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Abstract

We consider a semidiscrete scheme for the linear Schrödinger equa-
tion with high order dissipative term. We obtain maximum norm es-
timates for its solutions and we prove global Strichartz estimates for
the considered model, estimates that are uniform with respect to the
mesh size. The methods we employ are based on classical arguments
of harmonic analysis.
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1 Introduction

Let us consider the linear Schrödinger equation in the whole space:

iut + ∆u = 0. (1)

This equation has two important properties, the conservation of energy

‖u(t)‖L2(Rd) = ‖u(0)‖L2(Rd)

and a dispersive property:

‖u(t)‖L∞(Rd) ≤
c(d)
|t|d/2

‖u(0)‖L1(Rd), t 6= 0. (2)

These properties have been employed to develop well-posedness results for

homogenous and nonlinear Schrödinger equations [16, 5, 18]. The main idea

of these works is to obtain space-time estimates for the solutions of the linear

Schrödinger equation, called Strichartz estimates after the pioneering work

of Strichartz [16]:

‖u‖Lq(R, Lr(Rd)) ≤ c(d, q, r)‖u(0)‖L2(Rd), (3)

where (q, r) are the so-called d/2-admisible pairs:

1
q

=
d

2

(1
2
− 1

r

)
.

In [8] trying to introduce a numerical scheme for the nonlinear Schrödinger

equation with low regular initial data, the authors prove the lack of uniform
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dispersive properties of type (2) or (3) for the solutions of the simplest ap-

proximation of the linear Schrödinger equation:

iut + ∆hu = 0, (4)

where uniformity is with respect to the mesh size. Above, ∆h is the second

order approximation by finite differences of the Laplace operator ∆:

(∆hu)j =
1
h2

d∑

k=1

(uj+ek
+ uj−ek

− 2uj), j ∈ Zd,

{ek}d
k=1 being the canonical basis in Rd.

To be more precise, along this paper we will consider the spaces lp(hZd)

of sequences {ϕj}j∈Zd endowed with the norms

‖ϕ‖lp(hZd) =





(
hd

∑

j∈Zd

|ϕj |p
)1/p

, 1 ≤ p < ∞,

sup
j∈Zd

|ϕj |, p = ∞.

In dimension one, the lack of a uniform estimate of type (2) is due to the

fact that the symbol ph(ξ) = 4/h2 sin(ξh/2) of the operator −∆h changes

the convexity at the points ±π/2h, a property that the continuous one ξ2,

does not satisfy. Observing this pathology, in [8] the following estimate for

the solutions of scheme (4) is proved:

‖u(t)‖l∞(hZd) ≤ c(d)
( 1
|t|1/2

+
1

|th|1/3

)
‖u(0)‖l1(hZd),

estimate that is not uniform on the mesh parameter h. This does not allow

to prove uniform Strichartz-like estimates for the above semi-discretization.
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A similar result can be stated in dimension d in terms of the rank of the

Hessian matrix Hph
(ξ), where ph is the symbol of the discrete operator −∆h:

ph(ξ) =
4
h2

d∑

k=1

sin2
(ξkh

2

)
, ξ ∈

[
− π

h
,
π

h

]d
.

We mention that the Schrödinger equation on the lattice hZd, without

concern for the uniformity of the estimates with respect to the size of the

lattice, has been also studied in [13]. The analysis of dispersive properties

for fully discrete models is analyzed in [11] for the KdV equation and in [6]

for the Schrödinger equation.

For numerical purposes, to avoid the lack of uniformness of the dispersive

properties, in [7] the following viscous scheme is introduced:

iut + ∆hu = i sgn(t)a(h)∆hu, (5)

where a(h) goes to zero as h goes to zero such that infh>0 a(h)/h2−d/α > 0

for some parameter α > d/2. The authors have thus obtained that the

solutions of (5) satisfy

‖u(t)‖l∞(hZd) ≤ c(d)(|t|−d/2 + |t|−α)‖u(0)‖l1(hZd).

