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Summary. In this paper we consider a classical finite difference approximation of
the heat equation. We study the long time behaviour of the solutions of the consid-
ered scheme and various questions related to the fundamental solutions. Finally we
obtain the first term in the asymptotic expansion of the solutions.

1 Introduction

The main goal of this paper is the study of the long time behaviour of classical
finite difference approximations of the heat equation.

Let us consider the linear heat equation on the whole space
{

ut −∆u = 0 in Rd × (0,∞),

u(0, x) = ϕ(x) in Rd.

By means of Fourier’s transform, solutions can be represented as the convo-
lutions between the fundamental solutions and the initial data:

u(t) = G(t, ·) ∗ ϕ,

where
G(t, x) =

1
(4πt)−d/2

e−
|x|2
4t =

1
(2π)d

∫

Rd

eix·ξe−|ξ|
2tdξ.

The smoothing effect of the fundamental solutions G(t, x) yields to the fol-
lowing behaviour of the solution (cf. [3], Ch. 3, p. 44):

‖u(t)‖Lp(Rd) ≤ C(p, q) t−d/2 (1/q−1/p)‖ϕ‖Lq(Rd), t > 0, p ≥ q. (1)

A finer analysis is given in [4], where the authors consider initial data which
decay polynomially at infinity. Duoandikoetxea & Zuazua [4] study how the
mass of the solution is distributed as t → ∞. They prove the existence of a
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positive constant c = c(p, q, d) such that for any q and p satisfying 1 ≤ q <
d/(d− 1), d ≥ 2 (1 ≤ q < ∞ for d = 1), q ≤ p < ∞,

∥∥∥∥u(t, ·)−
(∫

Rd

ϕ(x)dx

)
G(t, ·)

∥∥∥∥
Lp(Rd)

≤ c t−
1
2− d

2 ( 1
q− 1

p )‖|x|ϕ‖Lq(Rd) (2)

holds for all t > 0 and ϕ ∈ L1(Rd) with |x|ϕ(x) ∈ Lq(Rd).
Let us consider the classical finite-difference scheme:





duh

dt
= ∆huh, t > 0,

uh(0) = ϕh.

(3)

Here uh stands for the infinite unknown vector {uh
j }j∈Zd , uh

j (t) being the
approximation of the solution u at the node xj = jh, and ∆h is the classical
second order finite difference approximation of ∆:

(∆huh)j =
1
h2

d∑

k=1

(uh
j+ek

+ uh
j−ek

− 2uh
j ).

This scheme is widely used and satisfies the classical properties of consistency
and stability which imply L2-convergence (cf. [7], Ch. 13, p. 292).

It is interesting to know whenever the properties of the continuous problem
are preserved by the numerical scheme. In the following we are concerned
with the spatial shape of the discrete solution for large times. To do that we
introduce the spaces lp(hZd):

lp(hZd) =
{
{uj}j∈Zd : ‖u‖p

lp(hZd)
= hd

∑

j∈Zd

|uj|p < ∞
}

and study the behaviour of lp(hZd)-norms of the solutions as t →∞.
The main tool in our analysis is the semi-discrete Fourier transform

(SDFT):

û(ξ) = hd
∑

j∈Zd

e−ij·ξh uj , ξ ∈
[
−π

h
,
π

h

]d

and its inverse

uj =
1

(2π)d

∫

[−π/h,π/h]d
û(ξ)eij·ξhdξ, j ∈ Zd.

We refer to [5] and [10] for a survey on this subject. By means of SDFT we
compute the solutions of equation (3) in a similar way as in the continuous
case, writing them as a convolution of a fundamental solution Kd,h

t and the
initial datum. This allows us to obtain decay rates of the solution in different
lq − lp norms analogous to (1). All the estimates are uniform with respect to
the step size, h. This proves a kind of lq − lp stability of our scheme:
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Theorem 1. Let 1 ≤ q ≤ p ≤ ∞. Then there exists a positive constant
c(p, q, d) such that

‖uh(t)‖lp(hZd) ≤ c(p, q, d) t−d/2 (1/q−1/p)‖ϕh‖lq(hZd)

for all t > 0, uniformly in h > 0.

A similar approach in the case of the transport equation has been studied
by Brenner and Thomée [2] and Trefethen [11]. They introduce a finite dif-
ference approximation and give conditions which guarantee the lp-stability of
the scheme.

Next we prove that the fundamental solutions Kd,h
t of equation (3) are

related to the modified Bessel function Iν(x):

(Kd,h
t )j =

(
exp(− 2t

h2 )
πh

)d d∏

k=1

Ijk

(
2t

h2

)
, j = (j1, j2, . . . , jd) ∈ Zd. (4)

This property proves the positivity and various properties regarding the
monotonicity of the discrete kernel Kd,h

t .
Finally, we consider the weighted space l1(hZd, |x|) and obtain the first

term in the asymptotic expansion of the discrete solution. The weighted spaces
lp(hZd, |x|), 1 ≤ p < ∞ are defined as follows:

lp(hZd, |x|) =
{
{uj}j∈Zd : ‖u‖p

lp(hZd,|x|) = hd
∑

j∈Zd

|uj|p|jh|p < ∞
}

.

