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Chapter 1

Introduction

In the last few years, Machine Learning has changed a great deal. Large neural networks,

trained with methods like backpropagation and stochastic gradient descent (SGD), have be-

come the standard for working with large, complex datasets. This approach, known as Deep

Learning, has led to many advances in fields like Computer Vision and Natural Language Pro-

cessing. When I started the work presented in this thesis, I had already seen this shift from

older, manual methods to the new data-driven ones. It was clear that deep learning was very

powerful, but it was less clear if it was the complete solution for creating intelligent systems.

Recent studies suggest that simply making models bigger or giving them more data leads to

smaller and smaller gains in performance. Theoretical work also shows that current neural

networks have fundamental limits and cannot solve certain types of complex problems. My

own feeling was that pure deep learning is a very important tool, but it is only one piece of a

bigger puzzle. It can be compared to the intuitive, pattern-recognition part of our thinking,

which is separate from the more structured, reasoning part. This thesis explores how we can

build on the strengths of deep learning while addressing some of its limitations.

Key questions and research goals

To do this, my research focused on the combination of five key areas: deep neural networks,

graphs, prediction consensus through ensembles, iterative semi-supervised learning with model

distillation, and the practical application of aerial image understanding. I chose neural net-

works as the core technology, but used graphs to model how different sensors and data types

relate to each other, just as we see the world through different senses. To make the predictions

of these models more reliable, I used ensemble learning, where multiple models vote on a final

decision. To make the most of available data, I used semi-supervised learning and distillation,

where a model trained on a small amount of labeled data teaches a new model using a large

amount of unlabeled data. Finally, all this work was grounded in the real-world problem of

aerial image understanding, with the goal of creating models that are efficient enough to be

used on robots and drones.

All of these can be seen in Figure 1.1 below as well.
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CHAPTER 1. INTRODUCTION 3

Figure 1.1: Main figure: the basic blocks of this thesis.

Datasets We introduced several new datasets to help the research community. These in-

clude a synthetic dataset for aerial scene understanding generated with the CARLA simulator,

a real-world dataset called Dronescapes with flights over Romanian and Norwegian landscapes,

and an aggregated dataset from NASA Earth Observations for predicting climate-related mea-

surements. We also present an extension to Dronescapes and an open-source framework to

help others create their own multi-modal datasets from videos.

Methods and Algorithms The methodological contributions focus on combining the core

ideas presented earlier.

� We developed new methods for depth estimation by combining analytical and neural

network approaches using ensembles.

� We introduced Concept Neural Hyper-Graphs as a way to perform multi-modal and

multi-task learning, where each part of the graph represents a different view of the

world.

� We proposed and validated iterative semi-supervised training methods that use graphs,

ensembles, and distillation, providing both theoretical and practical evidence of their

effectiveness on large aerial datasets.

� We showed that our methods produce more consistent and temporally coherent predic-

tions, even when trained only on still images.

� We developed an efficient distillation approach to train simple, fast models from more

complex ones, making them suitable for real-time use on hardware with limited resources.

� We presented a simplified and more efficient implementation of the Hyper-Graph con-
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cept, showing it can be represented by a single neural network, which speeds up training

and inference significantly.

The rest of the thesis is structured to build upon these ideas step-by-step. We will first

cover the background concepts, then present our work on depth estimation, followed by the

development of our graph-based models on both synthetic and real-world data, and finally

conclude with our unified model and future directions.



Chapter 2

Background

This chapter gives a high-level introduction to the technical concepts used in the thesis. The

goal is to define the standard terms and technologies we’ll be using in later chapters. We will

start with data for UAVs and multi-task learning in Section 2.1. Then, in Section 2.2, we will

introduce basic concepts about Machine Learning and Neural Networks, explaining how they

are defined, trained, and applied to deep learning problems. We will also discuss multi-task

multi-modal learning and end the chapter with a brief introduction to graphs, as they are used

a lot in the later chapters.

2.1 Data. The fuel that powers Machine Learning

Our work in [21] introduced a synthetic dataset with depth and ”safe landing” maps. Lately,

large vision-language datasets have also become popular, with billions of captioned images

[30].

SafeUAV dataset

In our SafeUAV paper [21], we used Google Earth [13] to automatically create synthetic UAV-

like images with labels. The idea was to use 3D reconstructions of real places to get as close

as possible to actual flight scenarios. While the images weren’t perfectly realistic, they were

useful for training models that could transfer some of what they learned to real-world images.

The dataset has 11,907 samples, split into training (80%) and validation (20%) sets. We

collected data from four different areas—two urban and two suburban—to make the dataset

diverse. For each sample, we have a 640x480 RGB image, per-pixel depth data, and a semantic

map that labels surfaces as horizontal, vertical, or other (HVO).
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Scene Surface Area Training Validation

Suburban A 1.7km2 1966 492

Suburban B 1.1km2 1049 263

Urban A 3.5km2 3636 909

Urban B 3.3km2 2873 819

Table 2.1: Distribution of the scenes in the SafeUAV dataset.

The goal of the original work was to find safe landing areas from RGB images. We framed this

as a pixel-wise semantic segmentation task with three classes: ’horizontals’ (safe to land),

’verticals’ (obstacles to avoid), and ’others’ (sloped or irregular surfaces). While this is a

simplified view of the world (e.g., a horizontal water surface is not safe), it provides a good

geometric understanding of the scene from just a camera feed. Figure 2.1 shows a sample

with its corresponding HVO and depth labels.

Figure 2.1: SafeUAV dataset sample. Columns: RGB, HVO and metric depth

2.2 Models. Modeling data distributions with Machine Learning

Machine Learning has become a standard tool for modeling data. The approach has shifted

over the years. Early on, experts would hand-craft features from the data, which were then

fed into a simple learning algorithm. After 2012, end-to-end models that learn the features

directly from raw data became popular. This data-driven approach, powered by large datasets

and better hardware, has proven to be much more successful. Today, the focus is on building

massive datasets and using self-supervised methods, though there is a growing interest in

combining data-driven learning with fundamental domain knowledge.

Classical problems in Machine Learning

At its core, Machine Learning is about learning patterns from data. A dataset contains different

variables or features. If a variable is a real number (like temperature), it’s a regression problem.
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If it’s one of a fixed set of categories (like ’cat’ or ’dog’), it’s a classification problem. Some

features are inputs (what we have), and others are outputs (what we want to predict).

In this thesis, we focus on two computer vision problems: semantic segmentation and depth

estimation. Both are dense prediction tasks, meaning we have to make a prediction for every

pixel in an image.

Semantic Segmentation This task involves assigning a class label to every pixel, like

identifying all the pixels that belong to buildings, roads, or trees. It’s a key part of scene

understanding. A challenge is that the set of classes is usually fixed by the dataset creators.

Depth Estimation Here, the goal is to estimate the distance from the camera to each pixel

in an image. This 3D information is very useful for robotics and navigation.

Neural Networks

Neural networks are the main technology used in Machine Learning today as well as this thesis.

To use one, you need a labeled dataset, a model architecture, and a training algorithm. We

can think of a neural network as a function y = f(x), where x is the input data, y is the

model’s output, and the function f contains learnable weights, W , that are adjusted during

training.

A network can be discriminative, meaning it predicts an output (like a class label or a value).