Observe that the behavior at t ∼ 0 and t ∼ ∞ is different. Thus, the

estimates of the type (3) obtained in [7] for the solutions of scheme (5)

are not global. More precisely, for any T > 0, the authors prove that the

solutions of (5) satisfy for any α-admissible pair (q, r):

1
q

= α
(1

2
− 1

r

)
,
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the following estimate:

‖u‖Lq([−T,T ], lr(hZd)) ≤ C(d, T, q, r)‖u(0)‖l2(hZd).

The global estimates are useful in obtaining the global existence of solutions

for the critical nonlinear Schrödinger equation:

iut + ∆u = |u|4/du,

with large L2-initial data. If one assumes that for such initial datum ϕ,

the norm ‖ exp(it∆)ϕ‖Lq(R,Lr(Rd)) is small enough, then global existence of

solutions is guaranteed by the global Strichartz estimates (see for example

[3], Ch. 4.7, p. 119). Examples of ϕ ∈ L2(Rd) satisfying the above condition

are given in [10] (Ch. 5, p. 108).

In this paper we introduce a numerical scheme with a high order dissi-

pative term as follows:

iut + ∆hu = −ia(h)(−∆h)mu, (6)

with m ≥ 2 an integer and a(h) → 0 as h → 0, such that

inf
h>0

a(h)
hm−1

> 0.

Observe that the solutions of (6) at time t satisfy

u(t) = exp(it∆h) exp(−t(−∆h)m)u(0).

In order to derive lp(hZd)-estimates for the solution u of (6) we need to

analyze the action of the operator exp(−t(−∆h)m) on the spaces lp(hZd).
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Using the results obtained in Section 2 for the operator exp(−t(−∆h)m)

we prove that the solutions of (6) have uniform decay rates similar to those

of the continuous equation (1). As a consequence we obtain Strichartz like

estimates for our model similar to those of the continuous one. For further

applications of these results for approximations of nonlinear Schrödinger

equation we refer to [8].

The article is organized as follows. In Section 2 we obtain lp(hZd) −

lq(hZd) estimates on the operator exp(−t(−∆h)m). Section 3 is devoted to

the lp
′
(hZd) − lp(hZd), p ≥ 2, estimates on the solutions of equation (6).

Finally in Section 4 we prove global Strichartz estimates for the considered

dissipative scheme.

2 Decay rates for the operator exp(−t(−∆h)
m)

Let us consider the following equation:

{
ut = −(−∆)mu in (0,∞)× Rd,
u(0) = ϕ in Rd,

(7)

where m > 0. It is well known that, as long as the Fourier transform makes

sense, the solution of equation (7) is given in the Fourier variable by

û(t, ξ) = exp(−t|ξ|m)ϕ̂(ξ), ξ ∈ Rd, t ≥ 0.

Classical properties of the Fourier transform guarantee that u(t) = Gm(t)∗ϕ,

where Ĝm(t, ξ) = exp(−t|ξ|m). A scaling argument gives us that for any
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t > 0 and x ∈ Rd, the following holds:

Gm(t, x) = t−d/msGm(1, xt−1/m).

Thus for any p ≥ 1, the Lp(Rd)-norm of Gm(t) satisfies

‖Gm(t)‖Lp(Rd) ≤ c(m, p, d)t−
d
m

(1− 1
p
)
.

Using Young’s inequality we get for any 1 ≤ p ≤ q ≤ ∞ and t > 0 that the

following holds

‖ exp(−t(−∆)m)ϕ‖Lq(Rd) ≤ c(m, p, q, d)t−
d
m

( 1
p
− 1

q
)‖ϕ‖Lp(Rd).

We point out that in the case m = 1 the above estimates can be obtained

by energy methods.

We consider the following approximation of equation (7):




duh

dt
= −(−∆h)muh, t > 0,

uh(0) = ϕh,

(8)

where we have replaced the Laplace operator ∆ by ∆h. We will prove

that the solutions of (8) have similar decay properties as the continuous

counterpart and moreover the estimates are uniform with respect to the

mesh size h.