The following theorem gives us the first term of the asymptotic expansion of
the solution uh:

Theorem 2. Let p ≥ 1. Then there exists a positive constant c(p, d) such that
∥∥∥∥∥∥
uh(t)−


h

∑

j∈Zd

ϕh
j


Kd,h

t

∥∥∥∥∥∥
lp(hZd)

≤ c(p, d) t−1/2−d/2 (1−1/p)‖ϕh‖l1(hZd,|x|)

for all ϕh ∈ l1(hZd, |x|) and t > 0, uniformly in h > 0.

This shows that for t large enough the solution behaves as the fundamental
solution. In contrast with (2) our result is valid only for the initial data in the
weighted space l1(hZ, |x|). The extension of this result to general initial data,
i.e. in lq(hZ, |x|), 1 < q < p, remains an open problem. In [6] we consider
the first k ≥ 1 terms of the asymptotic expansion of the discrete solution and
obtain a similar result.

2 Proof of the Results

By means of SDFT we obtain that ûh satisfies the following ODE:
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dûh

dt
(t, ξ) = − 4

h2

d∑

k=1

sin2

(
ξkh

2

)
ûh(t, ξ), t > 0, ξ ∈

[
−π

h
,
π

h

]d

.

In the Fourier space, the solution ûh reads

ûh(t, ξ) = e−tph(ξ)ϕ̂h(ξ), ξ ∈
[
−π

h
,
π

h

]d

,

where the function ph : [−π/h, π/h]d → R is given by

ph(ξ) =
4
h2

d∑

k=1

sin2

(
ξkh

2

)
. (5)

The solution of equation (3) is given by a discrete convolution between the
fundamental solution Kd,h

t and the initial datum:

uh(t) = Kd,h
t ∗ ϕh.

The inverse SDFT of the function e−tph(ξ) gives us the following representation
of the fundamental solution Kd,h

t :

(Kd,h
t )j =

1
(2π)d

∫

[−π/h,π/h]d
e−tph(ξ)eij·ξhdξ, j ∈ Zd.

We point out that for any j = (j1, j2, . . . , jd) ∈ Zd the kernel Kd,h
t can be

written as the product of one-dimensional kernels K1,h
t :

(Kd,h
t )j =

d∏

k=1

(K1,h
t )jk

. (6)

A simple change of variables in the explicit formula of K1,h
t relates it with the

modified Bessel functions:

(Kh
t )j =

exp(− 2t
h2 )

πh
Ij

(
2t

h2

)
, j ∈ Z.

Separation of variables formula (6) proves (4). We recall that the modified
Bessel’s function Iν(x) is positive for any positive x. Also for a fixed x, the
map ν → Iν(x) is even and decreasing on [0,∞) (cf. [8], Ch. II, p. 60). These
properties prove that the kernel Kd,h

t has the following properties:

Theorem 3. Let t > 0 and h > 0. Then
i) For any j = (j1, j2, . . . , jd) ∈ Zd

(Kd,h
t )j =

(
exp(− 2t

h2 )
πh

)d d∏

k=1

Ijk

(
2t

h2

)
.
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ii) For any j ∈ Zd, the kernel (Kd,h
t )j is positive.

iii) The map j ∈ Z 7→ (K1,h
t )j is increasing for j ≤ 0 and decreasing for

j ≥ 0.
iv) For any a = (a1, a2, . . . , ad) ∈ Zd and b = (b1, b2, . . . , bd) ∈ Zd satisfying

|a1| ≤ |b1|, |a2| ≤ |b2|, . . . , |ad| ≤ |bd|,
the following holds

(Kd,h
t )b ≤ (Kd,h

t )a.

The long time behaviour of the kernel Kd,h
t is similar to the one of its

continuous counterpart.

Theorem 4. Let p ∈ [1,∞]. Then there exists a positive constant c(p, d) such
that

‖Kd,h
t ‖lp(hZd) ≤ c(p, d) t−d/2 (1−1/p) (7)

holds for all positive times t, uniformly on h > 0.

Once Theorem 4 is proved, Young’s inequality provides the decay rates of
the solutions of equation (3) as stated in Theorem 1.

Proof (of Theorem 4). A scaling argument shows that (Kd,h
t )j = (Kd,1

t/h2)j,
reducing the proof to the case h = 1.

In the sequel we consider the band limited interpolator of the sequence
Kd,1

t (cf. [12], Ch. I, p. 13):

Kd
∗ (t, x) =

1
(2π)d

∫

[−π,π]d
eix·ξe−tp1(ξ)dξ. (8)

In [9] the authors prove the existence of a positive constant A such that for
any function f with its Fourier transform supported in the cube [−π, π]d the
following holds:

∑

j∈Zd

|f(j)|p ≤ Ad

∫

Rd

|f(x)|pdx, p ≥ 1. (9)

