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Abstract
Attribute-Based Encryption (ABE) is a modern cryptographic framework that ad-
dresses the problem of fine-grained access control granting in secure data sharing. The
attribute-based access policies enforced by these systems are suitable for scenarios in-
volving complex access requirements, such as cloud computing and distributed systems.

This thesis explores the expressiveness of Attribute-Based Encryption (ABE) schemes
from bilinear maps, with a focus on developing new constructions, with improvements
in efficiency. Despite significant advancements, there is still consistent progress to be
made: for example, it is unknown if there could be constructed efficient ABE schemes
supporting arbitrary Boolean circuits.

The contributions of this thesis include on one side new ABE schemes using bilinear
maps for multiple access structure: We provide two construction for two different
weighted access structures, and a construction for Compartmented trees. We show
that the latter is providing more expressiveness compared to existing schemes, while
maintaining efficiency. All our constructions are accompanied by theoretical analysis
and security proofs. Where it was necessary, we also provided practical tests to support
our claims. Moreover, we have provided the first method of rewriting Boolean circuits
into an equivalent form, such that the existing secret sharing schemes will produce
fewer shares.

This work advances the state-of-the-art in ABE by addressing both theoretical and
practical aspects of expressiveness. Our security proofs and implementations offer
valuable insights and tools for future research and applications in cryptographic access
control.
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Chapter 1

Introducere
With the constant increase in demand of Cloud hosting, the requirements for securely

sharing data on these systems also increased. On such use-cases, modern fine-grained

access granting encryption schemes provide the versatility much needed. Attribute-

based encryption is one of the most used techniques to grant access to multiple parties,

based on expressive access structures.

Sahai and Waters [22] proposed the first ABE scheme as a refinement of Identity-based

Encryption. It was further refined into two flavors: key-policy and ciphertext-policy,

based on how the access granting mechanism works: by linking the access policy to a

document (ciphertext) or to a person (through the decryption key).

A central research question is determining which access structures can support efficient

ABE schemes. [7] conjectures that there is no construction for Boolean circuits from

bilinear maps, since the pairing operation is used in the first step of the decryption.

However, until now, efficient ABE constructions were known only for Boolean formulae

(access trees).

The primary scope of this work is to search for new schemes of ABE from bilinear

maps. Also we try to find what are the most expressive access structure that can be

used in these systems, resulting in at most a constant number of shares per attribute.

1.1 Our Contribution

First, we have proposed two ABE constructions for two different weighted access struc-

tures. The first construction aims to improve efficiency of traditional weighted ABE
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schemes, and is backed by practical efficiency tests and theoretical analysis. The sec-

ond construction provides is the first approach in ABE context for an access structure

which we refer to as fully weighted access structure. Another important part of our

contribution is the develpment of an efficient ABE scheme for CAS, which was then

used to create a scheme for CAS-circuits. While exploring lower bounds on LSSS and

MSP, we have proved that ABE schemes for Boolean circuits from linear secre sharing

will require an exponential expansion on key or ciphertext size. Also, we have proved

that fully weighted access structures cannot have ideal linear secret sharing schemes.

We have also used heuristic algorithms in order to improve the efficiency of existing

ABE schemes for Boolean circuits.
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Background
ABE is a complex cryptographic mechanism which often is based on in a combination of

mathematical theories and cryptographic principles that enable attribute-based access

policies. This chapter will present a detail overview over the background needed to fully

understand how ABE is constructed, and the contribution that we have brought to the

literature in this thesis. We will present basic secret sharing notions, since most ABE

schemes rely on secret sharing over some descriptive access structure for fine-grained

access granting. Moreover, we will describe general KP-ABE and CP-ABE structure

followed up by security models and mathematical primitives used to construct such

schemes.

2.1 Secret sharing

Access Structure The first step in order to ensure secure and efficient data manage-

ment is to have a set of formal access control requirements over the data. Informally,

an access structure represents these sets of authorized participants.

