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Chapter 1

Introduction

Building intelligent systems that understand the world and are useful to humans re-

quires developing algorithms that can perceive people from visual data. In this thesis,

we address the three-dimensional reconstruction of humans from a monocular image or

video. This is an important problem, with the potential of enabling numerous appli-

cations, such as novel human-computer interfaces, robot navigation and interactions,

security and surveillance, healthcare or entertainment. Yet, sensing 3d humans solely

from monocular cameras poses several challenges: depth ambiguity, partial views, oc-

clusions with the scene or self-occlusions, large appearance variation due to diverse

human bodies, articulations, garments and various types of physical contact.

Our first contributions focus on understanding 3d human interactions. We introduce

models for 3d contact signature prediction and show how their use in an optimization

setting improves reconstruction of people in close proximity. We also build two large

datasets for training and evaluation purposes and propose methodology for recovering

the ground-truth pose and shape of interacting people in a controlled setup.

Next, we study the reconstruction of human self-contact. We propose models for

predicting self-contact signatures from monocular images and show how they can be

leveraged to improve human reconstruction accuracy in an optimization framework.

To support learning and evaluation, we collect two large datasets, one captured in the

laboratory and one consisting of in-the-wild images with 3d self-contact annotations.

We then propose a method for end-to-end learning of 3d reconstruction of multi-

ple interacting humans under weak supervision. We introduce a novel unified model

for self-collision and interpenetration losses and use both self-contact and interaction

contact losses directly into the learning process. Our model obtains state-of-the-art

results even when no 3d supervision is used.

Lastly, we present the first automatic system performing 3d human sensing for

fitness training, made possible by the collection of a motion capture dataset of more

than 37 types of exercises. The system estimates 3d human motion, segments exercise
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repetitions and identifies the deviations between standards learnt from trainers and the

execution of a trainee, offering quantitative feedback in natural language.

To support research in this field, we release all datasets collected in this thesis,

together with evaluation servers and public benchmarks.
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Chapter 2

Reconstructing Three-Dimensional

Models of Interacting Humans

This chapter is based on the paper [1] ”Three-Dimensional Reconstruction of Human

Interactions.” by Mihai Fieraru, Mihai Zanfir, Elisabeta Oneata, Alin-Ionut Popa, Vlad

Olaru, and Cristian Sminchisescu, published in The IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2020. which was further aug-

mented as the current version and is currently under submission as a journal (also

available as arXiv preprint [2]).

Figure 2.1: Monocular 3d reconstruction, constrained by contact signatures, preserves

the essence of the physical interaction between people and supports behavioral reason-

ing.

In this paper, we propose a first set of methodological elements to address the

reconstruction of interacting humans by relying on recognition, segmentation, map-

ping, and 3d reconstruction. More precisely, we break down the problem of producing

veridical 3d reconstructions of interacting humans into (a) contact detection, (b) binary

segmentation of contact regions on the corresponding surfaces associated to the inter-

acting people; (c) contact signature prediction to produce estimates of the potential

many-to-many correspondence map between regions in contact; and (d) 3d reconstruc-

tion under augmented losses built using additional surface contact constraints given a
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contact signature.

Two people are hugging.

A man holds his right arm around somebody’s shoulder

and raises his left hand for a picture.

Figure 2.2: Annotated text describing the motion and fitting of the GHUM model to

two interacting subjects in the CHI3D dataset. All 4 stacked views are displayed for 3

frames (left to right in temporal order): a hugging sequence (top), a posing sequence

(bottom). Subject in green is the subject wearing the markers. Subject in brick-red

does not wear any markers on clothing.

To train models and evaluate the techniques, we introduce two large datasets. We

capture CHI3D, a lab-based 3d motion capture repository containing 631 sequences

containing 2, 525 contact events, 728, 664 ground truth skeletons, as well as annotated

temporal extent of the physical contact and a textual description of the interaction

motion in each video sequence. We also gather FlickrCI3D, a dataset of 11, 216 im-

ages, with 14, 081 processed pairs of people, and 81, 233 facet-level surface contact

correspondences.

