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ABSTRACT

Weaving Anatomical Knowledge into Computer Vision for
Data-Limited Medical Applications

“It’s still magic even if you know how it’s done.” – Terry Pratchett

Medical artificial intelligence has emerged as a transformative field at the intersection of

computer vision, healthcare, and machine learning, enabling improved diagnostic accuracy

and efficiency in clinical settings. As medical imaging technologies continue to advance,

the ability to accurately analyze and interpret complex radiological data has become increas-

ingly important for enhancing patient outcomes, reducing diagnostic errors, and optimizing

clinical workflows. This thesis advances the field of medical AI through a series of inno-

vative deep learning approaches focusing on pulmonary embolism detection and vital sign

monitoring with limited human supervision.

We begin by approaching the medical task of pulmonary embolism detection with a novel

anatomically-aware dual-hop framework for pulmonary embolism detection that leverages

organ segmentation to improve detection accuracy. This approach significantly improves

upon existing methods by integrating anatomical context into the detection pipeline, achiev-

ing state-of-the-art results on a large scale public pulmnoary embolism detection dataset. To

address the critical challenge of annotation granularity, we introduce Label Up, a weakly su-

pervised learning pipeline that transforms image-level annotations into detailed segmentation

masks through model explainability techniques, effectively bridging the gap between coarse

annotations and fine-grained segmentations without requiring additional manual annotation

effort.

The thesis further addresses the challenge of data scarcity through an innovative syn-

thetic data generation approach specifically designed for medical imaging applications. Our

method preserves the temporal statistical properties of real-world medical data while main-
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taining privacy constraints, while requiring no human labeling. For vital sign monitoring,

we develop deep learning models capable of accurate and continuous assessment of patient

physiological parameters from non-invasive sensors.

Our research advances the field through technical innovations that address key challenges

in medical AI deployment: anatomical information integration for improved contextual un-

derstanding, weakly supervised learning pipelines to maximize the utility of limited annota-

tions, and synthetic data generation to overcome data scarcity. These contributions collec-

tively enhance the performance, interpretability, and clinical applicability of deep learning

models in medical imaging analysis, paving the way toward more effective computer-aided

diagnostic systems that can meaningfully support clinical decision-making and improve pa-

tient care.

Keywords – Deep Learning, Healthcare AI, Computer-Aided Detection, Artificial In-

telligence, Anatomically-Aware Models, Weakly Supervised Learning, Synthetic Data Gen-

eration, Explainable AI, Medical Imaging, Pulmonary Embolism, Vital Sign Monitoring,

Clinical Decision Support
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Chapter 1

INTRODUCTION

1.1 Deep learning in the medical field

Artificial intelligence has transformed healthcare by enabling complex medical data analy-

sis. The evolution from early expert systems to modern deep learning applications reflects

broader AI advancements driven by computational power, algorithmic innovation, and data

availability[36]. Healthcare presents unique AI implementation challenges due to complex,

heterogeneous, privacy-sensitive data requiring specialized approaches[38], alongside regu-

latory requirements and integration challenges with established clinical practices[14].

Recent medical AI developments have accelerated through improved computing infras-

tructure, electronic health records implementation, and machine learning advances[11]. These

foundations have enhanced precision in medical imaging analysis and diagnostic support[21],

with the field moving toward AI-powered decision support tools and personalized medicine

approaches that address healthcare delivery gaps while improving patient outcomes[10].

Deep learning has particularly impacted medical applications, with convolutional neu-

ral networks revolutionizing image analysis and recurrent architectures enabling sophisti-

cated clinical text and time-series data processing[28]. However, clinical deployment re-

mains limited due to interpretability, data quality, generalizability, and regulatory compliance

challenges[18].

The healthcare landscape continues to evolve with AI solutions strengthening professional-

patient relationships, moving from telemedicine toward integrated intelligent systems en-

hancing clinical decision-making while preserving human care[36].
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1.2 Motivation

Medical AI research represents a unique intersection of ethical responsibility and techni-

cal innovation. Healthcare AI can transform patient outcomes, enhance clinical decision-

making, and address global healthcare disparities[36]. From an ethical perspective, health-

care is ideal for AI research, offering tangible benefits through early disease detection, im-

proved diagnostic accuracy, and personalized treatment plans[14].

