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OUTLINE OF THE MAIN RESULTS

Chapter 1: INTRODUCTION

This thesis explores a variety of scenarios in which asymptotic methods play a cru-

cial role in the analysis of partial differential equations. The motivations for using

mathematical approximations are diverse: on one hand, they allow the replacement of

complex models with simpler, approximate ones, whose properties can be then trans-

ferred to the former more intricate objects. A relevant example in this context is

the use of numerical schemes to effectively compute solutions to differential equations.

On the other hand, approximations allow us to predict the behaviour of certain mod-

els when their parameters reach extreme values. For instance, large-time asymptotic

profiles for evolution equations provide valuable insight into their solutions when the

temporal variable becomes large. This work provides multiple asymptotic results for

both local and non-local evolution equations, defined on Euclidean spaces as well as in

the non-Euclidean context of hyperbolic spaces.

The primary chapters of this thesis (3-6) are grounded in four of my co-authored

papers that explore asymptotic phenomena of parabolic equations. Two of these arti-

cles have been published [13, 24] while the others are under review in reputable journals

[9, 19].

In the first part (Chapter 3), we study the large time asymptotic behaviour of the

heat equation with Hardy inverse-square potential on corner spaces RN−k × (0,∞)k,

k ≥ 0. We first show a new improved Hardy-Poincaré inequality for the quantum

harmonic oscillator with Hardy potential. In view of that, we construct the appropri-

ate functional setting in order to pose the Cauchy problem. Then we obtain optimal

polynomial large time decay rates and subsequently the first term in the asymptotic

expansion of the solutions in L2(RN−k× (0,∞)k). Particularly, we extend and improve

7



Outline of the main results

the results obtained by Vázquez and Zuazua (J. Funct. Anal. 2000), which correspond

to the case k = 0, to any k ≥ 0. We emphasise that the higher the value of k the better

time decay rates are. We employ a different and simplified approach than Vázquez and

Zuazua, managing to remove the usage of spherical harmonics decomposition in our

analysis.

The second part (Chapter 4) of this work is dedicated to the study of a non-local

evolution equation on the hyperbolic space HN . We first consider a model for particle

transport governed by a non-local interaction kernel defined on the tangent bundle

and invariant under the geodesic flow. We study the relaxation limit of this model

to a local transport problem, as the kernel gets concentrated near the origin of each

tangent space. Under some regularity and integrability conditions on the kernel, we

prove that the solution of the rescaled non-local problem converges to that of the local

transport equation. Then, we construct a large class of interaction kernels that satisfy

those conditions.

We also consider a non-local, non-linear convection-diffusion equation on HN gov-

erned by two kernels, one for each of the diffusion and convection parts, and we prove

that the solutions converge to the solution of a local problem as the kernels get concen-

trated. We prove and then use in this sense a compactness tool on manifolds inspired

by the work of Bourgain-Brezis-Mironescu.

The main motivation behind the third part (Chapter 5) of this work stems from

a notable gap in the existing literature: the absence of a discrete counterpart to the

Laplace-Beltrami operator on Riemannian manifolds, which can be effectively used to

solve PDEs. We consider that the natural approach to pioneer this field is to first

explore one of the simplest non-trivial (i.e., non-Euclidean) scenario, specifically focus-

ing on the 2-dimensional hyperbolic space H2. To this end, we present two variants

of discrete finite-difference operator tailored to this constant negatively curved space,

both serving as approximations to the (continuous) Laplace-Beltrami operator within

the L2 framework. Moreover, we prove that the discrete heat equation associated to

both aforesaid operators exhibits stability and converges towards the continuous heat-

Beltrami Cauchy problem on H2. Eventually, we illustrate that a discrete Laplacian

specifically designed for the geometry of the hyperbolic space yields a more precise

approximation and offers advantages from both theoretical and computational per-

8



Outline of the main results

spectives.

In the last part (Chapter 6), we analyze the preservation of asymptotic properties of

partially dissipative hyperbolic systems when switching to a discrete setting. We prove

that one of the simplest consistent and unconditionally stable numerical methods –

the central finite difference scheme – preserves both the asymptotic behaviour and the

parabolic relaxation limit of one-dimensional partially dissipative hyperbolic systems

which satisfy the Kalman rank condition.

The large time asymptotic-preserving property is achieved by conceiving time-

weighted perturbed energy functionals in the spirit of the hypocoercivity theory. For

the relaxation-preserving property, drawing inspiration from the observation that solu-

tions in the continuous case exhibit distinct behaviours in low and high frequencies, we

introduce a novel discrete Littlewood-Paley theory tailored to the central finite differ-

ence scheme. This allows us to prove Bernstein-type estimates for discrete differential

operators and leads to a new relaxation result: the strong convergence of the discrete

linearized compressible Euler system with damping towards the discrete heat equation,

uniformly with respect to the mesh parameter.

The thesis concludes by presenting (in Chapter 7) a collection of smaller, less re-

fined asymptotic results, intended for further development and publication, along with

identifying and proposing new research directions inspired by the findings in this thesis.

The extension of these asymptotic results to other types of differential equations and

the exploration of the potential of the involved methods in various mathematical con-

texts are considered. Together, these currently unfinished projects and novel research

directions have the potential to open up new horizons in mathematical analysis and to

make significant contributions towards the theoretical and applied development of the

field.

Chapter 2: PRELIMINARIES

This chapter of the thesis is dedicated to a brief presentation of rather classical results

that are useful along the thesis.

First, we present some elementary notions of Semigroup Theory, a field of Analysis

that forms the basis for the rigorous study of evolution equations. For a detailed

9



Outline of the main results

introduction in this theory, as well as the rigorous construction of Lebesgue and Sobolev

spaces on real intervals with values in a Banach space, the interested reader could

consult [14].

Secondly, we provide a brief introduction into Riemannian geometry, differential

operators and function spaces on Riemannian manifolds (refer to [25]) and then we re-

call some classical aspects about the hyperbolic space HN and its Riemannian geodesic

flow. We begin with a presentation of two models of HN , each of them to be used

when most convenient in specific computations. We refer to [32] for more details about

hyperbolic geometry and models.