Besides, we propose methodology to obtain the ground truth pose and shape of

the interacting people in the CHI3D dataset. By leveraging information from motion

sensors, multi-view RGB cameras and a 3d scanner, but also from contact annotations,
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pose priors and physical constraints, we achieve ground-truth level 3d reconstructions

(see fig. 2.2).

We publicly release the ground-truth motion sequences in multiple formats (GHUM

[3] and SMPLX [4] parameters, Human3.6m [5] 3d joints) at ci3d.imar.ro and im-

plement an evaluation server on a hidden test set, together with a public benchmark,

with the purpose of advancing the state of the art in 3D human reconstruction of close

contact interactions.

We evaluate the performance of the contact detection task and obtain an average

accuracy of 0.846, with 0.844 for the ”contact” class and 0.848 for the ”no contact”

class. Table 2.1 shows the evaluation of our model ISP for contact segmentation and

signature estimation using the intersection over union (IoUNreg) metric, computed for

different region granularities. Table 2.2 shows that annotated contact information

improves the accuracy of the reconstruction.

IoU75↑ IoU37↑ IoU17↑ IoU9↑
Method Segm. Sign. Segm. Sign. Segm. Sign. Segm. Sign.

ISP full 0.318 0.082 0.365 0.129 0.475 0.248 0.618 0.408

ISP w/o semantic 2d features as input 0.300 0.073 0.350 0.116 0.465 0.240 0.618 0.410

ISP w/o jointly learning contact segm. - 0.072 - 0.124 - 0.218 - 0.383

ISP w/o masking out corresp.

outside the estimated segm. mask
- 0.075 - 0.124 - 0.230 - 0.385

Human performance 0.456 0.226 0.542 0.370 0.638 0.499 0.745 0.635

Table 2.1: Results of our ISP model for contact segmentation and signature estimation,

evaluated on FlickrCI3D for different region granularities on the human 3d surface

(from 75, down to 9 regions). We ablate different components of our full method to

illustrate their contribution. Human performance represents the consistency values

between annotators.

Grab Hit Handshake Holding hands Hug Kick Posing Push OVERALL

Optim. P↓ T↓ P↓ T↓ P↓ T↓ P↓ T↓ P↓ T↓ P↓ T↓ P↓ T↓ P↓ T↓ P↓ T↓
Loss C↓ C↓ C↓ C↓ C↓ C↓ C↓ C↓ C↓

L⋆ 117 390 119 367 97 388 101 380 174 400 140 419 139 364 117 381 125 368

19 (3.5) 8 (4) 12 (3) 20 (3) 62 (45) 32 (7) 41 (11) 14 (4) 26 (10)

L⋆ w/o LG 121 416 128 396 99 406 100 389 180 424 155 460 140 377 124 399 131 408

[6] 459 (366) 426 (363) 377 (305) 373 (274) 368 (328) 550 (464) 388 (327) 425 (369) 421 (350)

Table 2.2: Comparison between using the contact consistency loss during optimization

( L⋆ ) and not using it (L⋆ w/o LG). 3d human pose (P) and translation (T)

estimation errors, as well as mean (median) 3D contact distance (C), expressed

in mm, for the CHI3D dataset. Our full optimization function, with the geometric

alignment term on contact signatures, decreases the pose and translation estimation

errors and the 3D distance between the surfaces annotated to be in contact.
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Chapter 3

Learning Complex 3D Human

Self-Contact

This chapter is based on the paper [7] ”Learning Complex 3D Human Self-Contact.” by

Mihai Fieraru, Mihai Zanfir, Elisabeta Oneata, Alin-Ionut Popa, Vlad Olaru, and Cris-

tian Sminchisescu published in the Proceedings of the AAAI Conference on Artificial

Intelligence, volume 35, pages 1343–1351, 2021.