Or it can be generative, meaning it creates new data similar to the input, like generating an

image from noise. For classification (discriminative) problems, it’s common to use a one-hot

vector to represent classes. For example, with three classes, ’cat’, ’dog’, and ’duck’, we would

represent them as [1, 0, 0], [0, 1, 0], and [0, 0, 1]. This way, the model learns that all wrong

predictions are equally wrong.

Training Neural Networks

Training a neural network means adjusting its weights W based on a dataset. We use an

algorithm called backpropagation. The process is:

1. Pass an input Xi through the model to get a prediction Yi.

2. Calculate the error (or loss) between the prediction Yi and the true label GTi.

3. Update the weights W to reduce this error.

The update step is typically done using gradient descent, where we adjust the weights in the

direction that most rapidly decreases the error. The goal is not just to memorize the training

data (over-fitting), but to learn patterns that generalize to new, unseen data. To ensure this,

we split our data into training, validation, and test sets. The model is trained on the training

set, its performance is monitored on the validation set to prevent over-fitting, and the final

evaluation is done on the test set.
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Deep Neural Networks and various model architectures

A deep neural network is simply a neural network with multiple layers. Each layer applies a

transformation to the output of the previous one. This layered structure allows the network to

learn a hierarchy of features. Early layers might learn simple patterns like edges and corners,

while deeper layers combine these to recognize more complex objects. Figure 2.2 shows how

each layer in a network transforms the data, eventually making a complex, non-linear problem

easy to solve for the final layer.

Figure 2.2: A four-layer neural network learning to classify a spiral dataset. We can see how

the data is transformed at each layer, becoming linearly separable by the final layer.

Convolutional Neural Networks For image data, a special type of deep network called a

Convolutional Neural Network (CNN) is very effective. We use this type of neural network

across the entire thesis. Instead of connecting every input pixel to every neuron in the first

layer, a CNN uses small, shared filters (or kernels) that slide across the image, reducing the

number of operations. These filters are learned during training and are good at detecting

local patterns like edges, textures, and shapes, regardless of where they appear in the image.

These inductive biases of natural images make CNNs much more efficient, requiring less data

to train complex data distributions.
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Figure 2.3: The convolutional operator. A small kernel (filter) slides over the input image to

produce a feature map.

SafeUAV: Convolutional Neural Network architecture

One of our early contributions was an embeddable CNN for estimating depth and identifying

safe landing areas (HVO segmentation). We designed a network based on the popular U-Net

architecture. We created two versions: SafeUAV-Net-Large for higher accuracy and SafeUAV-

Net-Small for real-time performance on embedded hardware like the NVIDIA Jetson TX2.

Figure 2.4: The proposed SafeUAV network architectures, used for tasks like depth estimation

and semantic segmentation.

Both networks use an encoder-decoder structure with skip connections, which is typical for

U-Nets. The smaller version uses fewer filters and a more efficient bottleneck design to reduce
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computational cost. Table 2.2 shows a comparison of their size and speed.

Network Number of Parameters Memory Usage FPS (Jetson TX2)

U-net [28] 31,031,745 1.7GB 37

DeepLabv3+ [5] 53,549,729 1.9GB n/a

SafeUAV-Net-Large 23,896,129 927MB 35

SafeUAV-Net-Small 1,029,537 433MB 138

Table 2.2: Inference statistics for the SafeUAV networks compared to standard models.

Our experiments showed that these custom architectures performed competitively, and even

better than some standard models at the time, on both depth estimation and HVO segmen-

tation tasks on our SafeUAV dataset.

Multi-Modal Multi-Task Learning

In this thesis, we tackle the problem of multi-modality and multi-task learning. In a Multi-

Modal Multi-Task (MTL) setting, we have multiple types of inputs (modalities) and/or mul-

tiple prediction outputs (tasks). For example, we might use both RGB images and depth data

as input to predict both semantic segmentation and object locations as output.

A key challenge in MTL is deciding how to combine the inputs and how to structure the

outputs. We can fuse inputs early (e.g., stacking image channels) or late (processing each

input with a separate network before combining). For the outputs, we can use a shared

decoder for all tasks or separate, specialized decoders for each one. These choices depend on

the specific problem. One issue that can arise is negative transfer, where training on one task

hurts performance on another.

Figure 2.5: Different ways to model a 2-input, 2-output problem. Left: Separate models. Top

right: Fused inputs, separate outputs. Bottom right: Fused inputs, shared output network.
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Ensemble Learning

A standard neural network gives a prediction but doesn’t tell us how confident it is. Ensemble

Learning is a way to address this. The idea is to train multiple independent models on the

same task and then combine their predictions. If the models are diverse and make different

kinds of errors, the combined prediction is often more accurate and reliable than any single

model’s prediction.

Figure 2.6: An example of Ensemble Learning. Three different models make predictions with

different errors. By averaging them, we get a final prediction that is cleaner and more accurate.

The predictions are combined using an aggregation function. For regression tasks, this can be

a simple average. For classification, it could be a majority vote. The key is that the models

should be diverse; if all models make the same mistakes, the ensemble won’t help.

Graphs

A graph is a mathematical structure made of nodes (or vertices) and edges that connect them.

Graphs are a powerful way to model relationships between things. In Machine Learning, Graph

Neural Networks (GNNs) have been developed to apply neural network concepts to graph-

structured data, like social networks or molecular structures.

In our work, we use graphs of Representations. Here, each node in the graph represents an

entire data view or modality (like RGB images or depth maps), and each edge is a neural

network that transforms one view into another. This framework allows us to model the

relationships between different tasks and modalities in a structured way and provides a natural

bridge to Ensemble Learning, as multiple paths to the same node create an ensemble of

predictions. It can also be seen as a special case of Probabilistic Graphical Modeling [19, 3].

Unsupervised and Self-supervised Learning

What if we have a lot of data but no labels? This is where unsupervised learning comes in.

These algorithms try to find patterns and structure in the data on their own, for example by

clustering similar data points together.
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A powerful subset of this is self-supervised learning, where the model creates its own super-

vision from the data. A common technique is the autoencoder, which learns to compress

data into a smaller representation (encoding) and then reconstruct the original data from it

(decoding). By learning to reconstruct the input, the model learns meaningful features about

the data without needing any external labels.

Another popular method is the Masked Autoencoder (MAE). In an MAE, parts of the input

(like patches of an image or words in a sentence) are randomly hidden, and the model’s task

is to predict the missing parts based on the visible context. This forces the model to learn

deep contextual relationships within the data.

Figure 2.7: Two self-supervised learning methods. Masked Autoencoders (left) reconstruct

missing parts of the input. Next Token Prediction (right) predicts the next item in a sequence.

Model Distillation

Model Distillation is a technique where knowledge from a large, complex model (teacher) is

transferred to a smaller, more efficient model (student). First, the teacher model is trained

on a task. Then, the student model is trained not on the original data labels, but on the

predictions of the teacher model.

This process can be used to compress large models into smaller ones that can run on devices

with limited resources. It can also sometimes lead to a student model that performs better

than if it were trained on the original labels from scratch, as the teacher’s ”soft” predictions

(probabilities rather than hard labels) can provide a richer training signal.

Semi-supervised Learning

Semi-supervised learning is a middle ground between supervised and unsupervised learning.

It’s used when you have a small amount of labeled data and a large amount of unlabeled data.