Eventually, we introduce the semi-discrete one-dimensional Fourier transform and

revisit some fundamental properties such as invertibility and Parseval’s equality. Sub-

sequently, we use these properties to study the solutions of discrete hyperbolic systems.

We refer to [38, Section 2.2] and [36, Chapter 2] for more details concerning this topic.

Chapter 3: LONG TIME ASYMPTOTICS FOR THE

HEAT EQUATION WITH HARDY POTENTIAL

ON CORNER SPACES

The first original result in this thesis delves into the study of the heat equation with a

singular potential on corner spaces RN,k
+ := RN−k × (0,∞)k. The problem is inspired

by the paper of Vazquez and Zuazua [39] which pertains to the case of the entire space

RN . More precisely, we aim to find the asymptotic profile of an equation that describes

a joint behaviour between a diffusion process of particles and an accumulation near the

corner of the space (i.e., the origin 0RN ). The diffusion is simply characterised by the

Laplace operator, whereas the accumulation is described in terms on an inverse-square

potential λ
|x|2 , where the parameter λ quantifies the strength of the gain of substance

near the origin. The stability of the model requires that this rate of accumulation

is less than a certain critical value λN,k :=
(
N−2
2

+ k
)2

, which in turn is the optimal

constant of the Hardy inequality in corner spaces – see [37]:
ˆ
RN,k
+

|∇u|2dx ≥ λN,k

ˆ
RN,k
+

u2

|x|2
dx, ∀u ∈ C∞

c (RN,k
+ ). (3.1)

This inequality leads to the well-posedness of the Cauchy problem that quantifies

10
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the phenomenon described in the preceding paragraph – see [5]:


∂tu(t, x) = ∆u(t, x) + λ

|x|2u(t, x), t > 0, x ∈ RN,k
+ ,

u(t, x) = 0, t > 0, x ∈ ∂RN,k
+ ,

u(0, x) = u0(x), x ∈ RN,k
+ ,

(3.2)

where u0 ∈ L2(RN,k
+ ) and λ ∈ (−∞, λN,k]. Although the problem is well-posed for

any initial datum u0 ∈ L2(RN,k
+ ) and, additionally, the L2(RN,k

+ ) norm of the solution

does not increase in time, this is all we can say about the long-time behaviour of

∥u(t)∥L2(RN,k
+ ). Therefore, decay estimates can be obtained only if we restrict the initial

datum to a subspace of L2(RN,k
+ ). Thus, inspired by [22, 39], we consider the weighted

L2 space:

L2(RN,k
+ ;K) :=

{
u ∈ L2(RN,k

+ )
∣∣∣ ˆ

RN,k
+

|u(x)|2K(x)dx < ∞

}
, K(x) := e

|x|2
4 ,

for which we obtain the sharp polynomial decay for the solutions of (3.2), together with

the asymptotic profile which, in particular, describes how the information accumulates

near the origin, for a very large time. These results are summarised in the following:

Theorem 3.1. For any initial data u0 ∈ L2(RN,k
+ ;K), the solution u of problem (3.2)

satisfies:

∥u(t)∥L2(RN,k
+ ) ≤ (1 + t)−

1+mλ
2 ∥u0∥L2(RN,k

+ ;K), ∀t ≥ 0, (3.3)

where mλ :=
√

λN,k − λ.

Moreover, this polynomial decay rate is sharp and the asymptotic profile is described

by the following convergence:

lim
t→∞

t
1+mλ

2

∥∥∥∥u(t) − β t−(1+mλ)e−
|x|2
4t e

|x|2
8 αk,λ

∥∥∥∥
L2(RN,k

+ )

= 0, (3.4)

where the function αk,λ ∈ C∞(RN,k
+ ) defined as

αk,λ(x) := e−
|x|2
8 |x|mλ−N−2

2
xN−k+1xN−k+2 · · ·xN

|x|k
, (3.5)

is the first eigenfunction of the following elliptic eigenvalue problem:

∆ϕ(x) +

(
λ

|x|2
− |x|2

16

)
ϕ(x) = µϕ(x), ∀x ∈ RN,k

+ , (3.6)

with the corresponding eigenvalue µ1 = 1+mλ

2
.

11
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Also, β is a normalisation constant which depends on the initial datum u0:

β :=
(
∥αk,λ∥L2(RN,k

+ )

)−1
ˆ
RN,k
+

u0(x)e
|x|2
8 αk,λ(x)dx.

The construction of an appropriate functional framework for the study of the prob-

lem (3.2) with L2(RN,K
+ ;K) initial data, the proof of Theorem 3.1 and other connected

results are covered in Chapter 3 of this thesis, which is, in turn, based on my co-

authored published article [13].

Chapter 4: NON-LOCAL TO LOCAL ASYMPTOTICS

IN NON-EUCLIDEAN SETTING

In this chapter we study a type of asymptotics between operators which encode different

behaviours in terms of the process they describe: a local motion versus a non-local

movement of particles. While local PDEs such as the heat equation describe particles

that instantaneously move only in a neighbourhood of their initial location, the non-

local model that we escribe quantifies instant jumps of the particles between any points

in the space; see [2]. This non-local motion is characterised by several (possibly non-

symmetric) kernels Gi(x, y) which account for the probability of a jump between the

two positions x and y in space.

The second novel result in this thesis is a non-Euclidean counterpart of the con-

vergence results in [30, 29]. The major change is that the space we work on is the

hyperbolic space, which is not flat anymore, having constant sectional curvature −1.

Although the N -dimensional hyperbolic space HN is one of the simplest examples of

non-Euclidean geometries, it already poses some important challenges even in terms of

the formulation of the non-local problem. For instance, a task as simple as defining a

kernel G(x, y) depending only on the difference y−x in the Euclidean setting becomes

non-trivial when the curvature is not zero. In order to overcome this issue, we make

use of the notion of geodesic flow on a Riemannian manifold and later transfer the

computations from the manifold to tangent spaces via the exponential mapping.