Most monocular 3d human reconstruction systems do not directly infer human self-

contact, although its central role in correctly recognizing the subtleties of many iconic

poses or gestures is widely acknowledged perceptually.

Figure 3.1: Our self-contact prediction network (SCP) estimates the body regions in

contact, their correspondences and the self-contact positioning in image space.

To overcome some of the shortcomings of existing, self-contact agnostic, 3d recon-

struction methods, we propose to represent self-contact explicitly and show how the

resulting models can assist behavioural understanding in applications assessing face

touching. Our models learn to predict the image location of contact in order to assist

the detection of body regions in self-contact, as well as their signature, defined as the

correspondences between regions on the surface of a human body model that touch.

Conditioned on such detailed estimates, self-contact can be recovered correctly in the
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3d reconstruction. To train models and for large-scale quantitative evaluation, we col-

lect and annotate two large scale datasets containing images of people in self-contact.

HumanSC3D is an accurate 3d motion capture dataset containing 1, 032 sequences with

5, 058 contact events and 1, 246, 487 ground truth 3d poses synchronized with images

captured from multiple views. We also collect FlickrSC3D, a dataset of 3, 969 images,

containing 25, 297 annotations of body part region pairs in contact, defined on a 3d

human surface model, together with their self-contact localisation in the image.

The main contributions of the paper are as follows:

• Introduce a first principled model to detect self-contact body regions and their

signature. Our novel deep neural network SCP is assisted by an intermediate

self-contact image localisation (branch) predictor, leveraged both in training, for

local feature selection, and in testing, by enforcing consistency with the estimated

3d contact signature. Evaluation results are shown in Table 3.1.

• Novel, task-specific, large scale, valuable community datasets capturing people

in self-contact, together with dense annotations of a 3d body model to capture

the surface regions in contact, as well as image annotations associated to the

observed points of contact. The data is made available for research purposes.

• Quantitative (see Table 3.2) and qualitative (see Fig. 3.2) demonstration of met-

rically more accurate and perceptually veridical 3d reconstructions based on self-

contact signatures.

• A foundation for a large class of applications that would benefit from accurate

3d self-contact representations, such as, health monitoring of possible infections

when hands touch parts of the face (mouth, nose, eyes) in hospitals or during

a pandemic, or subtle behavioral understanding of gestures for robot-assisted

therapy of children with autism, to name just a few.

IoU75↑ IoU37↑ IoU17↑ IoU9↑
Method Segm. Sign. Segm. Sign. Segm. Sign. Segm. Sign.

SCP 0.469 0.301 0.507 0.339 0.591 0.442 0.693 0.550

ISP [1] (adapted for self-contact) 0.462 0.133 0.503 0.186 0.583 0.305 0.688 0.460

Human performance 0.528 0.422 0.564 0.475 0.664 0.579 0.768 0.692

Table 3.1: Results of our self-contact segmentation and signature estimation SCP on

FlickrSC3D, evaluated for different region granularities on the human 3d surface (from

75, down to 9 regions). Human performance represents the consistency values between

annotators.
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Optim. W/o chair - standing W/o chair - sitting W/ chair Overall

loss P↓ T↓ V↓ C↓ P↓ T↓ V↓ C↓ P↓ T↓ V↓ C↓ P↓ T↓ V↓ C↓

L 94 408 77 13 116 424 93 27 107 426 85 24 98 414 80 16

L w/o LG 106 419 121 210 145 436 147 183 132 432 123 189 114 423 124 203

Table 3.2: 3D human pose (P), translation (T), vertex (V) estimation errors, as well as

mean 3d contact distance (C), expressed in mm, for the HumanSC3D dataset. Using

the full optimization function, with the geometric alignment term on annotated self-

contact signatures, decreases the pose, translation and vertex estimation errors as well

as the 3d distance between surfaces annotated as being in contact.

Figure 3.2: 3D pose and shape reconstructions using our annotated self-contact data.