The typical process is:
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1. Train a seed model on the small labeled dataset.

2. Use this seed model to make predictions on the large unlabeled dataset. These predic-

tions are called pseudolabels.

3. Combine the original labeled data with the newly pseudolabeled data.

4. Train a final, often larger, model on this combined dataset.

This approach can be very effective, especially when the pseudolabels are generated by a

reliable model, such as an ensemble. It allows us to leverage vast amounts of unlabeled data

to build better models than we could with the labeled data alone. This is a key technique we

use in the later chapters.



Chapter 3

Ensemble learning and knowledge distil-

lation of neural and analytical methods

for depth estimation

This chapter introduces our work on unsupervised metric depth estimation for UAVs, which

was first presented in our paper Depth Distillation: Unsupervised Metric Depth Estimation

for UAVs by Finding Consensus Between Kinematics, Optical Flow and Deep Learning [25].

Estimating precise, real-world (metric) depth is important for UAVs to navigate safely. Doing

this without direct supervision or odometry data is a hard problem. On the other hand, we can

calculate depth using math from camera motion (kinematics) and optical flow. This analytical

method is exact in theory, but it can be unstable and fails completely in some areas, like the

focus of expansion. We propose a model that combines the best of both worlds: the precision

of analytical methods and the robustness of unsupervised deep learning.

Our main contributions are:

1. A new method for estimating metric depth for UAVs using only an RGB camera. It

learns in an unsupervised way from a single flight video by using an ensemble of an

analytical method and a deep learning method as a ”teacher” to distill knowledge into

a final network.

2. An improved analytical method for depth estimation that is more robust because it

simultaneously estimates depth and corrects for errors in the camera’s angular velocity.

3. A new UAV dataset with nearly 20 minutes of flight video, including vehicle kinematics

and GPS. This dataset is extended later in this thesis, creating the Dronescapes dataset.

As shown in Figure 3.1, we use two paths to estimate depth. The analytical path uses odometry

and optical flow. The data-driven path uses an unsupervised deep network. These two paths

supervise a final, single deep network. Then, through model distillation, the final network

learns to estimate metric depth based on a consensus between geometry, camera motion,

and the input image. The resulting network is small and fast, making it perfect for use on

embedded devices. To get accurate metric depth, we use several methods. An unsupervised

14



CHAPTER 3. ENSEMBLE LEARNING AND KNOWLEDGE DISTILLATION OF
NEURAL AND ANALYTICAL METHODS FOR DEPTH ESTIMATION 15

network provides non-metric depth (DUnsup), while another method uses odometry and optical

flow to get metric depth (DOdoF low). We use DOdoF low to give a real-world scale to DUnsup.

Together, these two form a ”teacher” ensemble that trains a final student network. For

evaluation only, we use a Structure from Motion (SfM) pipeline to generate a third depth

map, DSfM , which serves as our ground truth. While a SfM pipeline is slow, it can produce

accurate depth maps.

Figure 3.1: Overview of our method, combining analytical and data-driven pathways.

3.1 Metric depth distillation overview
Trajectory estimation from GPS We smooth the noisy GPS data by fitting 3rd-degree

polynomials over a sliding window of measurements. This gives us a more stable trajectory

estimate.

Analytical depth from odometry, flow and trajectory The relationship between camera

motion, optical flow, and metric depth is described by the Image Jacobian. If we know the

camera’s linear and angular velocities and can compute the optical flow between frames, we

can solve for a dense metric depth map. We also introduce a more robust way to do this, less

sensitive to optical flow errors.

The motion of a pixel is related to the camera’s linear velocity ν and angular velocity ω

through the Image Jacobian matrix, as shown in the equation below. From this relationship,

we can form a linear equation in terms of inverse depth 1/Z: (Jνν)
1
Z
+ Jω∆ω = ṗ − Jωω,

where ˙̄p is the optical flow. The least squares solution for depth Z is then: Z = ∥A∥2
AT b

However, this solution can be sensitive to errors in the estimated angular velocity. To make

it more robust, we introduce a correction term ∆ω and solve for both the depths Zi and the

correction simultaneously over multiple points. This is one of our theoretical contributions.
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Post-processing for depth computation The solution for Z in the equation above be-

comes unstable near the focus of expansion, where the optical flow is close to zero. We filter

out these unreliable depth values by applying thresholds on the optical flow magnitude and

the angle between the motion vectors.

SfM alignment For evaluation, we use an offline SfM tool to reconstruct a 3D model of

the scene. Since this model is not at a real-world scale, we align its trajectory with our GPS

trajectory to make it metric. This gives us a high-quality depth map (DSfM) to use as ground

truth for our experiments.

Our system, shown in Figure 3.2, combines the outputs of the analytical method (DOdoF low)

and the unsupervised network (DUnsup) to form an ensemble teacher. A student network is

trained to mimic this teacher, learning to predict metric depth from a single RGB image. The

student’s predictions are evaluated against the offline DSfM ground truth, using an L1 loss

that ignores invalid pixels in the SfM map.

Figure 3.2: The distillation process. The analytical (DOdoF low) and unsupervised (DUnsup)

methods are combined into an ensemble teacher, which trains a student network to predict

metric depth from a single RGB image.

3.2 Experimental Analysis

We introduce a new dataset from two UAV flights over mountain towns, which we call Slanic

and Herculane (see trajectories in Figure 3.3). Slanic is split into training and testing sets to

evaluate performance in a familiar scene. Herculane is used only for testing to see how well

our method generalizes to a new environment.
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Figure 3.3: UAV flight trajectories for the Slanic and Herculane datasets.

Setup and Results

We use the Meshroom tool [14] for SfM reconstruction, RAFT [31] for optical flow and

DPT [27] for unsupervised depth. The student networks are two variants of the SafeUAV

architecture, Tiny and Large, which are designed for real-time performance on embedded

systems. We train the student using an L2 loss against the teacher ensemble, which is created

by taking a pixel-wise average of DOdoF low and the scaled DUnsup.

Our results show that the distilled student network can outperform its teachers. As shown in

Table 3.1, on the Slanic test set, the student network achieves a lower error (21.58 m) than

the unsupervised method (27.28 m), the analytical method (26.05 m), and even the teacher

ensemble itself (25.63 m). The same trend holds when we only look at the ”good” areas

where the analytical method is valid.

Slanic Herculane

Metric Relative Metric Relative

DUnsup 27.28 m 17.10 % 44.39 m 20.29 %

DOdoF low 26.05 m 16.34 % 39.67 m 17.53 %

DEnsemble 25.63 m 15.88 % 41.18 m 18.29 %

Tiny − 16 21.58 m 14.58 % 46.77 m 24.09 %

Large− 16 21.84 m 14.65% 48.00 m 23.97 %

Table 3.1: Mean absolute and relative errors against DSfM ground truth. The distilled

student models outperform their teachers on the Slanic test set.

We also found that errors are much smaller for objects that are closer to the UAV, which

is the most important region for tasks like obstacle avoidance. Qualitative results in Figure
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3.4 show that the student network learns to combine the strengths of both teacher methods,

producing smooth and detailed depth maps.

Figure 3.4: Qualitative results. From left: RGB, Student, SfM, OdoFlow, Unsupervised. The

student network produces dense and accurate depth maps, learning to correct for the errors

in its teachers.