The main result concerning the long time behavior of the semidiscrete

solution uh is given by the following theorem.
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Theorem 2.1. Let m be a positive integer and 1 ≤ p ≤ q ≤ ∞. There

exists a positive constant c = c(m, p, q, d) such that

‖uh(t)‖lq(hZd) ≤ c‖ϕh‖lp(hZd)t
− d

m
( 1

p
− 1

q
) (9)

holds for all positive time t, uniformly on h > 0.

As in the continuous case, in the semidiscrete case the lp(hZd)− lq(hZd)

estimates are reduced to estimates on the fundamental solutions Gh
m(t) of

(8). The main difficulty is given by the fact that the new operator −∆h

introduces a symbol ph(ξ) that is not homogenous. In the continuous case

this was the key point to establish that the fundamental solution of (7)

can be written at any time t in terms of itself at time t = 1, and then

the Lp(Rd)-estimates of the solutions u. Thus one cannot apply the above

scaling arguments to obtain lp(hZd)-estimates on the fundamental solution

Gh
m(t).

In the case 2 ≤ p ≤ ∞, the lp(hZd)-norm of Gh
m(t) is easily estimated by

interpolating between the cases p = 2 and p = ∞. The case p = 2 follows

by Plancherel’s identity. Also the case p = ∞ follows by rough estimates.

The main difficulty is to estimate the l1(hZd)-norm of the discrete kernel

Gh
m(t). In the case m = 1 this follows by using the fact that exp(t∆h)

satisfies the maximum principle (see for instance [4]) and the fact that the

mass of solutions does not increases as t increase. To estimate the l1(hZd)-

norm of Gh
m we will proceed as in [2] (Ch. 3, p. 71), using Carlson-Beurling’s
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inequality (see for instance [2], Ch. 1, Th. 3.1, p. 18):

‖f‖L1(Rd) . ‖f̂‖1− d
2n

L2(Rd)
‖f̂‖

d
2n

Ḣn(Rd)
, (10)

inequality that holds for any n > d/2 and for all f̂ ∈ Hn(Rd) . Observe that

both right hand side terms contains the Fourier transform of f and then the

L1(Rd)-norm of the function f is easily estimated if its Fourier transform is

known explicitly.

In what follows, to avoid the presence of constants, we will use the nota-

tion A . B to report the inequality A ≤ constant×B, where the constant is

independent of h. The statement A ' B is equivalent to A . B and B . A.

Proof of Theorem 2.1. Using the semidiscrete Fourier transform at scale h

(see [17] for the main properties of this transform):

û(ξ) = Fh(u)(ξ) = hd
∑

j∈Zd

uj exp(ijξh), ξ ∈
[
− π

h
,
π

h

]d
,

the solutions of equation (8) are given in the Fourier variable by

ûh(t, ξ) = exp(−tpm
h (ξ))ϕ̂h(ξ), ξ ∈

[
− π

h
,
π

h

]d
, t > 0. (11)

Observe that uh(t) can be written in the convolution form

uh(t) = Gh
m(t) ∗ ϕh, t > 0, (12)

where ∗ is the discrete convolution on hZd:

(u ∗ v)n = hd
∑

j∈Zd

un−jvj , n ∈ Zd
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and

Gh
m(j, t) =

∫

[−π/h,π/h]d
exp(−tpm

h (ξ)) exp(ijξh)dξ, j ∈ Zd. (13)

In view of Young’s inequality it is easy to see that (9) holds if for any

h > 0 and p ≥ 1 the fundamental solution Gh
m satisfies:

‖Gh
m(t)‖lp(hZd) ≤ c(p, d,m)t−

d
m

(1− 1
p
)
, t > 0 (14)

for some positive constant c(p, d, m), independent of h.