Original image (left). Reconstruction without considering the self-contact and the

associated loss (center). Reconstruction that uses the self-contact annotations and the

corresponding loss (right).
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Chapter 4

REMIPS: Physically Consistent 3D

Reconstruction of Multiple

Interacting People under Weak

Supervision

This chapter is based on the paper [8] ”REMIPS: Physically Consistent 3D Recon-

struction of Multiple Interacting People under Weak Supervision.” by Mihai Fieraru,

Mihai Zanfir, Teodor Szente, Eduard Bazavan, Vlad Olaru, and Cristian Sminchis-

escu, published in Advances in Neural Information Processing Systems, volume 34,

pages 19385–19397. Curran Associates, Inc., 2021.

The three-dimensional reconstruction of multiple interacting humans given a monoc-

ular image is crucial for the general task of scene understanding, as capturing the sub-

tleties of interaction is often the very reason for taking a picture. Current 3D human

reconstruction methods either treat each person independently, ignoring most of the

context, or reconstruct people jointly, but cannot recover interactions correctly when

people are in close proximity. In this work, we introduce REMIPS, a model for 3D

Reconstruction of Multiple Interacting People under Weak Supervision. REMIPS

can reconstruct a variable number of people directly from monocular images. At the

core of our methodology stands a novel transformer network that combines unordered

person tokens (one for each detected human) with positional-encoded tokens from im-

age features patches (see Fig. 4.1). We introduce a novel unified model for self- and

interpenetration-collisions based on a mesh approximation computed by applying dec-

imation operators. We rely on self-supervised losses for flexibility and generalisation

in-the-wild and incorporate self-contact and interaction-contact losses directly into the

learning process. With REMIPS, we report state-of-the-art quantitative results (see

Table 4.1) on common benchmarks even in cases where no 3D supervision is used.
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Additionally, qualitative visual results (see Fig. 4.2) show that our reconstructions are

plausible in terms of pose and shape and coherent for challenging images, collected

in-the-wild, where people are often interacting.

Figure 4.1: Overview of REMIPS, our proposed architecture to reconstruct the 3D pose and

shape of multiple interacting people. Starting from a single input image, we use an off-the-

shelf detector to extract the human bounding boxes. We create a sequence of person tokens

from these detections to which we attach an initial GHUM state estimate S0. On a separate

branch, starting from the image, we run a backbone convolutional neural network architecture

and create an additional sequence of spatial image feature tokens, Fs. We concatenate the

two sequence representations and iteratively refine this joint representation through a single

transformer encoder layer for a number of L stages. At the end of each stage l, we collect the

transformed representation for the token sequence associated with the people and apply an

MLP to regress the residual GHUM state estimates ∆Sl. Our final estimation is given by the

weighted sum of all the residual state updates and the initial state. The network is trained

weakly-supervised on various datasets with 2D annotations. We use contact and collision

losses defined over the recovered geometries to ensure physical plausibility.

13



Method MPJPE ↓ MPVPE ↓ Translation Error ↓ #2D #3D

Fieraru et al. [1] 125.4 − 368.0 N/A N/A

Jiang et al. [9] 136.0 N/A N/A 100K 300K

REMIPS (ours) 120.8 134.7 284.1 115K 0

Table 4.1: Performance on the CHI3D [1] dataset for multiple person pose and shape

reconstruction methods. In columns 2, 3, 4 we show the mean per joint position error

(MPJPE), the mean per vertex position error (MPVPE) and the translation error. All

errors are reported in mm and are relative to the root joint. Our method has lower errors

compared to the other optimization and inference based methods. We also compare the

number of #2D and #3D annotations used as supervision during the training. Our models

use no #3D and achieve better performance on the challenging dataset CHI3D [1].