Finally, our student networks are very efficient. Notably, the Tiny-16 model runs at over 10

FPS on an embedded Jetson TX2 platform, making it suitable for real-time deployment on a

UAV.

3.3 Conclusions

No single method for metric depth estimation is perfect. However, by combining an analytical

method with an unsupervised deep learning approach, we can create a powerful ensemble

teacher. This teacher can then distill its knowledge into a single, lightweight student network

that is fast, robust, and often more accurate than its teachers. Our evaluation on a new,

challenging UAV dataset shows that this self-supervised training is effective and practical for

real-world applications.



Chapter 4

Multi-Layer Neural Graph Consensus for

Semi-supervised Learning

This chapter summarizes the work from our paper, Semi-Supervised Learning for Multi-Task

Scene Understanding by Neural Graph Consensus [20], which was accepted at the 35th AAAI

Conference on Artificial Intelligence (AAAI 2021).

We address the problem of semi-supervised learning when we have several different ways to

interpret a visual scene, specifically for aerial image understanding. Our method uses a graph

of neural networks to find a consensus between these interpretations. In this graph, each node

represents an interpretation layer (like depth or semantic segmentation), and each edge is a

deep network that transforms one layer into another.

The learning process has two phases:

� supervised phase: we train the edge networks using the available ground truth.

� semi-supervised phases (≥ 1) we use unlabeled data generated from the previous phase,

supervised or semi-supervised on newly added data

The pseudo-labels are generated by finding a consensus among multiple paths in the graph

that all lead to the same output. They act as ensemble teachers and the pseudo-labels are

used to train a student model for the next phase. Through this iterative process, the entire

graph becomes more consistent, even without new labels.

This method is called Neural Graph Consensus (NGC) and brings together the strengths

of deep nets and graphs. Deep nets are powerful but need a lot of labeled data. Graphs

can find global solutions from local information. As shown in Figure 4.1, NGC can connect

many different tasks, such as predicting 3D structure, pose, and semantic classes, into a

single framework. By forcing these tasks to agree with each other, they can effectively learn

from unlabeled data. Our main contribution is the NGC model, a new framework for semi-

supervised learning of multiple scene interpretations. We show how different tasks can teach

each other through consensus, provide theoretical support for our approach, and demonstrate

its effectiveness on a large-scale dataset.

19
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Figure 4.1: Different scene interpretations like 3D structure, pose, and semantics are con-

nected in a neural graph. Multiple paths that reach the same node can act as a ”teacher”

through consensus to train a single edge network. This allows the model to learn robustly

from unlabeled data.

4.1 NGC: Neural Graph Consensus model

In the NGC model, each node i holds a layer Li, which is a specific interpretation of the world

(e.g., a depth map or semantic segmentation). Edges in the graph are deep nets that predict

a layer at one node from layers at other nodes. This model is show in Figure 4.2.

Figure 4.2: NGC model: generic and implemented.

On the left, the theoretical graph model can have complex connections where many paths

can reach a given node. The model works by alternating roles between edge networks. One

network becomes the ’student’ and is trained using the pseudo-ground truth generated by

the consensus of all other paths reaching the same output node. These other paths act as
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’teachers’. On the right we present the specific structure we used in our experiments to learn

depth, semantic segmentation, and the position of a drone in a simulated environment.

Theoretical Analysis

The iterative semi-supervised learning process of NGC consists of three steps:

1. Pre-train a set of seed edge-networks on available labeled data.

2. Form the NGC graph by connecting the individual edges.

3. On a new unlabeled set, re-train the edge-networks using the consensual output of all

paths reaching a specific node as pseudo-ground truth. Repeat Step 3 iteratively until

no more new data is available.

Our analysis shows that for regression tasks, this ensemble learning approach minimizes the

variance between the outputs of different paths. This leads to our first proposition:

Proposition 1 In a densely connected NGC graph, we expect the variance over the outputs

reaching a given node to decrease during ensemble learning.

We validate this proposition experimentally, showcasing reduced variance, thus increased con-

sistency in predictions for regression tasks. For classification tasks, where consensus is achieved

through voting, we show that the accuracy of the ensemble teacher improves as we add more

independent paths.

Proposition 2 If the success probability p for an edge net is better than random, the prob-

ability of success of the teacher ensemble using majority voting approaches 1 as the number

of paths N → ∞.

Our simulations, support these theoretical findings, indicating that performance improves

with more paths in the ensemble and can continue to improve over multiple iterations. This

analysis makes a few assumptions, such as the fact that each network learns complementary

patterns. Obviously, if all the candidates produced the same result, the variance would be 0,

but the added benefit of each candidate is also null. The corollary is that we need diverse

candidates, which can be achieved by having multiple representations in our datasets, such as

RGB (colors), edges (low-level textures), depth (mid-level vision) and semantics (high-level).

4.2 Experimental analysis

Dataset and Implementation

We created a large-scale dataset from a virtual environment using CARLA [9] where a drone

flies over a city, as seen in Figure 4.3. For each image, we have ground truth for scene
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depth, 3D surface normals, 6D pose, wireframes, and semantic segmentation into 12 classes.

We implemented our NGC framework in PyTorch, using lightweight networks of about 1.1M

parameters for each edge. The complete graph consists of 27 such networks.

Figure 4.3: Samples from our synthetic dataset, showing RGB images and drone trajectories.

Iterative semi-supervised ensemble learning

We followed the iterative training process for three iterations. The first iteration was supervised

training. The next two were semi-supervised, using unlabeled data. The results, presented in

Table 4.1, show a consistent improvement across all tasks and for both the single ”distilled”

networks and the full NGC ensembles. This demonstrates that our consensus-based approach

effectively leverages unlabeled data to enhance performance. Qualitative results in Figure 4.4

further illustrate these improvements.

Iteration 1 Iteration 2 Iteration 3

Representation Evaluation Metric EdgeNet NGC Distil. EdgeNet NGC Distil. EdgeNet

L1 (meters) 4.9844 3.4867 4.2802 3.2994 3.9508

Depth Pixels ↑ (%) - 79.30 60.66 79.69 61.90

Semantic mIOU 0.4840 0.4978 0.4980 0.5258 0.5159

Segmentation Pixels ↑ (%) - 79.46 69.62 81.49 71.95

Position L2 (meters) 25.7597 15.5383 20.0204 12.0764 15.5599

Orientation L1 (degrees) 3.8439 2.5001 3.3961 2.2088 3.0005

Table 4.1: Results over two iterations of unsupervised learning, showing consistent improve-

ment for both NGC ensembles (red) and distilled single EdgeNets (blue). (Table abridged

for brevity).
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Figure 4.4: Qualitative results for NGC. Green shows areas of improvement after semi-

supervised learning, while red shows areas of degradation.

Comparisons to State-of-the-art

We compared NGC against leading methods in several related areas.

� Multi-Task Learning: We tested against NDDR [11] and MTL-NAS [12]. While they

performed well on one task (normals), our method showed better overall performance,

especially on semantic segmentation.

� Semi-supervised Learning: We compared with CCT [24], a general semi-supervised

method. Our NGC significantly outperformed CCT on semantic segmentation on our

dataset, both in absolute scores and in the improvement gained from unlabeled data.

� Ensemble Methods: We compared NGC against standard ensembles of networks.