A scaling argument allows us to deal with the case h = 1:

Gh
m(t) =

1
hd

G1
m

( t

h2m

)

and

‖Gh
m(t)‖lp(hZd) =

1
hd

∥∥∥G1
m

( t

h2m

)∥∥∥
lp(hZd)

= h
d( 1

p
−1)

∥∥∥G1
m

( t

h2m

)∥∥∥
lp(Zd)

.

The case p = ∞ follows by the rough estimate:

‖G1
m(·, t)‖l∞(hZd) ≤

∫

[−π,π]d
exp(−tpm

1 (ξ))dξ

≤
∫

[−π,π]d
exp(−tc(m)|ξ|2m)dξ . t−

d
m ,

once we observe that

p1(ξ) ≥ 4
π2
|ξ|2, ∀ ξ ∈

[
− π

h
,
π

h

]d
.

In the following we consider the case p = 1:

‖G1
m(t)‖l1(Zd) ≤ c(d,m), t > 0,
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the other cases 1 < p < ∞, coming by Hölder’s inequality.

Let us consider the new function Gm defined by

Gm(x, t) =
∫

[−π,π]d
exp(−tpm

1 (ξ)) exp(ixξ)dξ, x ∈ Rd.

In fact this function represents the band-limited interpolator of the sequence

G1
m(t) (cf. [19], Ch. II). The results of Plancherel and Pólya on band-limited

function [12] (see also [20], Ch. 2 , p. 82, Th. 17) show that the discrete norms

of G1
m can be controlled by the continuous one of Gm:

‖G1
m(·, t)‖l1(Zd) . ‖Gm(·, t)‖L1(Rd).

Now, we choose n > d/2 and apply inequality (10) to the function Gm:

‖Gm(t)‖L1(Rd) ≤ ‖Ĝm(t)‖1−d/2n

L2(Rd)
‖Ĝm(t)‖d/2n

Ḣn(Rd)
. (15)

Taking into account that p1(ξ) ' |ξ|2 on [−π, π]d, by Plancherel’s identity

we easily estimate the L2-norm of Ĝm(t):

‖Ĝm(t)‖2
L2(Rd) ≤

∫

[−π,π]d
exp(−c(m)t|ξ|2m)dξ . 〈t〉− d

2m , t > 0,

where 〈·〉 is the Japanese bracket 〈·〉 = t + 1. In view of inequality (15) it

remains to prove that

‖Ĝm(t)‖Ḣn(Rd) ≤ 〈t〉 n
2m
− d

4m (16)

holds for all positive time t.

By symmetry it is sufficient to prove that

‖∂n
ξ1 exp(−tpm

1 )‖L2([−π,π]d) . 〈t〉 n
2m
− d

4m . (17)
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For an integer n ≥ 1, we recall the following identity

∂n
ξ1(exp(g)) = exp(g)

∑

α1+2α2+...+nαn=n

aα1,...,αn(∂1
ξ1g)α1(∂2

ξ1g)α2 ...(∂n
ξ1g)αn

where aα1,...,αn are constants independent of g.

Applying the above identity to the function g = −tpm
1 (ξ) we obtain

|∂n
ξ1(exp(−tpm

1 ))(ξ)| .

. exp(−tpm
1 (ξ))

∑

α1+2α2+...+nαn=n

tα1+...+αn

n∏

j=1

|∂j
ξ1

(pm
1 )(ξ)|αj .

Using that for any ξ ∈ [−π, π]d the function p1 satisfies

|∂j
ξ1

p1(ξ)| . min{1, |ξ|2m−j},

we obtain by Cauchy’s inequality that the following holds for all ξ ∈ [−π, π]d:

|∂n
ξ1(exp(−tpm

1 ))(ξ)|2 .

. exp(−2tpm
1 (ξ))

∑

α1+2α2+...+nαn=n

t2(α1+...+αn)

min{2m,n}∏

j=1

|ξ|2(2m−j)αj .

(18)

For any 0 < t < 1 we obviously have

∫

[−π,π]d

|∂n
ξ1(exp(−tpm

1 ))(ξ)|2dξ . 1.