Healthcare AI addresses accessibility and equity challenges globally. In regions with lim-

ited specialist access, AI systems can provide otherwise unavailable diagnostic support and

triage capabilities[10]. This ethical dimension provides both a moral compass and purpose

transcending purely technical achievements.

Technically, medical AI presents compelling research challenges involving complex,

high-dimensional multimodal data requiring sophisticated modeling approaches[11]. Med-

ical applications demand exceptional accuracy, reliability, and interpretability, pushing ma-

chine learning boundaries and necessitating innovations in model design and validation

protocols[38].

Medical AI research benefits from clearly defined tasks with objective evaluation crite-

ria, whether detecting pulmonary embolisms, predicting disease progression, or generating

synthetic training examples for rare conditions[21]. This clarity enables focused research

with direct clinical translation pathways.

1.3 Challenges

Several key challenges define the current medical AI research landscape:

Data Scarcity: Annotated medical datasets are limited due to high labeling costs and

expertise requirements, particularly problematic for rare diseases[16]. For conditions with

prevalence below 1 in 2,000 individuals, insufficient imaging data leads to poor model

generalization[11].

Privacy Concerns: Stringent privacy regulations restrict patient data sharing, necessi-

tating federated learning or synthetic data generation techniques[30]. GDPR and HIPAA

impose strict requirements creating multi-institutional collaboration barriers[26], catalyzing

privacy-preserving techniques including differential privacy and homomorphic encryption[17].

Interpretability: Deep learning models’ black-box nature hinders clinical adoption where
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transparency is crucial[15]. Clinicians require not only accurate predictions but explanations

aligning with medical reasoning[38]. Approaches like attention mechanisms and concept-

based explanations aim to bridge algorithmic complexity and clinical interpretability[35].

Bias and Fairness: Imbalanced datasets lead to biased predictions affecting certain de-

mographic groups disproportionately[12]. Historical biases in medical practice and health-

care access encoded in training data potentially perpetuate existing disparities[4], with mod-

els trained on specific populations performing poorly on underrepresented groups[20].

1.4 Our main contributions

This thesis makes significant contributions to medical artificial intelligence, addressing health-

care application challenges while advancing methodologies for robust, clinically relevant AI

systems:

End-to-End Diagnostic Systems: We explore end-to-end diagnostic medical AI pipelines

leveraging medical information, using anatomical information for data preprocessing and

model pretraining in Chapter 2, and clinical information for synthetic data generation in

Chapter 5.

Tackling data scarcity: We developed two frameworks enabling machine learning model

training on complex tasks without requiring human annotations:

Our Label Up framework[8] upgrades annotation granularity by leveraging model ex-

plainability, applied to pulmonary embolism detection by upgrading image-level annotations

to voxel-level annotations enabling individual emboli localization.

In Chapter 5, we present synthetic data generation incorporating medical priors for re-

mote vital sign monitoring. Our synthetic thermal videos use simple geometric primitives

transformed based on physiologically accurate frequencies. Models trained exclusively on

this synthetic data demonstrate remarkable generalization to real thermal videos, validating

that effective training requires only essential temporal concepts isolated from complex visual

features.

Architectural improvements: We introduce an architecture leveraging both global and

local information in our HopNet pipeline (Chapter 2), utilizing multiple data passes while

aggregating features from previous passes as input for subsequent passes.

Clinical validation: We evaluate our work in clinical settings (Chapter 3), examining
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actual medical value for patients with detailed clinical perspective results demonstrating real-

world human impact.
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Chapter 2

ANATOMICALLY INFORMED

MODELS

Pulmonary embolism (PE) remains a leading cause of cardiovascular mortality, with

prompt and accurate diagnosis being crucial for patient outcomes. While computed tomo-

graphic pulmonary angiography (CTPA) serves as the gold standard for PE diagnosis, the

complexity and subtlety of emboli manifestations pose significant challenges for radiolo-

gists. To address these challenges, In this chapter we introduce HopNet, a novel 3 stage

deep learning approach that leverages anatomical awareness and a dual-hop architecture for

improved PE detection in CTPA scans, obtaining state of the art performance on a large

scale public dataset [6] for PE slice level classification. Our solutions are built upon a strong

baseline model based on EfficientNetV2 [34], and our contributions are applied along three

independent axes of development, which prove to be necessary for an accurate performance.

An overview of our 3 stage pipeline is displayed in Figure 2.1.