To state the main result of this part, we need to briefly describe the hyperbolic

space HN and its geodesic flow. For simplicity, we will only consider a model of this

space (i.e., the half-space model), referring to [32] for a more detailed presentation of

12
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the notions involved. The supporting set for this model is HN ≃ RN
+ := {x = (x′, xN) ∈

RN−1 × (0,∞)}, with the Riemannian metric defined by:

gij(x) =
1

x2
N

δij, i, j = 1, N.

In this setting, the expressions of the Riemannian gradient, divergence and Laplacian

are:

∇gf = x2
N∇ef, divg(Y ) = xN

N dive

(
1
xN
N
Y
)
, ∆gf = xN

N dive

(
1

xN−2
N

∇ef
)
,

where ∇e and dive are the usual Euclidean gradient and divergence operators.

The volume form on HN and on its tangent space at a point x become dµ(x) =

x−N
N dx, respectively dµ(V ) = x−N

N dV , meaning that the integration of functions on

HN and TxHN is given by the following formulas:

ˆ
HN

f(x) dµ(x) =

ˆ
RN
+

f(x)
1

xN
N

dx and

ˆ
TxHN

f(V ) dµ(V ) =
1

xN
N

ˆ
RN

f(V ) dV.

The geodesics (i.e., the shortest-length curves) in this models are the straight Euclidean

vertical half-lines (i.e., x′ is constant) and the semicircles centred on the base {xN = 0}

which are perpendicular on the base. For every two distinct points x, y ∈ HN , there

exists exactly one (unparametrised) geodesic passing through them – see Figure 3.1.

Moreover, given any vector V in the tangent space TxHN , there is a unique parametrised

geodesic γx,V : R → HN such that γx,V (0) = x and γ′
x,V (0) = V . If γx,V (1) = y, then

we call Vx,y := V , meaning that the vector V transports through geodesics the point

x to the point y. This vector Vx,y ∈ TxHN is the natural equivalent of the Euclidean

vector y − x. We refer again to Figure 3.1.

Further, we define the geodesic flow of, HN (Φt)t∈R which acts on the tangent bundle

THN as follows:

Φt(x, V ) = (γx,V (t), γ′
x,V (t)) ∈ THN , ∀(x, V ) ∈ THN .

Now, we state the first main theorem in this section, concerning the non-local

transport problem on HN .

Theorem 3.2. Let ε0 > 0, u0 ∈ L2(HN) and the family of scaled kernels Gε : HN ×

HN → [0,∞), ε ∈ (0, ε0) satisfying:

13
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x

V

y

W

γ

Figure 3.1: A geodesic γ through the points x and y in the half-space model, tangent

to the vectors V and W .

• Gε(x, y) = ε−N−1G̃
(
x, Vx,y

ε

)
, where G̃ : THN → [0,∞) is invariant to the

geodesic flow (Φt)t∈R, meaning that:

G̃(Φt(x, V )) = G̃(x, V ), ∀t ∈ R and (x, V ) ∈ THN .

• The following integrability condition holds true:

ˆ ∞

0

sup
x∈HN ,|W |=r

G̃(x,W )(1 + r) (er sinh(r))N−1 dr < ∞,

where |W | stands for the hyperbolic norm of the tangent vector W ∈ TxHN .

• The first moment vector field XG on HN :

XG(x) := −
ˆ
TxHN

G̃(x,W )WdW, ∀x ∈ HN (3.7)

is of class C1.

Then, the family of solutions (uε)ε>0 of the non-local problems:
∂tu

ε(t, x) =

ˆ
HN

Gε(x, y)(uε(t, y) − uε(t, x))dµ(y), x ∈ HN , t ≥ 0;

uε(0, x) = u0(x), x ∈ HN .

(3.8)

14



Outline of the main results

converges weakly in L2([0, T ], L2(HN)), as ε → 0, to the unique distributional solution

of the local transport problem:
∂tu(t, x) = −divg(u(t)XG)(x), x ∈ HN , t ≥ 0;

u(0, x) = u0(x), x ∈ HN .

In the following, we will provide a similar asymptotic result for a more general non-

local non-linear problem driven by two kernels, one of them being the transport kernel

Gε, whereas the other one (denoted by J̃ε) is responsible for the spread of particles

evenly in all directions (non-local diffusion). For this reason, the kernel J̃ε depends

only on the geodesic distance dg(x, y) between the points x, y ∈ HN . We refer to [4]

for the study of a similar problem involving only the non-local diffusion kernel J̃ε.

Theorem 3.3. Let all the assumptions of Theorem 3.2 in place. Given the continuous

function J : [0,∞) → [0,∞) that satisfies J(0) > 0 andˆ ∞

0

J(r) (1 + r2) (er sinh(r))N−1 dr < ∞,

we consider the isotropic scaled kernel J̃ε : HN ×HN → [0,∞),

J̃ε(x, y) = ε−N−2J

(
dg(x, y)

ε

)
.

Further, for q ≥ 1, we set f(r) := |r|q−1r and let uε be the unique solution of the

following non-local non-linear problem:
∂tu

ε(t, x) =

ˆ
HN

J̃ε(x, y)(uε(t, y) − uε(t, x))dµ(y)

+

ˆ
HN

Gε(x, y)(f(uε(t, y)) − f(uε(t, x)))dµ(y),
x ∈ HN , t ≥ 0;

u(0, x) = u0(x), x ∈ HN .

Then, the family (uε)ε>0 converges weakly in L2([0, T ], L2(HN)) and strongly in L2([0, T ], L2
loc(HN))

to the unique weak solution of the local convection-diffusion problem:∂tu(t, x) = AJ∆gu(t, x) − divg(f(u(t))XG)(x), x ∈ HN , t ≥ 0;

u(0, x) = u0(x), x ∈ HN ,

where the diffusivity constant AJ is:

AJ :=
1

2N
Area(SN−1)

ˆ ∞

0

J(r)rN+1 dr,

Area(SN−1) stands for the Euclidean surface area of the Euclidean unit sphere and the

first moment vector field XG is given in (3.7).
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The detailed proof of the above theorems, together with the construction of a large

class of kernels Gε with the required properties is the subject of Chapter 4 of this

thesis, which is based on the published paper [24].