It remains to prove that for all t ≥ 1 the following holds

∫

[−π,π]d

|∂n
ξ1(exp(−tpm

1 ))(ξ)|2dξ . t
n
m
− d

2m . (19)
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Integrating inequality (18) on [−π, π]d and using that p1(ξ) ' |ξ|2 on

this interval we get

∫

[−π,π]d

|∂n
ξ1(exp(−tpm

1 ))(ξ)|2dξ .
∑

α1+2α2+...+nαn=n

t2(α1+...+αn) ×

×
∫

[−π,π]d

e−c(m)t|ξ|2m
min{2m,n}∏

j=1

|ξ|2(2m−j)αjdξ.

We now use that for any s and m positive the following holds:

∫

Rd

exp(−t|ξ|2m)|ξ|sdξ . t−
d

2m
− s

2m .

This implies that

∫

[−π,π]d

|∂n
ξ1(exp(−tpm

1 ))(ξ)|2dξ . t−
d

2m

∑

α1+2α2+...+nαn=n

t2p(α1,...,αn)

where

p(α1, . . . , αn) = α1 + · · ·+ αn − 1
2m

min{2m,n}∑

j=1

(2m− j)αj .

In order to prove (19) it is sufficient to show that

p(α1, . . . , αn) ≤ n

2m

for all indexes (α1, . . . , αn) such that α1 + 2α2 + · · ·+ nαn = n. If 2m ≥ n

the last inequality is in fact an equality. If not, explicit calculations show

that

p(α1, . . . , αn) =
n∑

j=2m+1

αj +
1

2m

2m∑

j=1

jαj ≤ 1
2m

n∑

j=1

jαj =
n

2m
.
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3 A Higher Order Dissipative Scheme
for the Schrödinger equation

In the following we will consider a numerical scheme with a high order

dissipative term. We will replace in the right hand side of (5) the operator

∆h by −(−∆h)m. The scheme we will analyze is the following




i
duh

dt
+ ∆huh = −i sgn(t)a(h)(−∆h)muh, t 6= 0,

uh(0) = ϕh.
(20)

The term −(−∆h)m will introduce more dissipation than ∆h. Observe that

for high frequencies |ξ| ∼ 1/h the contribution of the term −(−∆h)m is of

order 1/h2m, which is greater than 1/h2, introduced by ∆h in scheme (5).

The following theorem shows that for any integer m ≥ 2 we can recover

the same behavior of the solutions as in the continuous case, uniform on the

mesh size h. In contrast with the scheme (5) in this case the behavior of the

solutions will be the same for t ∼ 0 and t ∼ ∞.

Theorem 3.1. Let be m ≥ 2 an integer and a(h) a positive function such

that

inf
h>0

a(h)
h2(m−1)

= a > 0. (21)

For any p ∈ [2,∞] there exist positive constants c = c(d, p,m, a) such that

‖uh(t)‖lp(hZd) ≤
c

|t| d2 (1− 2
p
)
‖ϕh‖lp′ (hZd) (22)

holds for all t 6= 0, ϕh ∈ lp
′
(hZd) and h > 0.
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Proof. Taking the semidiscrete Fourier transform in (20) we obtain that ûh

satisfies the following ODE:




iûh
t (t, ξ)− ph(ξ)ûh(t, ξ) = −i sgn(t)a(h)pm

h (ξ)ûh(t, ξ), t 6= 0, ξ ∈
[
− π

h , π
h

]d
,

û(0, ξ) = ϕ̂h(ξ), ξ ∈
[
− π

h , π
h

]d
.

Solving this ODE we find that for all time t, uh satisfies:

ûh(t, ξ) = exp(−itph(ξ)) exp(−|t|a(h)pm
h (ξ))ϕ̂h(ξ). (23)

We will consider the cases p = 2 and p = ∞, the other come by interpo-

lation.

In the case p = 2, Plancherel’s identity gives us that

‖uh(t)‖l2(hZd) =
1

(2π)d

∫

[−π/h,π/h]d
exp(−2|t|a(h)pm

h (ξ))|ϕ̂h(ξ)|2dξ

≤ ‖ϕ‖2
l2(hZd).