NGC, which uses diverse intermediate representations, performed better than ensembles

of networks all trained for the same task.

4.3 Conclusions

We introduced the Neural Graph Consensus (NGC) model, a new method for multi-task semi-

supervised learning. NGC combines many deep networks into a single graph structure where

they learn from each other through mutual consensus. Our experiments, supported by theoret-

ical analysis, show that this approach is highly effective. The model successfully learns seven
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different scene interpretations from single images with top performance, demonstrating that

learning from consensus in large, collaborative graphs is a promising direction for unsupervised

and semi-supervised learning.



Chapter 5

Multi-Layer Hyper-Graphs for Semi Su-

pervised Learning

This chapter summarizes our work on extending graph-based learning to hyper-graphs, as

introduced in our publications [22, 26]. We build upon the previous chapter by introducing

more complex hyper-edges and learnable ensembles, and we validate our method on two

challenging real-world scenarios: aerial image understanding and earth observation. The graph

can now contain hyper-nodes and hyper-edges which consist of multiple representations at the

same time (i.e. RGB plus edges) alongside regular edges. We apply the previously introduced

iterative semi-supervised learning process. This process allows the system to improve over

time as more unlabeled data becomes available, even when annotations are scarce.

We introduce two different datasets: Dronescapes, a new UAV video dataset, and the NASA

Earth Observations (NEO) dataset, which contains 22 years of satellite data. As shown in

Figure 5.1, our approach proves effective for both urban scene understanding and large-scale

earth observation, improving accuracy and temporal consistency.

25
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Figure 5.1: Our semi-supervised multi-layer Hyper-Graph in the context of real-world UAVs

and Earth Observations. We define the Hyper-Graph structure in terms of input nodes (from

sensors) and output nodes (those that will be predicted). We train in a semi-supervised

manner over multiple iterations, which improves both accuracy and temporal consistency.

Our work is positioned at the intersection of several fields. While most unsupervised learning

methods focus on a limited number of tasks, our model is general and can handle many

tasks at once. Unlike consensus-based methods that use simple image transformations, we

focus on meaningful scene representations and learn to balance them. In the area of graph-

based learning, previous work often uses simpler graph structures with pairwise edges and

non-learned ensembles. Our approach introduces higher-order hyper-edges and learns the

ensemble mechanism itself. Finally, we use a form of self-distillation, where strong ensemble

”teachers” from one iteration guide the training of simpler ”student” edges in the next, a

concept that builds on established knowledge distillation principles.
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5.1 Multi-Layer Hyper-Graph model

Hyper-Graph Structure and Edge Types

Our Multi-Task Hyper-Graph, shown in Figure 5.2, consists of input nodes (Ni), representing

known data from sensors, and output nodes (No), representing the world views we want to

predict. These nodes are connected by different types of edges and hyper-edges, which are

modeled by small U-Net neural networks.

Figure 5.2: Multi-Task Hyper-Graph. Input and output nodes, edges and hyper-edges.

As an extension to the previous chapter which only used simple edges, we introduce several

new types of hyper-edges to capture more complex relationships between layers, as illustrated

in Figure 5.3:

� Single-hop Edges (E): A simple transformation from one input node to one output

node.

� Two-hop Edges (TH-E): A path that goes through an intermediate predicted node.

� Ensemble Hyper-Edges (EH): Combines all single-hop predictions for one node to

help predict other nodes.

� Aggregation Hyper-Edges (AH): Concatenates all input nodes to predict a single

output node.

� Cycle Hyper-Edges (CH): Uses all inputs and the outputs of AH hyper-edges to make

a final prediction for a node.
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Figure 5.3: Types of edges and Hyper-Edges in the Hyper-Graph. In Chapter 4, we only used

edges (E and TH−E), while here we introduce hyper-edges (AH, EH and CH) to capture

complex relations between layers.

Semi-Supervised Iterative Training and Ensembles

We re-use the same iterative semi-supervised training algorithm described in the previous

chapter in Section 4.1. A key novel contribution is our method for learning the hyper-

edge ensembles. Instead of just averaging the candidate predictions, we introduce several

learnable models, shown in Figure 5.4. These range from a simple linear model (S-LFW ) to

more complex neural networks that can dynamically weigh each candidate prediction at the

pixel level (S-NNDPW ) or learn a direct mapping to the final output (S-NND). These learned

ensembles act as powerful teachers, guiding the semi-supervised learning process.
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Figure 5.4: Ensemble Architectures. We introduce four types of ensembles, all with an

initial learnable candidate selection model, which keeps only the relevant candidates before

combining them.

5.2 Experimental analysis on the Dronescapes dataset

Dataset and Experimental Setup

We introduce Dronescapes, a new large-scale UAV video dataset featuring diverse rural, urban,

and seaside scenes, as shown in Figure 5.5. It includes odometry, 3D information, and sparse

manual annotations for semantic segmentation, making it a challenging real-world benchmark.

For our experiments, we set up an iterative learning procedure where we start with a small

set of manually labeled frames. In subsequent iterations, we use our hyper-graph to generate

pseudolabels for new, unlabeled video frames, and retrain the model on this expanded dataset.

We focus on predicting three tasks: semantic segmentation, depth, and surface normals.
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Figure 5.5: Sample frames from each of the 10 scenes from the Dronescapes dataset, showing

a large variation in landscapes and class distributions.

Results and Findings

Our experiments on Dronescapes demonstrate several key advantages of our method. In Table

5.1 we show that our new, more complex hyper-edges (AH, CH) consistently outperform

simpler single-hop and two-hop edges.

Type
Train

Unlabeled (iter 2)
Train

Unlabeled (iter 3)

(1) (2) (3) (1) (2) (3)

E
dg

es

E: rgb 42.85 5.04 10.37 32.79 21.66 12.40

E: hsv 41.70 4.69 10.54 33.51 19.90 12.48

E: softedges 32.47 6.26 11.56 27.28 18.61 13.53

E: softseg 30.71 5.97 11.14 24.68 22.70 12.76

TH-E: sseg - 6.25 11.39 - 19.00 12.93

TH-E: depth 29.24 - 12.22 24.11 - 13.79

TH-E: norm 30.56 6.17 - 26.35 21.15 -

H
yp

er
-E

dg
es AH 41.80 5.33 10.37 33.63 23.96 12.24

CH 44.63 4.93 10.32 36.92 20.36 12.23

Table 5.1: Evaluation of edges and Hyper-Edges for multiple tasks: 1 - semantic segmentation

(sseg); 2 - depth estimation (depth); 3 - surface normals (norm).

In Table 5.2, we show that our learned parametric ensembles significantly improve performance

over previous methods that use non-parametric averaging on the NEO dataset.
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Method
IoU(↑)

Barsana Comana Norway Mean

NGC [20] (Mean) 41.53 40.75 27.38 36.55

NGC (Mean) + HE 42.61 42.17 27.96 37.58

CShift [15] (Mean) 43.91 42.13 29.68 38.57

CShift (Mean) + HE 44.71 43.88 30.09 39.56

LR (Ours) 46.51 45.59 30.17 40.76

NN (v1) (Ours) 45.53 42.92 28.37 38.94

NN (v2) (Ours) 45.48 43.25 26.36 38.36

NN (v3) (Ours) 48.21 44.85 28.94 40.67

Table 5.2: Learned ensembles compared to existing methods.