First stage: anatomically aware masking and cropping of lung and heart regions. Deep

neural modules trained on physiological information for segmenting lung and heart regions

are used to segment only the relevant information with respect to PE detection. By leveraging

cropped volumes, we are able to upsample the resolution of the relevant anatomical structures

while keeping the original input size. An added benefit is the removal of external structures

that may be mistaken for PEs. The preprocessing brings an 0.6 % F1 score improvement on

This section is based on the paper: Condrea, Florin, Marius Leordeanu et al. "Anatomically aware dual-
hop learning for pulmonary embolism detection in CT pulmonary angiograms." Computers in Biology and
Medicine 174 (2024): 108464.
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study level over using non-cropped volumes at the same runtime.

Second stage: anatomically aware pretraining. Relevant features are pretrained on the

task of localizing specific anatomical landmarks, before starting the PE learning stage. This

stage has the role of priming the neural network with both anatomical knowledge, aiding in

differentiating the various complex anatomical structures, as well as learning the particular-

ities of medical imaging. Brings an 0.4 % F1 score improvement on study level over the

strong Imagenet21K [29] pretraining.

Third stage: dual-hop architecture for PE detection. The dual-hop architecture performs

classification in two-phases. The first phase performs an initial evaluation, and the second

phase, having access to the initial input as well as the output of the first phase, is able to pro-

duce a more accurate, refined prediction. This architectural improvement has the key benefit

of providing global highly refined features at the beginning of the ulterior phases. This

approach simulates a very large receptive field early on, which combined with the refined

features, obtains an 1.6 % F1 score on study level improvement over single hop architecture.

Our final model obtains state-of-the-art performance, obtaining an F1 score on study
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Figure 2.1: Proposed workflow: each stage represents one of the contributions. Left:
Anatomically Aware Segmentation and Cropping, through which data is specialized for PE
detection. Middle: Anatomically Aware Pretraining on the related task of Anatomical Land-
mark Detection, through which the model is primed for our task of Pulmonary Embolism
detection. Right Hopped training, through which model predictions are refined, over two
hops of neural processing.
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Table 2.1: Comparison of results with state of the art solutions [1, 3, 40]. Our model, com-
pared to state of the art [1, 3, 40], obtains better results in terms of F1 score. Our model
performs slightly worse when compared to a human radiologist.

Model F1(↑) AUC PR(↑)
Weiker [40] AI Model 86.0 % -
Cheikh [3] AI Model 86.1 % -

Cheikh [3] Radiologist 92.4 % -
Buls [1] AI model 73.0 % -

Our baseline model 88.4 % 63.87 %
+ Cropping 89.0 % 64.29 %

+ Pretraining 89.4 % 65.95 %
+ Hop ( Our final model ) 91.0 % 66.21 %

level of 91.0%, outperforming other strong methods such as Weikert el al’s [39] 86.0% F1

score. Full results are displayed in Table 2.1. The significant performance improvements

over strong baselines and state-of-the-art methods demonstrate the effectiveness of our ap-

proach, even in the big data regime. Our model’s performance, approaching that of expert

radiologists, suggests its potential for clinical application.

Moreover, the three-stage framework introduced here represents a general proof of con-

cept that could be adapted to other medical image analysis tasks. By breaking down complex

diagnostic processes into intuitive, sequential steps, we’ve created a model that not only per-

forms well but also aligns with human diagnostic reasoning.
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Chapter 3

DEEP LEARNING FROM THE

CLINICAL PERSPECTIVE

This study evaluated our deep neural network (DNN)-based algorithm for automated pul-

monary embolism (PE) detection on CT pulmonary angiography (CTPA) scans. PE repre-

sents a serious condition ranking as the third most common cardiovascular syndrome world-

wide, with prompt diagnosis being essential to prevent life-threatening complications. The

algorithm was tested on 903 consecutive CTPA scans from a single university hospital, with

a PE prevalence of 12.2% (n=110).

From a clinical perspective, PE diagnosis presents significant challenges. Radiologists

face increasing workloads with CTPA scans growing 3-4% annually due to fear of miss-

ing PE, increased CT accessibility, and financial considerations [37]. In emergency settings,

multiple life-threatening conditions must be ruled out alongside PE, including acute coronary

syndrome, aortic dissection, and pneumonia. Oncologic patients face increased PE incidence

due to malignancy-associated thrombosis, making early detection crucial for optimal man-

agement.