A monotone access structure is an access structure where if some set of participants is

authorized, then every superset of that set is also authorized. We continue by explaining

some important access structures used in ABE. A Boolean circuit is a directed acyclic

graph over a set of input wires, concluding to a single output wire, with internal nodes

representing logical gates of type AND, OR, or NOT . These gates may have fan-out

greater than 1. A monotone Boolean circuit is a circuit without negation gates. A

Boolean formulae or a Boolean access tree is a Boolean circuit where each node is

limited to a fan-out of 1.
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Monotone Span Program. Monotone span programs (in short, MSP) are another

mathematical representation used to define access structures in secret sharing. They

enable the construction of access policies by associating vectors to each party, and

defining a span condition for authorized sets. A monotone span program is a span

program which only contains positive literals ({x1, x2, ..., xn} but not x̄1x̄2, ..., x̄n). We

say that a span program M̂ computes a Boolean function f if M̂ accepts δ ⇔ f(δ) = 1.

Secret sharing schemes Based on an access structure, we can construct mathe-

matical mechanisms to share a secret upon a set of participants, such that only a set

of authorized participants is able to reconstruct it. In order to fully ensure the secu-

rity of the secret sharing scheme, the scheme must ensure that no unauthorized set of

participants is able to reconstruct the secret.

A linear secret sharing scheme is a secret sharing scheme for which the reconstruction

of the secret is done as a linear combination of its parts. We say that a secret sharing

scheme is ideal if the total parts received by the participants are the same size (number

of bits) of the secret that was shared.

2.2 Attribute-based Encryption

Any KP-ABE or CP-ABE should follow the general structure of such a scheme, com-

posed out of four algorithms (setup, encryption, key-generation and decryption). We

will present in the next part the definition of KP-ABE and CP-ABE models.

KP-ABE Model A Key-Policy Attribute-based encryption scheme, as first described

in [10], consists of four algorithms:

setup(λ) A randomized algorithm that takes as input the implicit security parameter

λ and returns the public and secret keys (MPK and MSK).
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encrypt(m,A,MPK) A probabilistic algorithm that encrypts a message m under a

set of attributes A with the public key MPK, and outputs the ciphertext E.

keygen(C,MPK,MSK) This algorithm receives an access structure C, public and

master keys MPK and MSK, and outputs corresponding decryption keys DK.

decrypt(E,DK,MPK) Given the ciphertext E and the decryption keys DK, the

algorithm decrypts the ciphertext and outputs the original message.

In ABE schemes, security models play a crucial role in evaluating the robustness of

the proposed system. The Selective-Set Model [10] is a widely used security model for

Key-Policy Attribute-Based Encryption (KP-ABE).

2.3 Bilinear maps

Bilinear maps are a modern mathematical tool with a pivotal role in cryptography,

especially in constructing advanced cryptographic primitives. A formal definition of

bilinear maps, as it was given in [10] is:

Bilinear maps Given G1 and GT two multiplicative cyclic groups of prime order p,

a map e : G1 ×G1 → GT is called bilinear if it satisfies:

• e(xa, yb) = e(x, y)ab, for any x, y ∈ G1 and a, b ∈ Zp;

• gT = e(g, g) is a generator of GT , for any generator g of G1.

G1 is called a bilinear group if the operation in G1 and e are both efficiently computable.

The Bilinear Decisional Diffie-Hellman Assumption (BDDH) is a hard problem in the

bilinear map setting. Informally, it states that, having four random values ga, gb, gc and

gr it is hard to distinguish between e(g, g)abc and e(g, g)r. Most cryptographic schemes

relying on bilinear maps use security proofs based on the BDDH assumption.
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Attribute-based Encryption Overview
After the first KP-ABE scheme [10] and the first CP-ABE scheme [4] many other

schemes were proposed based on these two. Many extensions and functionalities were

added to ABE to enhance its practicability. We will further iterate through the most

important ABE directions and analyze the existing schemes.

3.1 Mathematical assumptions

One of the ways of categorizing the ABE constructions is based on the mathematical

primitives they are using. Some of the most popular primitives are: bilinear maps,

multi-linear maps and lattices. We will briefly discuss here some of the particularities

for each one of them, alongside with important ABE schemes, focused on efficiency and

expressiveness. Also, we will discuss various limitations for each of them, with possible

solutions or open problems.