This reduces (7) to similar estimates on the Lp(Rd)-norm of Kd
∗ . The inter-

polator Kd
∗ satisfies

‖DαKd
∗ (t, ·)‖Lp(R) ≤ c(α, p, d) t−|α|/2−d/2 (1−1/p) (10)

for any multiindex α = (α1, . . . , αd) and 1 ≤ p ≤ ∞. Using (5) and (8), we
reduce (10) to the one dimensional case. We consider the cases p = 1 and
p = ∞. The general case, 1 < p < ∞, follows by the Hölder inequality. The
case p = ∞ easily follows by the rough estimate:

‖DαK1
∗(t, ·)‖L∞(Rd) ≤

1
2π

∫ π

−π

|ξ|α exp
(
−4t sin2 ξ

2

)
dξ ≤ c(α) t−(α+1)/2.
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Finally, we apply Carlson-Beurling’s inequality (cf. [1] and [2]):

‖â‖L1(R) ≤ (2‖a‖L2(R)‖a′‖L2(R))1/2

to the function a(ξ) = |ξ|α exp(−4t sin2 ξ/2). We obtain the existence of a
positive constant C such that for all t > 0,

‖K1
∗(t)‖L1(R) ≤ C.

This proves Theorem 4. ut
Now we sketch the proof of Theorem 2.

Proof (of Theorem 2). First, a scaling argument reduces the proof to the case
h = 1. We consider the cases p = 1 and p = ∞, the other cases follow by
interpolation. The solution u1(t) of equation (3) is given by:

u1
j (t) = (Kd,1

t ∗ ϕ1)j =
∑

n∈Zd

(Kd,1
t )j−nϕ1

n.

Let us introduce the sequence {aj(t)}j∈Zd as follows

aj(t) =
(
u1(t)−Kd,1

t

∑

n∈Zd

ϕ1
n

)
j
= u1

j (t)− (Kd,1
t )j

∑

n∈Zd

ϕ1
n

=
∑

n∈Zd

(Kd,1
t )j−nϕ1

n − (Kd,1
t )j

∑

n∈Zd

ϕ1
n

=
∑

n∈Zd

ϕ1
n

(
(Kd,1

t )j−n − (Kd,1
t )j

)
.

In the sequel we denote by c a constant that may change from one line to
another. It remains to prove that

sup
j∈Zd

|aj(t)| ≤ c t−(d+1)/2 ‖ϕ1‖l1(Zd,|x|) (11)

and ∑

j∈Zd

|aj(t)| ≤ c t−1/2 ‖ϕ1‖l1(Zd,|x|).

The Taylor formula applied to the function Kd
∗ gives us

Kd
∗ (t, j− n)−Kd

∗ (t, j) =
∫ 1

0

∑

|α|=1

DαKd
∗ (t, j− sn)(−n)αds.

As a consequence, for any j ∈ Zd the sequence aj(t) satisfies
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|aj(t)| ≤
∑

n∈Zd

|ϕ1
n|

∑

|α|=1

∫ 1

0

|nα||DαKd
∗ (t, j− sn)|ds

≤ c
∑

n∈Zd

|ϕ1
n||n|

∑

|α|=1

∫ 1

0

|DαKd
∗ (t, j− sn)|ds

= c
∑

n∈Zd

|ϕ1
n||n|

∑

|α|=1

bα
j,n(t). (12)

To prove inequality (11), which corresponds to p = ∞, it is sufficient to show
that

bα
j,n(t) ≤ c t−(d+1)/2

for all indices α with |α| = 1. Inequality (10) shows that

bα
j,n(t) ≤ ‖DαKd

∗ (t)‖L∞(Rd) ≤ c t−|α|/2−d/2 = c t−(d+1)/2.

Now let us consider the case p = 1. We sum on j ∈ Zd in inequality (12) and
obtain:

∑

j∈Zd

|aj(t)| ≤
∑

j∈Zd

∑

n∈Zd

|ϕ1
n||n|

∑

|α|=1

bα
j,n(t)

=
∑

n∈Zd

|ϕ1
n||n|

∑

|α|=1

∑

j∈Zd

bα
j,n(t).

It remains to prove that
∑

j∈Zd

bα
j,n(t) ≤ c t−1/2 (13)

for all n ∈ Zd and for any multiindex α with |α| = 1. Using the separation of
variables, we get for all j = (j1, . . . , jd) ∈ Zd and n = (n1, . . . , nd) ∈ Zd,

bα
j,n(t) =

∫ 1

0

d∏

k=1

|DαK1
∗(t, jk − snk)|ds

and hence,

∑

j∈Zd

bα
j,n(t) =

∫ 1

0

d∏

k=1


 ∑

jk∈Z

|DαkK1
∗(t, jk − snk)|


ds

≤ sup
s∈R

d∏

k=1


 ∑

jk∈Z

|DαkK1
∗(t, jk − s)|


 .

We prove that each term in the last product is dominated by t−αk/2 and
consequently the product will be bounded by t−|α|/2. Applying (9) to the
function K1

∗(t, · − s), each of the above sum satisfies
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∑

jk∈Z

|DαkK1
∗(t, jk − s)| ≤ c

∫

R

|DαkK1
∗(t, x− s)|dx

= c

∫

R

|DαkK1,1
∗ (t, x)|dx ≤ c t−|αk|/2.

This proves inequality (13) and finishes the proof of Theorem 2. ut
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