The DNN-based algorithm demonstrated strong performance with a sensitivity of 84.6%,

specificity of 95.1% , and an accuracy of 93.8% for PE detection . This performance aligns

with radiologists’ typical sensitivity (67%-87%) and specificity (89%-99%) when consensus

reading is considered the reference standard. Detailed results are presented in Table 3.1

This section is based on our work in: Tilman Emrich, Florin Condrea, et al "Accuracy of a Deep Neural
Network for Automated Pulmonary Embolism Detection on Dedicated CT Pulmonary Angiograms"
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Table 3.1: Overall Performance Analysis of the AI Model. 95% confidence intervals are in
the squared brackets. All cases: n = 903.

Metric Value 95% CI
True Positive 93 -
False Negative 17 -
False Positive 39 -
True Negative 754 -
Sensitivity 84.6% [76.4%, 90.7%]
Specificity 95.1% [93.3%, 96.5%]
Positive Predictive Value 70.5% [63.5%, 76.6%]
Negative Predictive Value 97.8% [96.6%, 98.6%]
Accuracy 93.8% [92.0%, 95.3%]

Location-specific analysis revealed excellent sensitivity of 100% for central and of 96.7%

for lobar PE, while peripheral PE detection was lower at 72.9% . This pattern mirrors clinical

experience, where radiologists also demonstrate higher accuracy for central than peripheral

PE (74%-86%) [19]. False negatives (n=17) primarily occurred with small chronic PEs in

subsegmental arteries and acute PEs in segmental or subsegmental branches. False posi-

tives (n=39) were mainly caused by turbulent flow, artifacts, consolidation, and pulmonary

masses. Detailed results are presented in Table 3.2.

Clinically, the algorithm performed similarly in obese and non-obese patients, demon-

strating its robustness across different patient populations despite the challenges of reduced

image quality in higher BMI patients due to increased noise, reduced spatial resolution, and

beam hardening artifacts. The study population appropriately reflected real-world clinical

scenarios, with PE-positive patients showing higher proportions of known risk factors in-

cluding limited mobility, active malignancy, recent surgery, and clotting disorders.

These results suggest the algorithm’s potential utility in supporting radiologists through

exam prioritization and as a second reader, potentially improving workflow efficiency and

diagnostic accuracy in clinical practice. Such AI integration could address the growing de-

mand for CTPA interpretation while maintaining high diagnostic standards.

Table 3.2: Location-based Performance Analysis. 95% confidence intervals are in the
squared brackets.

Location True Positive False Negative Sensitivity
Overall 93 17 84.6% [76.4%, 90.7%]
Central 21 0 100.0% [83.9%, 100.0%]
Lobar 29 1 96.7% [82.8%, 99.9%]
Peripheral 43 16 72.9% [59.7%, 83.6%]
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Chapter 4

WEAKLY SUPERVISED LEARNING

VIA LABEL GRANULARITY

ENCHANTMENT

In this chapter we present a weakly supervised learning pipeline called "Label Up" that

upgrades annotation granularity from image-level to pixel-level for pulmonary embolism

(PE) detection. The three-stage pipeline, displayed in Figure 4.1 first trains a slice-level

classifier, then uses an explainability module based on integrated gradients [31] to generate

pseudo-labels through iterative refinement, and finally trains a segmentation model on these

pseudo-labels.

Our slice classifier, based on our previous work [7], achieves state-of-the-art perfor-

mance with 97.1% AUCROC and 75.1% F1 score on slice level performance, providing

a strong foundation for the explainability stage. The second stage employs an innovative

iterative refinement process where predicted PE regions are progressively masked out, forc-

ing the model to identify additional emboli. This approach significantly improves sensitivity

by 10.1% while maintaining reasonable precision, with performance peaking after approxi-

mately six refinement iterations. The process automatically terminates when no further PEs

are detected, optimizing computational efficiency. Post-processing filters based on size and

anatomical location further enhance performance by eliminating false positives.

This section is based on our work in: Condrea, Florin, Saikiran Rapaka, and Marius Leordeanu. "Label up:
Learning Pulmonary Embolism Segmentation from Image Level Annotation through Model Explainability."
arXiv preprint arXiv:2412.07384 (2024).
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Figure 4.1: Our proposed pseudo-label multistage pipeline. In Stage 1, a slice level classifier
is trained to predict if a stack of slices is positive. In Stage 2, the trained classifier, together
with integrated gradients algorithm, predict the location of PEs. After each iteration, the
predicted zones are masked out, and volume fed back into the network. Process repeats until
PEs are no longer detected and all predictions are aggregated into pseudo-labels. In Stage 3,
a deep learning segmentation network is trained on the pseudo-labels, obtaining performance
superior to that of the explainability based teacher model.