The first ABE scheme ever proposed [10] was constructed using bilinear maps, model-

ing a KP-ABE scheme with a Boolean tree access structure. Their model was efficient,

robust, and proven to be secure unde the BDDH assumption. While [7] conjectured

that it is impossible to construct ABE for circuits from bilinear maps, they have also

proposed the first ABE for circuits from multilinear maps. The scheme proposed is

proven to be selectively secure under the natural generalization of the BDDH Assump-

tion - the multilinear DDH. [6] proposed a more refined system for ABE for circuits.

The approach is similar, by using a chained multi-linear maps.

[1, 8] are other examples of ABE for circuits from multi-linear maps.
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Scheme Primitive Assumption Efficiency Access structure
[6] multi-linear MDDH linear BC
[7] multi-linear MDDH linear BC
[24] bilinear BDDH exp. BC
[12] bilinear BDDH exp. BC

Ours [25] bilinear BDDH linear CAS
Ours [13] bilinear BDDH linear CAS-circuit

Table 3.1: Key-policy ABE schemes for Boolean circuits

While multi-linear map cryptography has only a theoretical importance at the moment

due to the lack of secure constructions, lattice-based cryptography is another alternative

to pairing-based cryptography.

3.2 Policy expressiveness in ABE

This work explores the policy expressiveness of ABE schemes, particularly focusing on

Boolean circuits access structures. While the original access tree proposed by Goyal

et al. [10], only provides limited expressiveness, an efficient implementation of Boolean

circuits in ABE from bilinear maps remains an open challenge.

Garg et al. [7] proposed the first ABE for circuits, by relying on multi-linear maps.

T, iplea and Drăgan [6] refined this by introducing a leveled multi-linear map system,

organizing circuit nodes into levels where multi-linear map operations occur during

secret reconstruction.

For bilinear maps, Tiplea and Drăgan [24] extended the Goyal et al. scheme to support

monotone Boolean circuits, by introducing a new gat - the FO gate - in order to mitigate

the backtracking attack [7, 24].

In Table 3.1 we have a short overview of the key-policy ABE schemes for Boolean

circuits (BC) based on bilinear or multi-linear maps.
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Range Attributes and Weighted ABE Even starting with the first CP-ABE

scheme[4] there was also proposed a method of realizing comparisons on attributes

using a logarithmic-sized comparison tree at the bottom of the access tree. Shi et

al. back in 2007 [23] developed one of the first ABE systems with support for range

attributes. He uses a Segment Tree in order to share the keys, resulting in logarithmic

number of encryptions, and also logarithmic decryption key size.

One of the first schemes marketed as weighted was [18]. They proposed a KP-ABE

scheme where they modeled comparisons using chained components. However, their

scheme was inefficient, the chain lengths being linear in the weight of the attribute.

In 2016, Wang et al. [26] proposed a CP-ABE scheme with two main features: support

for weighted access structures and improved key issuing protocol, which results in

resolving the key escrow problem. In the next years, more efficient ABE schemes have

been proposed. [27] proposed in 2017 a CP-ABE where each weighted attribute only

adds a logarithmic overhead to the ciphertext. Their construction is based on 0- and 1-

Encodings of the weights. In 2021, [17] a new Weighted CP-ABE is proposed using the

same technique. While tested against similar weighted CP-ABE schemes, the latter

provided the best performance results.

3.3 ABE Extensions

In many use-cases, simple ABE schemes come with drawbacks and limitations, making

them unusable. Therefore, the research community has invested a lot of effort in

ABE, proposing numerous extensions and add-ons to increase the usability of ABE in

practical systems.

Outsourced decryption Green et al. [11] was the first to introduce an ABE scheme

with outsourced decryption, motivated by ABE’s use cases in low-powered devices. The

idea is to construct a mechanism to work out most of the decryption in cloud, and send
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to the client a partially decrypted result. Then, the client should be able to decrypt it

with less effort.

Access Revocation [2] proposes an ABE scheme which supports both direct and

indirect revocation. The user is able to select between these two mechanisms at the

encryption phase. The decryption keys are of a single type, and they can decrypt

ciphertexts constructed in any method. [28] proposed a KP-ABE scheme which uses a

simplified form of attribute revocation to ensure data deletion.