In Table 5.3, we show that the iterative semi-supervised process leads to substantial gains in

both accuracy and temporal consistency across all tasks on the Dronescapes dataset.

Type Semantic Depth Normals

IoU (↑) Cons. (↑) L1 (↓) Cons. (↑) L1 (↓) Cons. (↑)

rgb-sup. 25.04 88.85 - - - -

rgb-iter1 32.79 94.04 21.66 5.89 12.40 98.32

rgb-iter2 37.26 95.72 17.34 7.06 11.93 98.87

rgb-iter3 40.31 98.13 16.64 30.26 11.71 99.30

Table 5.3: Iterative learning consistently improves both accuracy (IoU, L1) and temporal

consistency (Cons.) for the main rgb → task edge on the test scenes.

Finally, we show that our model can take the output of a powerful pre-trained expert (Mask2Former)

and further refine its predictions, improving both accuracy and consistency on novel, unseen

scenes (Figure 5.6).
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Figure 5.6: Qualitative results on test images. Our method improves upon the labels from a

strong baseline (Mask2Former), especially on out-of-distribution scenes like Norway.

5.3 Experimental analysis on the NEO dataset

Dataset and Experimental Setup

To demonstrate the generality of our approach, we also apply it to the problem of Earth

Observation using the NASA NEO dataset. This dataset contains 22 years of monthly satellite

observations across various layers like Land Surface Temperature, Aerosol Optical Depth, and

Leaf Area Index. The data is challenging due to its sparsity and the presence of missing

measurements over long periods, making it an ideal case for semi-supervised learning. We use

12 layers as inputs to predict 7 different output layers.

We observe similar results on this dataset compared to the Dronescapes one, such as improved

results using the learned ensembles as well as improved results using iterative semi-supervised

learning, as presented in Figure 5.7. The iterative learning also leads to a significant increase

in temporal consistency, meaning the predictions for a given location are more stable and

reliable over time.
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Figure 5.7: Prediction errors over seven years. Left: The baseline error shows a gradual

increase over time, indicating a data distribution shift. Right: Our semi-supervised iterations

significantly reduce this error, demonstrating the model’s ability to adapt.

5.4 Conclusions

In this chapter, we introduced a novel multi-task, semi-supervised Hyper-Graph model. Its

main strengths are the use of complex hyper-edges to capture higher-order relationships be-

tween tasks and the introduction of learnable ensembles that act as teachers to guide learning

from unlabeled data.

We validated our approach on two very different and challenging real-world problems: aerial

scene understanding with our new Dronescapes dataset, and long-term earth observation

with the NASA NEO dataset. In both cases, our method showed significant improvements

in accuracy, generalization to new data, and temporal consistency, even when starting with

very limited labeled data. This demonstrates the power and flexibility of the hyper-graph

framework for semi-supervised learning.



Chapter 6

Probabilistic Hyper-Graphs using Masked

Autoencoders, ensembles and efficient

distillation

This chapter summarizes the recent advances of my work on neural hyper-graphs, ensem-

bles, and distillation. It builds upon the previous chapters by introducing a novel probabilistic

method for defining hyper-graphs using random masking in a multi-modal, multi-task set-

ting. The Dronescapes dataset, introduced previously, is extended with new UAV scenes and

intermediate modalities derived from pre-trained experts.

The real world is inherently multi-modal. For an outdoor scene from the Dronescapes dataset,

we can infer distinct views such as semantic segmentation, depth, or motion. Our system

combines these views to produce a coherent, unified understanding. The early work of this

thesis modeled these relationships using graphs (Chapter 4) and hyper-graphs (Chapter 5)

with a fixed structure. We address this limitation with a neural network that learns the

interdependencies between views from data. This approach models the distribution of all

possible hyper-graph configurations, with each inference pass sampling a specific configuration.

We adapt the masked autoencoding (MAE) proxy task by defining fixed sets of input and

output views and using task-specific losses (e.g., cross-entropy for classification, L2 for re-

gression). This unifies the pre-training and fine-tuning steps into a single loop. Furthermore, it

allows the construction of inference-time ensembles through random pathways. We also show

that this knowledge can be distilled into very small models (under 1M parameters) with min-

imal performance loss. In this work, we improve performance by masking entire views rather

than patches, thus creating probabilistic hyper-nodes at modality level, as in the previous

chapter. We call our method Probabilistic Hyper-Graphs, or PHG-MAE. We also show that

this knowledge can be distilled into very small models (under 1M parameters) with minimal

performance loss.

To address the varying difficulty of predicting different tasks, we introduce derived intermediate

modalities. These act as a bridge between low-level inputs (like RGB) and high-level outputs

34



CHAPTER 6. PROBABILISTIC HYPER-GRAPHS USING MASKED
AUTOENCODERS, ENSEMBLES AND EFFICIENT DISTILLATION 35

(like segmentation), simulating a form of curriculum learning. This, combined with our prob-

abilistic approach, allows the model to learn optimal input-output dependencies directly from

data.

A key part of this research was the ability to rapidly iterate and add new views from pre-

trained experts. To facilitate this research, we have developed an open-source data pipeline

for automatic dataset generation from arbitrary videos by generating multiple representations

using pre-trained experts1. While our work focuses on outdoor UAV scenes, the methodology

is applicable to other domains like autonomous driving. This tool was used to extend the

Dronescapes dataset with new UAV videos augmented with expert knowledge, which in turn

yielded better performance on the downstream tasks.

In short, our main contributions are:

1. Probabilistic Hyper-Graphs using Masked Autoencoders (PHG-MAE): an extension of

the standard MAE algorithm that enables Random Masking Ensembles at inference time

and unifies previous Hyper-Graph methods under a single neural model.

2. Merging of pre-training and task-specific fine-tuning under a single training loop by

defining inputs and outputs differently from the standard MAE loop. Furthermore, we

only mask an entire view, not at patch level as previously done.

3. Inclusion of derived intermediate modalities from pre-trained experts on diverse datasets

to leverage their knowledge and smooth the learning difficulty from low-level inputs to

complex high-level tasks.

4. Efficient training and distillation showcasing competitive performance with small (4.4M)

and very small (400k) CNN networks on the Dronescapes test set and unseen videos,

enabling research on commodity hardware.

5. An open source data-pipeline that enables efficient extraction of new views from pre-

trained experts on videos, simplifying the process of training multi-task vision models

on large video datasets.

Datasets We extend the Dronescapes dataset, introduced in Chapter 5, with additional

modalities and new videos. This increases the total annotated frames from 23K to 80K. We

use our data pipeline to augment the dataset with new views from pre-trained experts, such as

semantic segmentation, depth estimation, optical flow, and derived views like camera normals

and binary segmentation maps. Moreover, our distillation dataset includes a total of 148K

frames.

Multi-modal Multi-task learning (MTL) We employ a multi-task learning setup where

input views are referred to as modalities and output views as tasks. Our experiments use RGB

as the primary input modality and aim to predict three output tasks: semantic segmentation,

depth estimation, and camera normals estimation.