When compared with other weakly supervised methods on PE localization, trained on a

on a dataset of 6,824 studies [6] our approach achieves 69.4% F1 score on PE localization on

a public dataset of 442 studies[2], slightly outperforming Pu et al.’s 69.1% F1 score which

is trained on similar amounts of data[27] .By adding additional private data to our training

dataset, obtaining a total of 13,329 studies, our performance improves to 71.6% F1 score,

matching strongly supervised methods like Zhu et al. [42] despite using only image-level

annotations. Full results are presented in Table 4.1.

Furthermore, finetuning our weakly supervised model on just 111 human-annotated stud-

ies yields 75.5% F1 score on PE localization, outperforming both random initialization

(71.0%) and Zhu et al.’s method (71.6%) [42] by significant margins. This demonstrates

that our weakly supervised pipeline not only generates high-quality pseudo-labels but also

serves as an effective pretraining strategy when limited human annotations become available.

Full results are presented in Table 4.2.

Our approach addresses a critical challenge in medical AI: the scarcity of fine-grained

annotations. By leveraging readily available image-level labels to generate detailed seg-

mentation masks, we enable the development of more precise diagnostic tools without the

prohibitive cost of manual pixel-level annotation. The final segmentation model is also sub-
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Table 4.1: Deep learning model performance. We report our performance on two datasets of
6,824 and 13,329 CTPA studies. Comparing with other pseudo-label methods [27] trained
on a similar dataset, we obtain slightly better performance. By adding more private data to
the training set, performance similar to strongly supervised methods [42] evaluated using the
same detection matching criteria is obtained.

Model Data Positives Recall PPV F1
Weakly Supervised Methods

Pu et al [27] 6415 1990 61.8 78.2 69.1
Our Model 6824 1766 61.5 79.6 69.4
Our Model 13329 3389 66.9 77.0 71.6

Strongly Supervised Methods
Ozkan et al [25] 142 142 95.1 52.6 67.7
Tajbakhsh et al [32] 121 121 83.4 47.2 60.3
Tajbakhsh et al [33] 121 121 32.9 98.6 49.4
Xu et al [41] 113 113 93.2 51.2 66.1
Zhu et al [42] 142 142 86.0 61.3 71.6
Weikert et al [40] 30000 15858 82.2 86.8 85.8

Table 4.2: Strongly supervised training results. We train our model on human annotation,
starting from both random initialization and weakly supervised pretrained weights. Fine-
tunning the model trained on pseudo-labels obtains a performance boost of 3.9 % F1 score,
improving both sensitivity and PPV. The finetunned model also outperforms random ini-
tilization by 4.5 % F1 and another strongly supervised method trained on similar amount
of data [42]. Our WSL model in italics is trained on pseudo-labels, and added for easier
visualization of the improvement obtained through finetunning.

Model Data Positives Recall PPV F1
Our WSL model Baseline 13,329 3,389 66.9 77.0 71.6

Zhu et al [42] 142 142 86.0 61.3 71.6
Our Random Init 111 111 66.2 76.6 71.0

Our WSL model Finetunned 111 111 73.9 77.5 75.5

stantially faster (50x) than the explainability-based teacher model while achieving better

performance, making it suitable for clinical deployment. This methodology has broad po-

tential applications beyond PE detection, offering a generalizable framework for upgrading

annotation granularity across various medical imaging tasks.
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Chapter 5

LEARNING TEMPORAL TASKS

WITHOUT HUMAN ANNOTATIONS

In this chapter we explore an innovative approach to vital sign detection in thermal videos

by leveraging synthetic data constructed from basic computer vision primitives. The research

demonstrates how neural networks can recognize specific temporal signals despite significant

differences between training and target domains. Our method, VSignNet, learns to predict

both vital sign intensity and corresponding regions of interest in thermal videos without

human supervision. The method achieves state-of-the-art results on the recent LCAS dataset

[9].