In the following we analyze the case p = ∞:

‖uh(t)‖l∞(hZd) . |t|− d
2 ‖ϕh‖l1(hZd). (24)

In view of (23) we write the solution uh(t) in the convolution form

uh(t) = Kh(t) ∗ ϕh,

where the kernel Kh(t) is given by

Kh(t, j) =
∫

[−π
h

, π
h

]d
e−itph(ξ)e−|t|a(h)pm

h (ξ)eij·ξhdξ.
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In order to prove (24) it is sufficient to prove that Kh(t) satisfies:

‖Kh(t)‖l∞(hZd) . |t|− d
2

for all t 6= 0.

We decompose the kernel Kh(t) in two components: a low frequency

component, respectively a high frequency one. To illustrate this fact let us

denote Ωh = [−π/h, π/h]d \ [−π/4h, π/4h]d. We define

Kh
low(t, j) =

∫

[−π/4h,π/4h]d
e−itph(ξ)e−|t|a(h)pm

h (ξ)eij·ξhdξ

and

Kh
high(t, j) =

∫

Ωh

e−itph(ξ)e−|t|a(h)pm
h (ξ)eij·ξhdξ.

Then the high component Kh
high(t) satisfies the rough estimate

‖Kh
high(t)‖l∞(hZd) ≤

∫

Ωh

e−|t|a(h)pm
h (ξ)dξ

≤ c(d)
hd

exp
(
− |t|a(h)

h2m

(
d sin2 π

8
)m

)
≤ c(m, d)

hd

(
h2m

|t|a(h)

)d/2

≤ c(m, d)
|t|d/2

(
inf
h>0

a(h)
h2(m−1)

)−d/2

≤ c(m, d, a)
|t|d/2

.

It remains to estimate Kh
low(t), the restriction of the kernel Kh(t) on the

low frequencies. Observe that Kh
low(t) satisfies

Kh
low(t) = Kh

3 (t) ∗Gh
m(|t|a(h)),

where Gh
m is defined in (13) and Kh

3 (t) is given by:

Kh
3,j(t) =

∫

[−π/4h,π/4h]d
exp(−itph(ξ)) exp(ijξh)dξ.
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Applying estimate (14) with p = 1 and Young’s inequality we get

‖Kh
low(t)‖l∞(hZd) ≤ ‖Kh

3 (t)‖l∞(hZd)‖Gh
m(|t|a(h))‖l1(hZd) . ‖Kh

3 (t)‖l∞(hZd).

Thus, it is sufficient to prove that

‖Kh
3 (t)‖l∞(hZd) . |t|− d

2 .

Using the separation and change of variables, it is sufficient to prove that

sup
j∈Z

∣∣∣
∫ π/4

−π/4
exp(−it sin2(ξ/2)) exp(ijξ)dξ

∣∣∣ ≤ |t|− 1
2 (25)

for all t 6= 0. Using that the function ξ → sin2(ξ/2) does not change the

convexity on the interval [−π/4, π/4] we apply Van der Corput’s Lemma

(Prop. 2, Ch. 8, p. 332, [15]) and then we obtain (25).

The proof is now complete.

4 Strichartz estimates

In this section we obtain space-time estimates for the solutions of (20),

similar to those given in (3) for the continuous case. We denote by Sh(t),

the solution of (20) at time t:

Shϕ(t) = exp(it∆h) exp(−|t|(−∆h)m)ϕ. (26)

Observe that Sh(t) satisfies the semigroup condition Sh(t+ s) = Sh(t)Sh(s)

restricted on [0,∞) and (−∞, 0] but not on the whole interval (−∞,∞),

Sh(t)Sh(s) being more dissipative than Sh(t + s) in the case ts < 0.