Chapter 5: DISCRETE TO CONTINUOUS ASYMP-

TOTICS IN NON-EUCLIDEAN SETTING

The next original result in this thesis is a finite difference numerical approximation in

the framework of a Riemannian manifold. Since the scientific literature lacks references

about this type of numerical method in Riemannian context (the only existing schemes

for numerical solutions of equations on manifolds are finite element [27], finite volume

[1, 23] and Monte Carlo [20] approximations), we have started with one of the simplest

examples, namely the 2-dimensional hyperbolic space H2. We present two variants

of discrete finite difference Laplace operator, then we perform a comparison between

them, in terms of the accuracy of approximation and computational efficiency. It will

be shown that using a finite difference grid which is better adapted to the geometry

of the hyperbolic space leads to a more accurate approximation, together with an

improvement in the usage of computational resources.

Each of the two discrete Laplacians is constructed, similar to the case of the Eu-

clidean plane, as a linear combination of the values of the function in five adjacent points

of a numerical grid, their weights accounting for the even diffusion of heat across the

curved space. We will prove the effectiveness of these discrete operators in building

numerical schemes that can be implemented on a computer in order to approximate

the solutions of the heat equation with source on the hyperbolic space H2:
∂tu(t,x) = ∆gu(t,x) + f(t,x) ; t ∈ (0, T ], x ∈ H2 ,

u(0,x) = u0(x) , x ∈ H2,

(5.9)

where T > 0 is any fixed time, ∆g is the Laplace-Betrami operator on H2, u0 ∈ L2(H2)

is the initial data and f ∈ C([0, T ],L2(H2)) is the source term.

Seeking to construct a numerical scheme to approximate the heat-Beltrami equa-

tion, we focus ourselves on a particular model of the 2-dimensional hyperbolic space,

i.e. the half-plane model, which is suitable for embedding a finite difference grid. The
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metric and differential operators in this model, together with the integration formula

for functions were presented in the previous chapter. We only recall the formula of the

Laplace-Beltrami operator:

∆gv(x) = x2
2(∂

2
x1
v + ∂2

x2
v)(x), where v ∈ C2(H2) and x = (x1, x2) ∈ H2.

The effectiveness of the finite difference approximation of differential operators –

which uses only a discrete set of values of the functions involved – requires a certain reg-

ularity of these functions. In order to obtain the convergence of the numerical scheme

to the solution of the continuous problem (5.9), we impose the following restrictions

on the initial datum u0 and on the source term f :

u0 ∈ M :=

v ∈ C6(H2) : ∥v∥M :=
∑
α,β∈N
α+β≤6

∥∥e18dg(O,x)∂α
x1
∂β
x2
v(x)

∥∥
L2(H2)

< ∞

 (5.10)

and f ∈ C([0, T ],M), where O is an arbitrary point in H2. These conditions are

necessary to obtain the convergence result and can also be made invariant to the

particular model of H2. We note that, essentially, the weighted Sobolev norm in (5.10)

characterises that the functions we are interested in decay sufficiently well for large

space variable x. This allows us to use the problem on a bounded domain as an

effective approximation of the problem (5.9) on the whole hyperbolic space, as seen

below.

As in the Euclidean case, four main ingredients are involved in the construction of

the discrete counterpart of ∆g: a finite difference grid, the function space associated

to this mesh, the projection of continuous functions onto the grid and the discrete

Laplacian itself. In what follows, we will construct two variants of discrete Laplace

operator and describe the aforementioned elements in each of the two cases.

The first discrete Laplacian

The associated grid is the traditional Euclidean one, whose points are depicted in

Figure 5.2 and consist of pairs of integral multiples of the mesh parameter h > 0:

(ih, jh), for i ∈ Z, j ∈ N∗.

Around each of those points, we construct the finite difference cell:

Ci,j
h :=

[
ih− h

2
, ih +

h

2

]
×
[
jh− h

2
, jh +

h

2

]
17
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x

y

−4h −3h −2h 2h 3h 4h−h h

2h

3h

4h

h

Figure 5.2: The grid corresponding to the first discrete Laplacian on H2.

with a hyperbolic area equal to 1
j2− 1

4

and we introduce the grid functions space

ℓ2h :=

{(
vhi,j
)
i∈Z, j∈N∗ : ∥vh∥2ℓ2h :=

∑
i∈Z, j∈N∗

1

j2 − 1
4

|vhi,j|2 < +∞

}

and the projection operator Πh : L2(H2) → ℓ2h,

(Πhv)i,j =

(
j2 − 1

4

) ˆ
Ci,j
h

v(x)
1

x2
2

dx.

Eventually, the discrete Laplace operator corresponding to this setup is obtained via

Taylor expansions and has the following form for vh ∈ ℓ2h:

(∆
(1)
h vh)i,j :=

(
j2 − 1

4

)(
vhi+1,j + vhi−1,j + vhi,j+1 + vhi,j−1 − 4vhi,j

)
∀ i ∈ Z, j ∈ N∗ ,

(5.11)

where we employ the convention vhi,0 = 0, ∀ i ∈ Z.

The second discrete Laplacian

For the second variant of discrete Laplace operator, the associated grid is the one in

Figure 5.3 and is tailored to the geometry of the hyperbolic space. More precisely,

the hyperbolic distance between any adjacent nodes in the vertical direction is the
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x

y

−4ρ(h) −3ρ(h) −2ρ(h) 2ρ(h) 3ρ(h) 4ρ(h)−ρ(h) ρ(h)

e−2h

e2h

e3h

e−h

1

eh

Figure 5.3: The grid corresponding to the second discrete Laplacian on H2, where we

denote ρ(h) := 2 sinh
(
h
2

)
.

same, namely equal to the mesh parameter h. However, on the horizontal direction,

the distances between consecutive nodes must increase as we approach the baseline

{x2 = 0}, because of the geometry of the hyperbolic space.

