

Potential Theory Seminar

On the resonant Carleson-Radon transform

Victor Lie

Purdue University, USA

Tuesday, February 17, 2026, 14:00

IMAR, Miron Nicolescu Amphitheater

Abstract: In this talk we discuss the history and evolution of a two-decade research investigation concerning the boundedness properties of the so-called **Carleson-Radon transform**, which, in *one dimension*, is defined as

$$(1) \quad CR(f)(x, y) := \sup_{a \in \mathbb{R}} \left| \text{p.v.} \int_{\mathbb{R}} f(x - t^{\alpha_1}, y - t^{\alpha_2}) \frac{e^{a i t^{\alpha_3}}}{t} dt \right|, \quad (x, y) \in \mathbb{R}^2,$$

where here $\{a_j\}_{j=1}^3 \subset (0, \infty)$.

In spite of some moderate progress in the *higher dimensional* context—which as it turns out is easier—until recently, very little was known about the *one dimensional* object in (1).

In a previous talk we presented the resolution of the **one dimensional non-resonant** (non-zero curvature) Carleson-Radon transform which corresponds in (1) to the case $\{\alpha_j\}_{j=1}^3$ pairwise distinct.

In this talk we are going to discuss the first fundamental progress in the **one-dimensional resonant** (zero-curvature) setting corresponding to the case when $\alpha_2 = \alpha_3$ and different from α_1 .

Both the former and the latter works are joint with my graduate student Martin Hsu.