Multi-authority ABE In Cloud systems, users are often reluctant to trust a single

entity for managing they decryption keys. Therefore the multi-authority setting is

very important in this context, and numerous other ABE schemes with this property

appeared, starting with the one proposed by Chase in [5].

Predicate Encryption and Hidden-policy ABE For some use cases, the fact that

attributes or access policy are usually stored in plain in the ciphertext in KP-ABE, and

CP-ABE could represent a problem. Therefore, predicate encryption[14] comes with

two security notions, namely payload hiding and the stronger one - attribute hiding to

solve this problem in KP-ABE. Moreover, in CP-ABE we have policy-hiding schemes,

such as [16, 19].



Chapter 4

Weighted Attribute-based Encryption

4.1 Weighted Access Structures in ABE

The problem of constructing ABE schemes with expressive access structures is contin-

uously explored in order to find better and better ones, suited for various purposes.

Beside access trees and Boolean circuits, we can also define weighted access structures.

We consider two different versions of weighted access structures, for which we propose

two different construction. First, the simple weighted versions, where each attribute

has a weight associated, and the access policy has some thrshold on the leaf nodes. If

an attribute has it’s weight greater than the threshold of the lead node, then it can be

used in the decryption process. The fully weighted access structure assumes that on

every wire of an access tree we have some weight. A threhold gate is satisfied if the

sum of the weights of the satisfied input wires is greater than the threshold.

A B C D E F G

5/10Γ1 4/6Γ2

5/11Γ3

2 3 5 1 2 3

33

5

(a) normal

Figure 4.1: Example of fully weighted access tree
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Algorithm 1: transform(T )
1 ℓN ← log2(N);
2 for every leaf node Γ in T corresponding to a weighted attribute do
3 Let ωΓ = (bℓ · · · b1b0)2 the minimum required weight ;
4 Find i such that bi = 1 and bi−1 = · · · = b0 = 0 ;

// Lest significant bit from ωΓ set to 1
5 Parent← Γ ;

// This is a temporary variable to store the last gate created
6 for every j in {ℓ, · · · i+ 2, i+ 1} do
7 Γj ← new leaf node ;
8 if bj = 1 then
9 if bj = bj+1 then

10 kParent ← kParent + 1 // increases the threshold, as we will
add another child to this node, but we want it to
remain an AND node.

11 else
12 Tmp← new (2/2)-gate (simple AND gate). ;
13 parent(Tmp)← Parent ;
14 Parent← Tmp ;

15 else
16 if bj = bj+1 then
17 continue ;
18 else
19 Tmp← new (1/2)-gate (simple OR gate). ;
20 parent(Tmp)← Parent ;
21 Parent← Tmp ;

22 parent(Γj) = Parent // Link the leaf node to the last node
created

23 parent(Γi) = Parent // Link the last leaf, corresponding to bit i,
to the last node created

4.2 Simple Weighted KP-ABE scheme

For the simple weighted access structure, our strategy is to provide a transformation

algorithm for each access tree into an weighted access structure. We do this using the

Algorithm 1. The algorithm simply converts a threshold into a small tree equivalent

to the "greater than" comparison, while also adding two optimizations:
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• any k consecutive OR gates can be compressed in one "1 out of k+1" threshold

gate.

• any k consecutive AND gates can be compressed in one "k + 1 out of k + 1"

threshold gate.

Out ABE scheme is an adaptation of Goyal et al.’s scheme[10]. First, it generates

multiple attributed in the setup phase, and then, every access structure is converted

to a threshold access structure using the Algorithm 1.

Theorem 4.1. The Weighted KP-ABE system is secure in the Key-Policy Attribute-

based Selective-Set Model under the bilinear Decisional Diffie-Hellman problem.

This theorem is proved by showing that if there exists a non-negligible advantage

adversary for W − KP − ABE, then we can also construct an adversary with non-

negligible advantage for GPSW .