We have chosen the grid such that the hyperbolic distance between adjacent nodes

in the horizontal direction on the level {x2 = 1} is equal to one; therefore the nodes are

of the form (iρ(h), ejh) ∈ H2, ∀i, j ∈ Z, where ρ(h) := 2 sinh
(
h
2

)
. Around each node of

the grid, we define the finite difference cell:

Ci,j
h :=

[(
i− 1

2

)
ρ(h),

(
i +

1

2

)
ρ(h)

]
×
[
ejh−

h
2 , ejh+

h
2

]
.

with the hyperbolic area equal to (ρ(h))2

ejh
. The space of grid function is then defined as

ℓ2h :=

{(
vhi,j
)
i,j∈Z : ∥vh∥2ℓ2h :=

∑
i,j∈Z

(ρ(h))2e−jh|vhi,j|2 < +∞

}
,

and the projection operator used to transfer information from the space L2(H2) to the
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grid has the form:

(Πhv)i,j =
ejh

(ρ(h))2

ˆ
Ci,j
h

v(x)
1

x2
2

dx.

Finally, the second discrete Laplace operator defined on the space ℓ2h, obtained via

Taylor expansions around the nodes (iρ(h), ejh), has the formula:

(∆
(2)
h vh)i,j :=

1

(ρ(h))2

[
e2jh(vhi+1,j + vhi−1,j − 2vhi,j) +

2

eh + 1
vhi,j+1 +

2eh

eh + 1
vhi,j−1 − 2vhi,j

]
.

(5.12)

Reduction to a bounded domain

As we want to implement our numerical scheme on a computer (which, of course, has

a limited amount of memory and processing speed), we need to reduce the infinite

grids corresponding to ∆
(1)
h and ∆

(2)
h to bounded counterparts. The bounded domain

H2
D is constructed in order to grow as the mesh parameter h decreases to zero, in the

following way:

H2
D := [−D,D] × [1/D,D] ⊂ H2 (5.13)

where the size of the domain is chosen as D = Dh := 1
h
. In this way, as h approaches

zero, the resulting bounded grid will not only refine, but also cover a larger portion of

H2.

Next, since the heat equation on H2 has sufficient tail decay, we can use zero

Dirichlet boundary conditions at the nodes lying on the boundary of H2
D and obtain

the discrete Laplace operators ∆
(1)
h,D and ∆

(2)
h,D with finite-dimensional domains. We

note that the grid function space ℓ2h and the projection operator Πh are restricted

accordingly in each case.

Semi-discrete finite difference scheme and convergence result

To build the semi-discrete numerical scheme, we consider ((Ci,j
h )(i,j)∈Z1×Z2 , ℓ

2
h,Πh,∆h)

to be either of the two discrete Laplace operators, restricted to H2
D, with zero Dirichlet

boundary conditions, where D = Dh := 1
h
, as discussed above. We note that the finite

sets of integers Z1 and Z2, by which we index the grid cells, increase as h approaches

zero.
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Then, for u0 and f satisfying Hypothesis (5.10), we consider the semi-discrete ap-

proximation of the heat-Beltrami equation with source (5.9): ∂tu
h
i,j(t) = (∆hu

h(t))i,j + (Πh(f(t)))i,j , t ∈ (0, T ], (i, j) ∈ Z1 × Z2;

uh
i,j(0) = (Πh(u0))i,j, (i, j) ∈ Z1 × Z2.

(5.14)

The order of convergence of this numerical scheme is given by the following theorem:

Theorem 5.4. For every initial datum u0 and source f satisfying Hypothesis (5.10),

there exists a constant CT > 0 such that, for every h ∈ (0, 1/2) and t ∈ [0, T ],

∥uh(t) − Πhu(t)∥ℓ2h ≤ h2CT

(
∥u0∥M + ∥f∥C([0,T ],M)

)
,

where uh is the solution of (5.14) and u is the solution of (5.9).

The proof of this theorem can be found in Chapter 5 of the thesis, in a more

general setting where D = Dh,γ,γ := ζh−γ, with ζ > 2 and γ > 0. We outline that

the same order of convergence O(h2) is valid when we discretise also the time, leading

to a θ-scheme with the parameter θ ∈ [1/2, 1]. This quadratic convergence order is

experimentally proven to be sharp.

Moreover, the exponential long-time L2 decay rate of the solutions of the homoge-

neous heat-Beltrami equation on H2 (i.e., equation (5.9) with f ≡ 0 and T = ∞) is

preserved asymptotically by our finite difference scheme. More precisely, the optimal

constant of the Poincaré inequality associated to both discrete Laplace operators ∆
(1)
h

and ∆
(2)
h approaches, as h tends to zero, the value 1

4
, which is the sharp constant of

the Poincaré inequality in the whole space H2 [35].

The full development of the ideas presented succinctly here is the subject of Chapter

5 of this thesis. The results have been submitted to be considered for publication [9].

21



Outline of the main results

Chapter 6: PUSHING ALL THE LIMITS: LONG-

TIME, DISCRETE TO CONTINUOUS AND HY-

PERBOLIC TO PARABOLIC ASYMPTOTICS FOR

PARTIALLY DISSIPATIVE HYPERBOLIC SYS-

TEMS

The last main original result in this thesis contains all classes of asymptotics described

in this thesis, proving that, at least in some particular frameworks, there is a strong

bond between all these types of approximation results. We will consider partially

dissipative hyperbolic systems (systems of hyperbolic equations that have only some

of the terms damped [15, 26, 8]) which satisfy a non-degeneracy property called the

Kalman rank condition [7] and we emphasise that one of the most classical numerical

schemes (based on the central finite difference operator [36]) not only approximates the

solution of the continuous system, but also preserves both the long-time and hyperbolic-

to-parabolic asymptotics inherent to the continuous model.

