

)
cos2 (klπh)

∑
j∈ΛM−1

v4jϕ
k
4j.

Proof. Firstly we analyze the one-dimensional case. The result extends to the 2d-case by
iterating the same argument in each direction.

For each 1 ≤ k ≤ 4M − 1 the coefficient v̂(k) is given by

v̂(k) =
2

(4M − 1)

4M−1∑
j=1

vj sin(kjπh).

Using that the function v satisfies v2j+1 = (v2j + v2j+2)/2, j = 0, ..., 2M − 1, we obtain

4M−1∑
j=1

vj sin(kjπh) =
2M−1∑
j=1

v2j sin(2kjπh) +
2M−1∑
j=0

v2j+1 sin((2j + 1)kπh)

= 2 cos2
(
kπh

2

) 2M−1∑
j=1

v2j sin(2kjπh).
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In a similar way, taking into account that v4j+2 = (v4j + v4j+4)/2 we also obtain:

2M−1∑
j=1

v2j sin(2kjπh) = 2 cos2 (kπh)
M−1∑
j=1

v4j sin(4kjπh).

These identities prove (67) in the one-dimensional case. Applying the same argument in each
space direction we obtain (67) in the two-dimensional case. �

Proof of Lemma 3.1. Let us choose an integer M such that N + 1 = 4M . We first analyze
the one dimensional case and apply it to the 2d case.

Step I. The 1-d case. In the sequel we denote λk(h) = 4/h2 sin2(kπh/2). By Lemma
B.1 for any k = 1, ..., 4M − 1, the k-th Fourier coefficient v̂(k) is given by v̂(k) = a(k)g(k)
where

a(k) = 4 cos2
(
kπh

2

)
cos2 (kπh) , g(k) =

2
4M − 1

M−1∑
j=0

v4j sin(4kjπh).

A explicit computation shows that for any k = 1, ..., 4M − 1 the following holds

a(k)λk(h) = a(2M + k)λ2M+k(h) = a(2M − k)λ2M−k(h) = a(4M − k)λ4M−k(h)

=
1
h2

sin2(2kπh)

and g(k) = g(2M + k) = −g(2M − k) = −g(4M − k).
We point out that for any k = 1, ...,M − 1 and j = M + 1, ..., 4M − 1 the following holds:

λk(h) ≤
4
h2

sin2
(π

8

)
≤ λj(h).

Also for any s ∈ [0, 2], k = 1, ...,M − 1 and j ∈ {2M − k, 2M + k, 4M − k} we get

a2(k)λs
k(h) = λs−2

k (h)a2(k)λ2
k(h) = λs−2

k (h)a2(j)λ2
j (h)

= (λj(h)/λk(h))2−sa2(j)λs
j(h) ≥ a2(j)λs

j(h).

Using all these estimates, the }s-norm of v satisfies:

‖v‖2
s,h =

M−1∑
k=1

g2(k)
[
a2(k)λs

k(h) + a2(2M − k)λs
2M−k(h)

+a2(2M + k)λs
2M+k(h) + a2(4M − k)λs

4M−k(h)
]

≤ 4
M−1∑
k=1

g2(k)a2(k)λs
k(h) = 4‖Υh

1/4v‖
2
s,h.

which finishes the proof of the 1-d case.
Step II. The 2-d case. We reduce this case to the previous one. The function v admits

a representation in the Fourier space as:

v(x, y) =
4M−1∑
j,k=1

ajkϕ
j(x)ϕk(y), x = j1h, y = k1h, j1, k1 = 1, . . . , 4M − 1,

where ϕj(x) = sin(jπx), j = 1, . . . , 4M − 1.
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Observe that for each x fixed, the function v(x, ·) is obtained by a one-dimensional inter-
polation of the two-grid type. Then,

(68) ‖v(x, ·)‖2
s,h ≤ 4‖Υh

1/4v(x, ·)‖
2
s,h.

A similar argument guarantees that ‖v(·, y)‖2
s,h ≤ 4‖Υh

1/4v(·, y)‖
2
s,h. Taking into account that

λs
jk(h) = (λj(h) + λk(h))s ≤ 2s−1(λs

j(h) + λs
k(h)),

we obtain that
‖v‖s,h ≤ 2(s+1)/2‖Υh

1/4v‖s,h.

�
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