The main result of this section is given by the following theorem.
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Theorem 4.1. Let be a(h) satisfying (21) and (q, r), (q̃, r̃) two d/2-admissible

pairs. Then

i) There exists a positive constant C = C(d, r,m, a) such that

‖Sh(·)ϕ‖Lq(R, lr(hZd)) ≤ C‖ϕ‖l2(hZd) (27)

holds for all ϕh ∈ l2(hZd) uniformly on h > 0.

ii) There exists a positive constant C(d, r,m, a) such that

∥∥∥∥
∫

R
Sh(s)∗f(s)ds

∥∥∥∥
l2(hZd)

≤ C(d, r,m, a)‖f‖Lq′ (R, lr
′
(hZd)) (28)

holds for all f ∈ Lq̃′(R, lr̃
′
(hZd)), uniformly on h > 0.

iii) There exists a positive constant C = C(d, α, r,m, a) such that

∥∥∥∥
∫

s<t
Sh(t− s)f(s)ds

∥∥∥∥
Lq(R, lr(hZd))

≤ ‖f‖Lq̃′ (R, lr̃
′
(hZd)). (29)

holds for all f ∈ Lq̃′(R, lr̃
′
(hZd)), uniformly on h > 0.

The first part of the theorem will be obtained as a consequence of the

following result of Keel and Tao, [9]. We state here the original result.

Proposition 4.1. ([9], Theorem 1.2) Let H be a Hilbert space, (X, dx)

be a measure space and U(t) : H → L2(X) be a one parameter family of

mappings, which obey the energy estimate

‖U(t)f‖L2(X) ≤ C‖f‖H (30)

and the decay estimate

‖U(t)U(s)∗g‖L∞(X) ≤ C|t− s|−σ‖g‖L1(X) (31)
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for some σ > 0. Then

‖U(t)f‖Lq(R, Lr(X)) ≤ C‖f‖L2(X),
∥∥∥∥
∫

R
U(s)∗F (s)ds

∥∥∥∥
L2(X)

≤ C‖F‖Lq′ (R, Lr′ (X)),

∥∥∥∥
∫ t

0
U(t)U(s)∗F (s)ds

∥∥∥∥
Lq(R, Lr(X))

≤ C‖F‖Lq̃′ (R, Lr̃′ (X))

for all (q, r) and (q̃, r̃), σ-admissible pairs.

Proof of Theorem 4.1. We will apply Proposition 4.1 to the operator Sh(t)

defined in (26). In view of (31), it is sufficient to prove that

‖Sh(t)Sh(s)∗ϕ‖l∞(hZd) . |t− s|− d
2 ‖ϕ‖l1(hZd)

holds for all ϕ ∈ l1(hZd) and t 6= s.

Observe that this property is not an immediate consequence of (22).

This is due to the fact that

Sh(t)Sh(s)∗ϕ = Sh(t)Sh(−s)ϕ 6= Sh(t− s)ϕ

and thus we can not apply (22) directly. However the estimates obtained

in Section 2 give us the right estimate, by pointing out that Sh(t)Sh(s)∗ is

more dissipative than Sh(t− s). Observe that the following

Sh(t)Sh(s)∗ = exp(i(t− s)∆h) exp(−|t|a(h)(−∆h)m) exp(−|s|a(h)(−∆h)m)

= Sh(t− s) exp(−(|t|+ |s| − |t− s|)a(h)(−∆h)m)
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holds for all t and s. Thus

‖Sh(t)Sh(s)∗ϕ‖l∞(hZd) ≤

≤ ‖Sh(t− s) exp(−(|t|+ |s| − |t− s|)a(h)(−∆h)m)ϕ‖l1(hZd)

≤ |t− s|−d/2‖ exp(−(|t|+ |s| − |t− s|)a(h)(−∆h)m)ϕ‖l1(hZd)

≤ |t− s|−d/2‖ϕ‖l1(hZd).