To describe the model, we refer to [7] and consider a positive integer N ≥ 2, together

with two symmetric matrices A and B such that B is partially dissipative. This means

that B has the form

B =

0 0

0 B̃

 , (6.15)

where B̃ is a positive definite symmetric N2 ×N2 matrix (1 ≤ N2 < N).

Let also U0 : R → RN be an L2 function and the vector-valued unknown U :

[0,∞) × R → RN satisfy the following hyperbolic system:∂tU(t, x) + A∂xU(t, x) = −BU(t, x), (t, x) ∈ (0,∞) × R;

U(0, x) = U0(x), x ∈ R.
(6.16)

We remark that, since the matrix B has the particular form (6.15), the damping term

only acts on the last N2 components U2 of the solution vector U = (U1, U2). However,

if the matrices A and B satisfy the following non-degeneracy condition (the Kalman
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rank condition):

the matrix K(A,B) := (B|AB| . . . |AN−1B) has full rank N, (K)

then Crin-Barat, Shou and Zuazua [18] have obtained a decay result for the entire

solution U of (6.16):

Proposition 6.5 ([18, Theorem 2.1]). If U0 ∈ (H1(R))N , then the solution U of (6.16)

satisfies:

∥U2(t)∥L2(R) + ∥∂xU(t)∥L2(R) ≤ C(1 + t)−
1
2∥U0∥H1(R), (6.17)

where C > 0 is a constant independent of time and U0.

Our first main result in this chapter of the thesis is a discrete counterpart of Propo-

sition 6.5. We consider the semi-discrete central finite difference scheme for the problem

(6.16):

∂t(U(t))n + A(DhU(t))n = −B(U(t))n, (t, n) ∈ (0,∞) × Z;

(U(0))n = (U0)n, n ∈ Z
(6.18)

where now the initial datum and the solution are defined on an infinite grid of width

h > 0. More precisely, U0 = (U0
n)n∈Z : Z → RN , U = (Un)n∈Z : (0,∞) × Z → RN and

the operator Dh acts on a bilateral sequence v : Z → R as follows:

(Dhv)n =
vn+1 − vn−1

2h
.

We state the first main result in this chapter, namely the conservation of the long-

time decay (6.17) in this discrete context:

Theorem 6.6. There exists a constant C > 0 depending only on the matrices A and

B such that, for every h > 0, every U0 ∈ (h1
h)N and t > 0, the following decay result

holds:

∥U2(t)∥ℓ2h + ∥DhU(t)∥ℓ2h ≤ C(1 + t)−
1
2∥U0∥h1

h
,

where ∥ · ∥ℓ2h and ∥ · ∥h1
h
are discrete Lebesgue and Sobolev norms.

The second type of asymptotics preserved by the central finite difference scheme in

the context of partially dissipative systems refers to the relaxation of such a system
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towards a parabolic equation. A simpler, yet illustrative example in this sense is the

following relaxed system:
∂tρ

ε(t, x) + ∂xu
ε(t, x) = 0, (t, x) ∈ (0,∞) × R;

ε2∂tu
ε(t, x) + ∂xρ

ε(t, x) + uε(t, x) = 0, (t, x) ∈ (0,∞) × R;

(ρε, uε)(0, x) = (ρ0, u0)(x), x ∈ R,

(6.19)

which can be seen as a linearised version of the compressible Euler system with damp-

ing (refer to [17, Introduction]). We note that the functions ρ and u are real-valued

functions and resemble the density and speed of a flow on the line. When the relaxation

parameter ε is equal to one, the system (6.19) fits into the framework of (6.16)-(K).

Following the argumentation of Crin-Barat and Danchin [17] one obtains easily the

strong convergence of the solution of the system (6.19) towards the solution of the heat

equation:

Proposition 6.7. Assume the initial data ρ0, u0 ∈ Hs′(R) for some s′ > 2. Then, for

every s ∈ (2, s′), the first component ρε of the solution of (6.19) converges strongly as

ε → 0 in the spaces L∞([0,∞), Ḣs−2(R)) and L1([0,∞), Ḣs(R)) to the solution ρ of

the heat equation on R:∂tρ(t, x) − ∂xxρ(t, x) = 0, (t, x) ∈ (0,∞) × R;

ρ(0, x) = ρ0(x), x ∈ R.

Moreover, for small ε, the second component uε approximates the derivative of the first

component ρε, in the sense that the sum (∂xρ
ε+uε) converges to zero in L1([0, T ], Ḣs−1(R)).

We note that the homogeneous Sobolev norm [3, Section 1.3] is defined as ∥v∥Ḣs(R) :=´
R |v̂(ξ)|2|ξ|2sdξ.

Our second main result in this chapter of the thesis establishes that this relaxation

limit remains valid – uniformly with respect to the grid width h – even when transi-

tioning to the discrete formulations of both the linearised Euler system and the heat

equation. In order to achieve the uniformity, we need a method to essentially use the

same initial data regardless of the parameters ε and h. In this sense we introduce, as

in [36, Chapter 10], the truncation operator Th : L2(R) → ℓ2h,

(Thv)n =
1√
2π

ˆ π
h

−π
h

eiξnhv̂(ξ)dξ.
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We note that the operator Th is defined such that the continuous Fourier transform of

v and the discrete Fourier transform of Thv coincide on the common domain
[
−π

h
, π
h

]
,

thus the name truncation operator. In the statement of the second main result below,

the initial data of the discrete equations are obtained by truncating functions defined

on the real line.