Ensemble learning and inference time ensembles Ensemble learning improves prediction

performance and consistency. In previous chapters, we created ensembles using different

pathways in a neural graph. Here, we generate ensembles by leveraging the randomness in

1https://gitlab.com/video-representations-extractor/video-representations-extractor

https://gitlab.com/video-representations-extractor/video-representations-extractor
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our model. We perform multiple inference passes for the same input, each time with a different

random mask applied to the input modalities. Unlike previous methods that mask patches,

we mask entire views, which corresponds to sampling different hyper-edges. The resulting

predictions are then aggregated through simple averaging.

Semi-supervised learning In this chapter, we also perform a single iteration of semi-

supervised learning via distillation, though the primary focus is on the probabilistic hyper-graph

model itself.

6.1 PHG-MAE: Probabilistic Hyper-Graphs using Masked Autoen-

coders model

The main limitation of the hyper-graphs defined in previous chapters was their fixed structure,

which made them difficult to modify without extensive retraining. Motivated by this, we for-

mulated the hyper-graph concept within a single neural network. As a theoretical contribution,

we show that a multi-layer neural graph is equivalent to a single, larger neural network. By

appropriately masking the inputs and internal weights of this single network, we can replicate

the behavior of multiple smaller, independent networks that form the edges of a graph. We

demonstrate that this holds for convolutional neural networks, as illustrated in the figures

below, and the principle generalizes to deep networks and other layer types. This equivalence

allows us to represent an entire hyper-graph within one model.

We modify the standard MAE algorithm to perform both pre-training and task-specific pre-

diction simultaneously. We achieve this with two changes:

� Task-specific loss function. We use appropriate loss functions for each output task, such

as cross-entropy for semantic segmentation and L2 loss for regression tasks like depth

estimation.

� Define inputs and outputs. We define two disjoint sets of views. Input views (e.g.,

RGB) are easy to acquire and are always seen by the model. Output views (e.g.,

semantic segmentation) are hard to acquire and are always masked, forcing the model

to predict them. This combines the auto-encoder paradigm with standard supervised

learning.

Random Masking Ensembles

Instead of hand-crafting these masks, we let the model learn the interdependencies between

views using the principles of Masked Autoencoders (MAE). We treat each full image view as

a single token to be masked.
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Figure 6.1: Left: Training a standard MAE model. Right: Test-time Random Masking

Ensembles using the trained model.

As shown in Figure 6.1, during training, we randomly mask some views and task the network

with reconstructing them from the visible ones. At test time, we can query the trained model

multiple times for the same input, each time with a different random mask. The collected

predictions are then aggregated to form an ensemble.

Proposition A forward pass through a Masked Autoencoder is equivalent to a forward pass

of a single edge in a Hyper-Graph. Through random masking we are sampling from the

distribution of all hyper-edges.

Intermediate modalities for ensemble diversity

If inputs are always seen and outputs are always masked, there is no randomness to generate

ensembles at test time. To solve this, we introduce a set of intermediate modalities. These

are derived from pre-trained experts using our data pipeline, as shown in Figure 6.2. These

modalities, which include expert predictions for depth and segmentation as well as simpler

derived views like binary maps for ”vegetation” or ”sky”, are sometimes masked and some-

times seen during training. At inference, randomly masking these intermediate modalities

allows us to generate a diverse set of predictions for ensembling. These views also serve as a

bridge between low-level inputs and complex high-level tasks, aiding the learning process.
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Figure 6.2: The Data-Pipeline and PHG-MAE model on real data. Left: Deriving modalities

from pre-trained experts using RGB only. Right: Integration of modalities in the model.

6.2 Experimental analysis

Dataset description

All experiments are evaluated on the Dronescapes dataset benchmark. We extend the origi-

nal dataset with 8 new UAV video scenes and numerous modalities extracted with our data

pipeline. This results in the Dronescapes-Ext and Dronescapes-*-M variants, which signifi-

cantly increase the training data from 23K to 80K frames. Table 6.1 summarizes the dataset

variations. Our models are trained efficiently on consumer-grade hardware, with our largest

model being trained in just under a week, while our largest distillation model in about two

days.
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Name Data Points I/O UAV scenes Description

(GT labels) Views

Dronescapes-Train 12K (233) 5/3 7 Original train set

Dronescapes-Semisup 11K (207) 5/3 7 Original semi supervised set

Dronescapes-Test 5.6K* (116) 5/3 3 Original test set

Dronescapes-Pseudo 23K (233) 5/3 7 Pseudolabels from Dronescapes-Semisup

Dronescapes-Train-M 12K (233) 14/3 7 All new experts and intermediate modalities

Dronescapes-Ext 80K (440) 1/3 15 First two sets combined plus data-pipeline

on new videos (no new modalities)

Dronescapes-Ext-M 80K (440) 14/3 15 All new experts and intermediate modalities

on the extended dataset

Dronescapes-Ext2-Pseudo 148K (440) 1/1 23 Pseudolabels on Dronescapes-Ext

plus 8 new UAV videos

Table 6.1: Dronescapes dataset variations and stats. Numbers in parentheses represent the

semantic human annotated data.

Results on Multi Task Learning

We compare our PHG-MAE model against baselines from previous chapters on the three main

tasks of the Dronescapes dataset. As shown in Table 6.2, our models, particularly when trained

on the extended dataset with additional modalities, achieve state-of-the-art performance,

significantly outperforming prior methods like NGC and SafeUAV-MTL. Qualitative results in

Figure 6.3 confirm that our model generalizes well to unseen test scenes.

Model Training Parameters Semantic ↑ Depth ↓ Camera Normals

Dataset Segmentation Estimation Estimation ↓

PHG-MAE-MTL Dronescapes-Ext 4.4M 52.04 18.84 12.67

PHG-MAE Dronescapes-Ext-M 4.4M 49.09 ± 3.8 19.57 ± 2.2 13.68 ± 1.7

PHG-MAE Dronescapes-Train-M 4.4M 42.84 ± 4.1 18.23 ± 1.5 12.54 ± 1.5

PHG-MAE-MTL Dronescapes-Train 1.1M 39.23 19.31 13.18

PHG-MAE-MTL Dronescapes-Train 4.4M 39.1 20.55 13.48

NGC-HE(mean) [22] Dronescapes-Pseudo 32M 37.58 21.81 12.40

NGC(mean) [20] Dronescapes-Pseudo 32M 36.55 20.08 12.97

SafeUAV-MTL [21] Dronescapes-Train 1.1M 32.79 21.66 12.40

Table 6.2: Multi task learning comparison.
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Figure 6.3: Multi Task Learning (MTL) qualitative results of our best model from Table 6.2.

The Semantic Segmentation ground truth labels are human annotated, while for Depth and

Camera Normals, it is based on a Structure from Motion reconstruction. Only one scene is

available on the original Dronescapes test set for these two tasks.

Results on Semantic Segmentation

Focusing on semantic segmentation, which has reliable human-annotated ground truth, our

best model trained on the extended dataset achieves a Mean IoU of 52.04. As shown in Table

6.3, this result outperforms previous works and is competitive with Mask2Former, a much

larger transformer-based model.