Figure 4.2: 3D human pose and shape predictions on the COCO validation set (rows

1-5) for in-the-wild images. We show the initial image together with an overlaid recon-

struction of the meshes as well as a rendering from a different viewpoint which better

illustrates the physical consistency of the REMIPS reconstructions.
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Chapter 5

AIFit: Automatic 3D

Human-Interpretable Feedback

Models for Fitness Training

This chapter is based on the paper [10] ”AIFit: Automatic 3D Human-Interpretable

Feedback Models for Fitness Training.” by Mihai Fieraru, Mihai Zanfir, Silviu-Cristian

Pirlea, Vlad Olaru, and Cristian Sminchisescu, published in The IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), June 2021.

In this paper we propose AIFit, the first AI-enhanced training system for fitness.

The system is able to reconstruct 3d human pose over time, count repetitions, and

automatically provide localized feedback, visually grounded in images of the trainee,

and phrased in natural language displayed on a screen (see Fig 5.1).

In order to support research and evaluation, we introduce Fit3D, a large-scale

dataset of over 3 million images and ground truth 3d motion capture poses, collected

from 13 subjects (including one licensed fitness instructor and one advanced fitness

subject), observed by 4 different RGB cameras, together with 3d scans of each subject.

The dataset features 37 exercises consisting of simple and compound motions, cov-

ering all major muscle groups and articulation types, including, among many others,

warm-ups, barbells, dumbbells, push-ups, or yoga.

Our proposed methodology includes large-scale monocular and multi-view evalua-

tion of 3d human pose reconstruction for fitness training using Fit3D, models for auto-

matic identification of exercise repetitions, as well as methods to compare instructors’

and trainees’ performances according to statistical policies defined over mined features

(passive and active) defining the exercise, and carrying most of its motion energy. Our

statistical coach is governed by a global parameter that models how critical it is in

regard to a student’s performance. In practice, the parameter helps the coach adapt

to a student’s level of fitness (i.e. beginner vs advanced vs expert) or to the expected
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accuracy of the underlying 3d pose reconstruction method. Finally and importantly,

our statistical coach provides easy to understand, visually grounded spatio-temporal

feedback, in natural language. A system overview is shown in fig. 5.2.

Figure 5.1: Textual and visual feedback produced by our AIFit on real world videos,

captured with a regular smartphone camera. We use MubyNet-FT to estimate the

3d pose of the trainee. For each example, we show the following: an image with the

identified error of the trainee (top row), the 3d reconstruction of the trainee (second

row), the corresponding image with the correct execution of the instructor (third row)

and the textual feedback (bottom row). The two examples on the (left) show active

features feedback, while the two on the (right) show passive features feedback. Notice

generalization to various humans in different environments and camera viewpoints.
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Figure 5.2: AIFit overview. Given a video of a trainee performing an exercise, (a) the

system performs 3d pose reconstruction in each frame and then (b) applies repe-

tition segmentation to automatically count the number of 3d pose repetitions and

determine each repetition interval. Next, exercise modelling (c) computes an exer-

cise signature using the angular features of each repetition of the trainee (see fig. 5.3

for a detailed view). (d) The statistical coach compares each repetition signature

against the instructor reference signature under a critic threshold that allows for dif-

ferent degree of error. The results of the comparison are populated into a reference

assessment table specifying which deviations are greater than the critic threshold,

the sign of the deviation and the degree of error. Finally, based on the table, e) AIFit

produces natural language feedback for the trainee, using either an active or a

passive grammar.

Figure 5.3: Exercise Modelling: (Left) Active and passive angular feature sets

construction (instructor only). For an exercise a and for each angular feature func-

tion, we integrate its motion trajectory over the instructor’s sequence of 3d poses, and

get the motion energy of each feature function. We cluster the energies into two sets,

active Θa
+ (associated with high energy) and passive Θa

− (associated with low energy)

by using a maximum margin binary cut. (Right) Exercise signature computation.

Both for trainees and instructor exercises, a signature is produced from the computed

angular features, corresponding cluster assignments (derived from instructor exercises)

and predefined statistical operators (applied to each of the two sets of angular features).
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