Theorem 6.8. For h > 0, s′ > 2 and ρ̃0, ũ0 ∈ Hs′(R), we consider the truncations

ρ0 = Thρ̃0 and u0 = Thũ0 as initial data for the discrete counterpart of the linearised

Euler system (6.19):
∂tρ

ε + Dhu
ε = 0, (t, n) ∈ (0,∞) × Z

ε2∂tu
ε + Dhρ

ε + uε = 0, (t, n) ∈ (0,∞) × Z

(ρε, uε)(0) = (ρ0, u0), n ∈ Z

(6.20)

where ρε, uε : (0,∞) × Z → R. Then, for every s ∈ (2, s′) the first component ρε of

the solution converges in L∞([0,∞), ḣs−2
h ) and L1([0,∞), ḣs

h), uniformly with respect

to h > 0, as ε tends to zero, towards the solution ρ of the discrete heat equation:∂tρ−D2
hρ = 0, (t, n) ∈ (0,∞) × Z

ρ(0) = ρ0, n ∈ Z.

Note: the discrete ḣs
h Sobolev norm is given by ∥v∥2

ḣs
h

:=
´ π

h

−π
h
|v̂(ξ)|2

∣∣∣ sin(ξh)h

∣∣∣2s dξ.

Moreover, the quantity (Dhρ
ε +uε) converges to zero in L1([0,∞), ḣs−1

h ), uniformly

with respect to the grid width h.

For a sharper version of this relaxation limit – valid in a discrete counterpart of

Besov norms – together with error estimates, numerical simulations and other exten-

sions, we refer to Chapter 6 of the thesis and my co-authored paper [19] which has

been submitted for publication.
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Chapter 7: FURTHER ASYMPTOTIC RESULTS

AND ONGOING PROJECTS

In this chapter, we introduce four additional studies that either expand on the previ-

ously discussed topics or are closely connected to them.

Asymptotic behaviour of coupled linear convection-diffusion on the real line

This topic fits within the class of long-time asymptotics, similar to Chapter 3. However,

unlike the model analysed there, in this section the coefficients governing the evolution

process are discontinuous. Specifically, we examine a convection-diffusion problem on

the real line, where the particle velocity takes two distinct values, one on each half-line:

u : [0,∞) × R → R;

∂tu(t, x) = ∂xxu(t, x) − a∂xu(t, x), t > 0, x < 0;

∂tu(t, x) = ∂xxu(t, x) − b∂xu(t, x), t > 0, x > 0;

u(t, 0−) = u(t, 0+), t > 0;

∂xu(t, 0+) − ∂xu(t, 0−) = (b− a)u(t, 0), t > 0;

u(0, x) = u0(x), x ∈ R.

(7.21)

The initial datum u0 is smooth with compact support and, without losing generality,

we assume that the speed parameters satisfy a < b and b > 0. Then, the asymptotic

profile of (7.21) will either be a shifted Gaussian exp
(

−|x−bt|2
4t

)
or a linear combination

of two shifted Gaussians exp
(

−|x−bt|2
4t

)
and exp

(
−|x−at|2

4t

)
, depending on the sign of a.

Non-local non-linear convection-diffusion on metric trees

The next study explores a similar non-local to local limit as discussed Chapter 4, but

this time the ambient space is a metric graph Γ.

A metric graph is a pair consisting of a set of vertices and one of (oriented) edges,

with an additional metric structure given by parametrisations of the edges with inter-

vals of the real line. This parametrisation allows the application of differential operators

to functions defined on these graphs, which, together with suitable coupling conditions

at vertices, characterise dynamical processes on the network structure.
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The description of the following transport-diffusion problem is taken from my

GitHub repository [33]: we pose the convection-diffusion system on the metric tree

Γ (i.e., the graph has no cycles), with the set of vertices V and the set of edges E:

∂tue(t, x) − δ∂xxue(t, x) + αe∂xue(t, x) = 0, x ∈ e ∈ E, t ≥ 0;

ue1(t, v) = ue2(t, v), v ∈ Vint, e1, e2 ∈ Ev, t ≥ 0;∑
e∈Ein

v
∂xue(t, v) =

∑
e∈Eout

v
∂xue(t, x), v ∈ Vint, t ≥ 0;

u(0, x) = u0(x), x ∈ Γ;

u(t, v) = uv(t), v ∈ V∂, t ≥ 0.

(7.22)

Here, Vint stands for the set of interior vertices, and the set of boundary vertices

is denoted by V∂. The set Ev of the edges adjacent to a vertex v is divided into the

set of incoming edges Ein
v and the set of outgoing edges Eout

v . A function u defined on

the graph is a family (ue)e∈E, where ue : e → R, for every edge e ∈ E. The diffusivity

coefficient δ is a positive constant and the non-negative speeds αe corresponding to

each edge satisfy, for each interior vertex v:∑
e∈Ein

v

αe =
∑

e∈Eout
v

αe.

We refer to the same repository [33] for an animation of the dynamics given by the

above equation. For the study of the well-posedness of the problem, we refer to [21]

and for the analysis of its boundary controllability, see [6].

In this section, we consider a metric tree without boundary vertices and construct a

suitable non-local approximation of the solutions of (7.22), similar to Chapter 4. The

diffusion-only model (i.e., αe = 0, ∀e ∈ E) was analysed in [28], where the authors

introduced a non-local diffusion kernel depending on the distance inherent to metric

graphs. The main challenge that we faced when introducing transport terms is to

define an appropriate sequence of kernels (Gε(x, y))ε>0 which asymptotically describes

the convection behaviour.

We also prove the non-local to local convergence in the case of non-linear convection-

diffusion, namely we replaced the term αe∂xue(t, x) with αe∂x(f(ue(t, x)), for f(r) =

|r|q−1r, with q ≥ 1.
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Lp decay estimates for the heat equation with Hardy potential

The next result complements the decay estimates Chapter 3 which deal with L2 spaces,

to more general Lp context, p ≥ 2.