This guarantees that property (30) is satisfied. As a consequence we obtain

(27) and (28). Unfortunately (29) does not follow from Proposition 4.1. We

remark that Proposition 4.1 gives us that
∥∥∥∥
∫

s<t
Sh(t)Sh(s)∗f(s)ds

∥∥∥∥
Lq(R, lr(hZd))

≤ ‖f‖Lq̃′ (R, lr̃′ (hZd)),

which is weaker than (29), the operator Sh(t)Sh(s)∗ being more dissipative

than Sh(t − s). However, a slight modification of the proof of Proposition

4.1 gives the desired result. In the following we prove (29).

Let us define the operator

Tf(t) =
∫

s<t
Sh(t− s)f(s)ds.

The operator T being linear, the proof of (29) is reduced to the cases (q̃, r̃) =

(∞, 2), (q, r) = (∞, 2) and (q, r) = (q̃, r̃). The other cases are a consequence

of an interpolation between these cases (see [1]).

In the sequel we denote by 〈·, ·〉h and 〈〈·, ·〉〉h the inner product on

l2(hZd):

〈f, g〉h = <
(
hd

∑

j∈Zd

fjgj

)
,
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respectively on L2(R, l2(hZd)):

〈〈f, g〉〉h =
∫

R
〈f(t), g(t)〉hdt.

By duality

‖Tf‖Lq(R, lr(hZd)) = sup
‖g‖

Lq′ (R, lr
′
(hZd))

≤1
〈〈Tf, g〉〉,

so we will estimate the right hand side of the above identity.

In all the analyzed cases we will use the following property of the operator

Tf :

〈〈Tf, g〉〉h =
∫

Rt

〈∫

s<t
Sh(t− s)f(s)ds, g(t)

〉

h

dt

=
∫

Rs

〈
f(s),

∫

t>s
Sh(t− s)∗g(t)dt

〉

h

ds.

Case I: (q̃, r̃) = (∞, 2). Applying Cauchy’s inequality in the space

variable we obtain:

〈〈Tf, g〉〉h ≤
∫

Rs

‖f(s)‖l2(hZd)

∥∥∥∥
∫

t>s
Sh(t− s)∗g(t)dt

∥∥∥∥
l2(hZd)

ds

≤ ‖f‖L1(R, l2(hZd)) sup
s∈R

∥∥∥∥
∫

t>0
Sh(t)∗g(t + s)dt

∥∥∥∥
l2(hZd)

.

Estimate (28) gives us

∥∥∥∥
∫

t>0
Sh(t)∗g(t + s)dt

∥∥∥∥
l2(hZd)

≤ ‖g(·+ s)‖Lq′ ((0,∞), lr
′
(hZd)) ≤ 1.

and then

〈〈T2f, g〉〉h ≤ ‖f‖L1(R, l2(hZd)).
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This finishes the proof of the first case.

Case II: (q, r) = (∞, 2). With the same arguments as above

〈〈Tf, g〉〉h ≤ sup
t∈R

∥∥∥∥
∫

s<0
Sh(s)∗f(t + s)ds

∥∥∥∥
l2(hZd)

‖g‖L1(R, l2(hZd)).

Applying again estimate (28) to the function f(·+ t) we obtain:

∥∥∥∥
∫

s<0
Sh(s)∗f(t + s)ds

∥∥∥∥ ≤ ‖f(·+ t)‖Lq̃′ ((−∞,0), lr̃′ (hZd)) ≤ 1

and finish the second case.

Case III: (q, r) = (q̃, r̃). Observe that Tf satisfies

‖Tf(t)‖lr(hZd) ≤
∫

R
‖Sh(t− s)f(s)‖lr(hZd)ds ≤

∫

R

‖f(s)‖lr
′
(hZd)ds

|t− s|2/q
.

Applying Hardy-Littlewood-Sobolev’s inequality (cf. [14], p. 119):

‖|s|−2/q ∗ ϕ‖Lq(R) ≤ C(q, d)‖ϕ‖Lq′ (R),

to the function ϕ(s) = ‖f(s)‖lr
′
(hZd) we get

‖Tf‖Lq(R, lr(hZd) ≤ ‖f‖Lq′ (R, lr
′
(hZd)).

This ends the proof.
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