Efficiency We have identified a single KP-ABE scheme with support for weighted

access structures, namely the one in [18]. For each attribute in the access structure,

the key size grows linearly in the value of the attribute. Also, the encryption and

decryption times are affected by this expansion, growing also linearly in the attribute’s

weight.

Using the theoretical and practical analysis from [17], we can conclude that LYL+ [17]

and CABE [27] outperform the other weighted CP-ABE schemes by a considerable

margin, being the only ones with logarithmic expansion for each weighted attribute.

We have a computational overhead of hw(N) per weighted attribute, which is slightly

better than the log(N) provided by LYL+ and CABE.
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4.3 Fully Weighted ABE scheme

We say that (Γ, w, t) is a (t, w)-weighted thrshold gate, where w represents a vector

of weights for the input wires, and t is the threshold. A weighted gate is satisfied if

and only if the sum of weights of the satisfied input nodes is greater or equal to the

thrshold. We can see an example of a (t = 5, w = (2, 3, 5))-weighted threshold gate in

Figure 4.2.

Γ1 Γ2 Γ3

5/10Γ

w1 = 2 w2 = 3 w3 = 5

Figure 4.2: Example of (t = 5, w − (2, 3, 5))-weighted threshold gate

In our KP-ABE scheme, we will use two procedures, called Share_FW and Recon_FW

which will share and reconstruct a secret over a fully weighted access tree. These pro-

cedures work as follows:

Share_FW (Γ, Out(Γ)) This procedure shares the list of parts Out(Γ) through the ac-

cess structure rooted in the (t, w)-weighted threshold node Γ. Recall that the threshold

of the gate is tΓ and the number of input wires is nΓ. Then, share the values Out(Γ)

as follows:

1. For each Out(Γ, i) in Out(Γ), choose a random polynomial Pi,Γ(0) of degree tΓ−1,

such that Pi,Γ(0) = Out(Γ, i)

2. For each input wire j, denote with ωj the sum of weights of the wires 1, 2, ..., j−i.

Therefore, when constructing a polynomial, wire j should receive its evaluations

in points ωj +1, ωj +2, ..., ωj +wj. For each value Out(Γ, i) we will add wi values

to Inj(Γ), computed as follows: assign as the i-th input value of that wire, the
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coordinate j of the polynomial Pi. More formally,

Inj(Γ) = Inj(Γ)||⟨Pi,Γ(ωj + 1), Pi,Γ(ωj + 2), ...Pi,Γ(ωj + wj)⟩

This will result in a total number of wj · |Out(Γ)| values in the j-th wire.

3. recursively apply Share_FW (Γi, Ini(Γ)) for each child Γi of Γ.

This procedure can be applied on top of the weighted access tree, using the root node

Γ0, and a list consisting only of the secret to be shared, y.

The reconstruction phase works as follows:

Recon_FW (Γ, D,E):

For the terminal nodes Ψ in the access tree, use the ciphertext E and decryption key

D, re-compute the input values as follows:

In(Ψ, i) =

e(DΨ, T
s
x) = e(g, g)qΨ(0)·s, if x = attr(Γ) ∈ A

⊥, otherwise

For an internal (w, t)-weighted threshold node Γ, if this node is not satisfied (sum of

weights of satisfied children is smaller than the threshold), then output ̸=⊥) Otherwise,

considering S(Γ) a list of the satisfied wires of Γ, and Γz to be the z-th child of Γ.

S ′(Γ) will be the list of points where the polynomials of the shares from S(Γ) have

been evaluated to. More concrete:

S ′(Γ) = ∪z∈S(Γ){ωz + 1, ωz + 2, ..., ωz + wz}

Denote with ωj the sum of weights of the wires 1, 2, ..., j − i. Thus, wire j contains

evaluations of some polynomials in points ωj + 1, ωj + 2, ..., ωj + wj.