Our approach consists of four stages: determining the frequency range of interest, gen-

erating synthetic training data, training the model, and performing inference with post-

processing to detect signal peaks. The synthetic data generation methodology relies entirely

on heuristic principles, creating training samples that share only essential target temporal

signal characteristics. Our deep learning architecture captures temporal dimensions on two

levels - local and global - enabling effective vital sign detection. As overview of out pipeline

illustrated in Figure 5.1,

The VSignNet architecture processes input frames through a temporal convolutional en-

coder, followed by bidirectional LSTMs that aggregate global temporal information. Fully

connected modules transform the embeddings into numerical values representing vital sign

This chapter is based on our work in: Condrea, Florin, Victor-Andrei Ivan, and Marius Leordeanu. "In
search of life: Learning from synthetic data to detect vital signs in videos." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2020.
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Figure 5.1: The four stages of our approach: the first stage consists of determining the
frequency range of interest, either by using dataset statistics or domain knowledge. The
second stage is the generation of synthetic training data samples. The third stage is the
training of the model. At the final, inference stage, an additional post-processing step detects
the peaks of the signal, on which we base our output average signal rate.

magnitude, while temporal convolutional decoders generate heatmaps encoding signal source

locations. This dual-pathway approach allows for both signal intensity prediction and region-

of-interest localization.

Heart Rate (BPM)

Experiment
Still Moving

MAE STD MAE STD
LCAS [9] 29.68 ±15.76 18.96 ±22.51
VSignNet 15.51 ± 9.93 14.91 ± 7.99

Respiration Rate (BPM)

Experiment
Still Moving

MAE STD MAE STD
LCAS [9] 3.72 ±0.78 5.87 ±2.18

M ROI 1.87 ±2.05 4.41 ±4.41
RF ROI 1.90 ±1.72 14.77 ±7.32

VSignNet 1.12 ± 1.34 2.62 ± 2.07

Table 5.1: Performance comparison between our results (VSignNet) and the results reported
by Cosar et al (LCAS [9]). We also report the results of the two baselines, using either
manually annotated ROI (M ROI) or ROI detected with RetinaFace (RF ROI).

VSignNet outperforms existing methods [5, 9, 23], achieving a mean absolute error of

1.12 (±1.34) for respiration rate per minute during still poses and 2.62 (±2.07) during move-

ment, significantly better than the LCAS baseline (3.72±0.78 and 5.87±2.18 respectively).

For heart rate detection, our method achieves a mean absolute error 15.51 (±9.93) of heart-

beats per minute during still poses and 14.91 (±7.99) during movement, compared to LCAS’s
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29.68 (±15.76) and 18.96 (±22.51). The model also demonstrates robustness across different

breathing patterns and effectively localizes regions of interest corresponding to the signal

source. Full results are displayed in Table 5.1,

The remarkable efficacy of our relatively straightforward synthetic data generation al-

gorithm in the complex domain of medical imaging merits further investigation. The suc-

cessful application of such a methodology raises significant questions regarding the potential

of synthetic training paradigms to facilitate unsupervised learning across diverse and com-

plex spatiotemporal vision tasks [13, 22, 24]. This finding suggests promising avenues for

addressing data scarcity challenges in specialized domains where annotated datasets are par-

ticularly difficult to obtain.
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Chapter 6

Conclusions

This thesis has explored innovative approaches to address key challenges in medical AI, fo-

cusing on enhancing model performance under data constraints while maintaining clinical

relevance. Our work has contributed to medical image analysis and vital sign monitoring

through anatomically-informed design, synthetic data generation, and architectures leverag-

ing both global and local features. We demonstrated the effectiveness of anatomically driven

design in our HopNet framework, which utilized anatomical priors to guide preprocessing

and model pretraining, resulting in more efficient feature learning and improved generaliza-

tion.

To address data scarcity, we proposed two complementary approaches. Our Label-Up

methodology increased annotation granularity without additional manual labeling by lever-

aging weak supervision and iterative refinement. In our vital sign monitoring work, we

developed a method for generating synthetic training data based on target temporal dynam-

ics, creating simplified geometric primitives that captured fundamental patterns for accurate

respiratory and heart rate detection. Both approaches significantly reduced the annotation

burden while maintaining high diagnostic accuracy.

Beyond technical innovations, we emphasized clinical validation and interpretability.

Our collaboration with medical professionals provided insights into model strengths and

limitations in realistic scenarios, particularly regarding challenging abnormalities. This

clinically-informed evaluation methodology represents an important step toward developing

AI systems that can meaningfully support medical decision-making in practice.
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