This time, we start with the initial datum u0 of the heat equation with Hardy

potential (3.2) satisfying:

∥u0∥Lp(RN,k
+ ;K

p
2 )

:=

(ˆ
RN,k
+

|u0(x)|pK
p
2 (x)dx

) 1
p

< ∞,

where we recall that K(x) := e
|x|2
4 . Then, if we restrict to values of the parameter λ

in (3.2) to the range
(
−∞, 4(p−1)

p2
λN,k

]
, where λN,k =

(
N−2
2

+ k
)2

, then the solution

u(t, x) possesses the following long-time decay:

∥u(t)∥Lp(RN,k
+ ) ≤ (t + 1)

N
2 ( 1

p
− 1

2)−
√
p−1
p

(mN,k(λ,p)+1)∥u0∥Lp(RN,k
+ ;K

p
2 )
, (7.23)

where mN,k(λ, p) =
√
λN,k − p2

4(p−1)
λ.

Branching optimal constants in the Caffarelli Caffarelli-Kohn-Nirenberg in-

equality

The Caffarelli-Kohn-Nirenberg (CKN) inequality [10] is a general integral inequality

that includes, as particular cases, several famous inequalities such as Poincaré and

Hardy, as well as the Heisenberg and Hydrogen uncertainty principles. As it could be

observed throughout this thesis (Chapters 3 and 5), the study of optimal constants for

integral inequalities is an indispensable tool for accurately determining the asymptotic

behaviour of partial differential equations. Therefore, a unified study of the sharp

constant for the Caffarelli-Kohn-Nirenberg inequality is an important step forward in

establishing the asymptotic properties of as many classes of equations as possible. The

CKN inequality has the following form:

ˆ
RN

|u|r

|x|γr
dx ≤ C

(ˆ
RN

|∇u|p

|x|αp
dx

) 1
p

(ˆ
supp(u)

|u|
p(r−1)
p−1

|x|β
dx

) p−1
p

, (7.24)

where the parameters p > 1, r > 0 and α, β, γ ∈ R satisfy certain compatibility condi-

tions (see [34, Introduction]).

As far as we know, one of the most up-to-date studies related to the optimal constant

C > 0 in the Caffarelli-Kohn-Nirenberg inequality is that of Nguyen [34], which presents
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a wide variety of parameter combinations for which the optimal constant is equal to

r
N−γr

. However, Cazacu et. al. [12] have shown that in certain situations (specifically,

when p = r = 2), the optimal constant bifurcates depending on the values of the other

parameters involved.

In this section of the thesis, we analyse the bifurcation behaviour of the sharp con-

stant for the Caffarelli-Kohn-Nirenberg inequality for as many parameter combinations

as possible, thereby attempting to fill the gap in the literature between the two afore-

mentioned papers. More precisely, we obtain that in the case p = 2, if the parameters

of (7.24) satisfy r > p and

N − β −
(

1 + α− β

p

)
p(r − 1)

r − p
> 0,

then the optimal constant is r

r(N−2−2α)+(1+α+β
2
−N)

.
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This work delves into various asymptotic methods within partial differential equations,

underscoring the essential role of approximation in PDEs and across Mathematical

Analysis as a whole. From fundamental concepts like continuity to advanced numerical

schemes, the process of passage to the limit and estimation of approximation error forms

the foundation of Analysis.

Moreover, in our view, asymptotics represents a defining characteristic of Analysis,

setting it apart from other mathematical branches and establishing it as a vital bridge

between Mathematics and the real world. But why is this so?

First, the real world enters the domain of Mathematics through the construction ap-

proximate models of experimental data. Such models, like equations representing sim-

plified particle dynamics, are abstract mathematical structures, enabling pure math-

ematical techniques to be applied to physical phenomena. For example, even though

the heat equation only serves as an idealised model for heat propagation [11, 31, 16],it

still offers valuable insights into temperature distribution over time.

Often, models inspired by physical phenomena are further simplified, allowing for

a deeper and more comprehensive analysis, as in the long-time approximations of dif-

ferential equations in Chapter 3.

Second, approximations enable the use of practical tools like computers, which, de-

spite their inherent limitations, can solve mathematical problems with a quantifiably

small error. This is precisely the main objective of Numerical Analysis: to gain insights

into the quantitative and qualitative properties of objects intrinsic to pure mathemat-

ics by constructing approximate models that rely on a finite set of parameters. These

models can be evaluated using computational methods, allowing their properties to be

projected back onto the abstract, original objects. Chapters 5 and 6 illustrate this con-

cept. Therefore, through asymptotics, Mathematics rigorously addresses the inherent
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lack of rigour in the world.

Moreover, describing asymptotic phenomena effectively requires tools from nearly

all mathematical branches. Integral Inequalities (Chapters 3 and 5), Topology (Chapter

4), Spectral Theory (Chapter 3), Differential Geometry (Chapters 4 and 5), and Linear

Algebra (Chapter 6) all play roles here. Constructing meaningful asymptotic results

thus demands a broad mathematical understanding and the ability to integrate diverse

concepts in order to approximately model and interpret real-world processes, with the

purpose of studying their properties in a rigorous way.

In conclusion, we believe this work establishes a foundation for new research di-

rections, with the potential to contribute significantly to both theoretical and applied

Mathematics and further unify diverse mathematical fields.
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C, Analyse non linéaire. arXiv:2308.08280 (2024).

[19] T. Crin-Barat and D. Manea. Asymptotic-preserving finite difference method for

partially dissipative hyperbolic systems. arXiv. 2024.

33



Bibliography

[20] A. B. Cruzeiro and P. Malliavin. “Numerical approximation of diffusions in Rd

using normal charts of a Riemaannian manifold”. In: Stochastic Process. Appl.

116.7 (2006), pp. 1088–1095.

[21] H. Egger and N. Philippi. “On the transport limit of singularly perturbed convection-

diffusion problems on networks”. English. In: Math. Methods Appl. Sci. 44.6

(2021), pp. 5005–5020.

[22] M. Escobedo and O. Kavian. “Variational problems related to self-similar solu-

tions of the heat equation”. In: Nonlinear Analysis: Theory, Methods & Applica-

tions 11.10 (1987), pp. 1103–1133.

[23] J. Giesselmann. “A convergence result for finite volume schemes on Riemannian

manifolds”. In: M2AN Math. Model. Numer. Anal. 43.5 (2009), pp. 929–955.
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