Model Training Dataset Parameters Mean IoU ↑

Mask2Former[17] Mapillary[23] 216M 53.97

PHG-MAE-MTL Dronescapes-Ext 4.4M 52.04

PHG-MAE Dronescapes-Ext-M 4.4M 51.83±3.3

PHG-MAE Dronescapes-Train-M 4.4M 46.64±5.1

NGC-HE-LR[22] Dronescapes-Pseudo 32M 40.76

SafeUAV[21] Dronescapes-Pseudo 1.1M 40.31

PHG-MAE-MTL Dronescapes-Train 1.1M 39.23

PHG-MAE-MTL Dronescapes-Train 4.4M 39.1

NGC-mean[20] Dronescapes-Pseudo 32M 36.55

SafeUAV[21] Dronescapes-Train 1.1M 32.79

Table 6.3: Semantic segmentation evaluation on Dronescapes test set.
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Results on Ensemble Learning

Our Random Masking Ensembles provide a substantial boost in performance. As shown in

Figure 6.4, aggregating predictions from multiple random masks at test time improves the

semantic segmentation score of our best model from 51.83 to 55.32 Mean IoU. This ensembled

result surpasses the performance of the 216M parameter Mask2Former expert. The ensembles

also produce more stable and qualitatively better predictions on unseen scenes, as shown in

Figure 6.5.

Model Mean IoU ↑ Mean IoU ↑
(no ensembles) (ensembles)

PHG-MAE (Ext-M) 51.83±3.3 55.32± 0.54

Mask2Former 53.97 n/a

MTL (Ext) 52.04 n/a

PHG-MAE 46.64±5.1 52.26±0.54

MTL 39.1 n/a

Figure 6.4: Multi Task Learning (MTL) results with ensembles against baseline. Left: Plot

with various intermediate results for a handful of ensemble candidates. Right: Best single

prediction (no ensemble) and the best ensembled prediction (50 candidates).

Figure 6.5: Random Masking Ensembles on unseen testing scenes.

Results on Distillation

To create a practical model for deployment, we distill the knowledge from our complex,

multi-modal ensembled model into a simple, lightweight CNN that requires only RGB input.
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As detailed in Table 6.4, this process is highly effective. A distilled model with only 430k

parameters achieves a Mean IoU of 54.94, retaining nearly all the performance of its large

teacher while being orders of magnitude faster and easier to deploy, as seen in Table 6.4.

Model Parameters # Input Data Random Additional Mean IoU ↑ Runtime (s) ↓

Modalities Pipeline Ensembles Data

PHG-MAE 4.4M 12 ✓ ✓ ✗ 55.32±0.54 78.9

PHG-MAE-Distil 4.4M 1 ✗ ✗ ✓ 55.05 0.064

PHG-MAE-Distil 430k 1 ✗ ✗ ✓ 54.94 0.054

PHG-MAE-Distil 4.4M 1 ✗ ✗ ✗ 54.37 0.064

PHG-MAE-Distil 1.1M 1 ✗ ✗ ✓ 54.3 0.058

Mask2Former [7] 217M 1 ✗ ✗ ✗ 53.97 0.79

PHG-MAE-Distil 150k 1 ✗ ✗ ✓ 53.32 0.052

PHG-MAE-Distil 430k 1 ✗ ✗ ✗ 52.44 0.054

PHG-MAE-MTL 4.4M 1 ✗ ✗ ✗ 52.04 0.064

PHG-MAE 4.4M 12 ✓ ✗ ✗ 51.83±3.3 74.4

Table 6.4: Single Task Learning Distillation results on top of PHG-MAE ensembles.

Temporal consistency We also evaluate temporal consistency using a metric based on

optical flow alignment between consecutive frames. Our distilled models are not only accurate

but also produce highly consistent predictions over time, outperforming both the ensembled

teacher and the large Mask2Former baseline. This makes them well-suited for real-world

robotics applications where temporal stability is crucial.

6.3 Conclusions

We introduce a new test-time ensemble algorithm that works on any Masked Autoencoders

model, which is a very popular pre-training mechanism today for large models. We tested our

algorithm on small CNN-based models with 1.1M and 4.4M parameters on the Dronescapes

dataset with models trained on commodity hardware. We show that the test-time ensembles

outperform the classical Multi Task Learning prediction paradigm by producing higher quality

and more consistent semantic segmentation maps even with the simple average ensembling

method. This also enables further research, such as better aggregation methods, like using a

secondary neural network for direct aggregation or searching and filtering the candidates.



Chapter 7

Conclusions, final thoughts and future

work

This final chapter presents an overview of the thesis, reflecting on its core ideas and outlining

interesting avenues for future research.

The work sits at the intersection of several fields, including deep learning with neural networks,

multi-task learning, prediction consensus via ensemble learning, model distillation, graphs, and

semi-supervised learning. We applied these concepts to robotics, specifically for aerial scene

understanding with UAVs and Earth observation data.

The thesis chapters are designed to build on one another. In Chapter 3, we explored ensemble

learning and distillation to improve depth estimation. In Chapters 4 and 5, we used graphs

and neural networks to model the multi-modal world, introducing a new semi-supervised

learning algorithm. Finally, in Chapter 6, we distilled the complex graph model into a single

neural network using random masking, connecting our work with state-of-the-art pre-training

methods.

A key takeaway from this research is the importance of sharing our work. By making ideas,

code, experiments, and results openly available, we help others build upon our findings and

accelerate scientific progress. This process of openly sharing and allowing others to distill

previous work is crucial for the community.

Future Work

The research presented here opens up several promising directions for future exploration.

Scene understanding While this thesis focused on aerial scene understanding, the field

is much broader. Future work could integrate modern 3D reconstruction techniques like

NeRF [10] and 3D Gaussian Splatting [4]. Another interesting path is to combine data-driven

methods with approaches that model physical laws, such as Physics Informed Neural Networks

[8] or World Models [34], to achieve a more holistic understanding of a scene.

43
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Neural networks We primarily used the SafeUAV [21] architecture due to its efficiency.

An obvious next step is to explore the integration of more recent architectures, such as

Transformers [32], which have become standard in many fields. Another direction is to use

techniques like AutoML [29] to automatically discover network architectures optimized for a

specific set of tasks.

Deep learning and reasoning Current deep learning models are often trained on large,

redundant datasets. Future work could explore dataset selection techniques [1] to identify the

most informative data points for training. Furthermore, there is a growing interest in moving

beyond simple pattern recognition towards reasoning. This involves using methods like chain

of thought [33] or program synthesis [2] to break down complex problems into smaller, solvable

parts.

Multi-modal multi-task learning through ensembles and graphs This topic was central

to the thesis. Our iterative process of learning graph edges, applying ensembles, and then

distilling could be integrated into a single, end-to-end training loop. We could also expand our

model to use more complex hyper-edge types (see Section 5.1) and incorporate these learned

ensembles into the single-network approach developed in Chapter 6.

Unsupervised and semi-supervised learning This thesis was largely based on supervised

learning. However, recent breakthroughs have shown the power of a two-stage approach:

first, pre-training a model on large, unlabeled datasets using unsupervised algorithms, and

then fine-tuning it on specific, labeled tasks. Adopting this paradigm would be a valuable

extension of our work.

Integration and deployment in real-world systems A personally interesting direction is

the integration of these deep learning models into real-world robotic systems. In this context,

machine learning serves as a perception component within a larger system that must also act

on its environment. This blend of traditional code and learned models is sometimes referred

to as Software 2.0 [18], and it represents a critical step in bringing research into practical

application.

These are just a few ideas for what could come next. The key is to pursue work that inspires

curiosity and enjoyment. Thank you for reading.
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