Contents 15

Out(Γ, i) = Recon(Γ, i, D,E)

=
∏

z∈S(Γ)

wz∏
j=1

Recon(Γz, (i− 1) · wz + j,D,E)∆ωz+j,S′(Γ)(0)

=
∏

z∈S(Γ)

wz∏
j=1

(e(g, g)s·Pi,Γ(0))∆ωz+j,S′(Γ)(0)

= e(g, g)s·Pi,Γ(0)

Note that in order to reconstruct the value Out(Γ, i) we need to iterate over the poly-

nomial evaluations of the respective share. For some child node z, these values are the

values from Inz(Γ) = Out(Γz) from indices (i− 1) ·wz to i ·wz. These values represent

the evaluation of the polynomial in the points ωz + 1, ωz + 2

The full ABE scheme is an adaptation of [10] to use the above mentioned share_FW

and recon_FW procedures.

Theorem 4.2. The Weighted KP-ABE system is secure in the Key-Policy Attribute-

based Selective-Set Model under the bilinear Decisional Diffie-Hellman problem.

Proof. The proof will follow the same outline as the security proof of [10] or [24], with

the required modifications on the fake_share and fake_recon.
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Towards Attribute-based Encryption

for Boolean circuits
While searching for access structures more expressive then access trees for which we can

construct efficient ABE schemes, we have looked into Compartmented access strucutres

(CAS), since [25] proved that it is impossible to express a CAS as an access tree.

y

AND

OR OR 3/5

1.1 1.2 2.1 2.2 2.3

y

CAS - node
t = 4, n = 5

t1 = 1, n1 = 2
t2 = 2, n2 = 3

1.1 1.2 2.1 2.2 2.3

Figure 5.1: A sub-circuit and an equivalent CAS-node

We have provided two constructions for CASs, incrementally rising the efficiency of our

schemes. The first construction is mostly based on the ABE scheme from [24], with

some optimizations specific to CASs applies to it, while the second scheme is based on

the Ghodosi et al.’s [9] secret sharing for CAS. We have further showed for the second

construction that is can be used for more complex access structures built on top of

CAS.

The first construction The first scheme [25] is an adaptation of the ABE scheme

for Boolean circuits from [24] to the special case of Compartmented access structures

16
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(CAS). More precisely, a CAS can be represented as a Boolean circuit consisting of

threshold gates, with three levels. However, this approach generates two shares for

each participant in the secret sharing pahse, and is far from optimum, as we can see in

the next part.

5.1 ABE for CAS-circuits

Ghodosi et al. [9] scheme can actually be adapted for the ABE system, with only a

small trick being required for the security proof. Moreover, the secret sharing technique

can be applied recursively without blowing up exponentially the size of the secrets.

Compartmented Nodes Since we will use CASs as parts of larger and more complex

access structures, we will define a CAS-node Γ as a special gate modelling a CAS. The

gate has a single output wire, and a number of input wires equal to the total number

of participants. Each gate is also defined by a general thrshold t and a threshold for

each compartment ti. Then, we define an access structure built upon these types of

gate.

Definition 5.1. [13] A CAS-circuit is a tree formed out of CAS-nodes

The ABE-CAS construction

We describe the share_CAS procedure, which shares a value through a CAS node. This

procedure can be applied recursively, resulting in a secret sharing over a CAS-circuit.

share_CAS(Γ, y):

1. Let T = t−
k∑

i=1

ti.
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CAS

C1 : t1 = 2 C2 : t2 = 1 C3 : t3 = 2

P1 P2 P3 P4 P5 P6 P7 P8

y1
y2

y3

q1(1)
q1(2) q1(3) q2(1) q2(2)q3(1)

q3(2)
q3(3)

Figure 5.2: Secret sharing though a CAS

2. For each compartment, choose randomly the partial secret yi and a public pa-

rameter pΓ from Zp such that y1 + y2 + . . . yk + pΓ = y.

3. Then, for each compartment i = 1, . . . , k: select randomly and uniformly ti − 1

values ai.1, ..., ai.ti−1 from Zp corresponding to each compartment i, i = 1, ..., k.

4. Choose randomly and uniformly T values β1, . . . βT in Zp.

5. Determine a sequence of k polynomials, qi(x) = yi + ai.1x + . . . + ai.ti−1x
ti−1 +

β1x
ti + . . .+ βTx

ti+T−1 for every level i.

6. Assign the shares for each input node: Ini.j = qi(j), and publish P (Γ) = gpΓ as

the gate’s public parameter.

In the reconstruction phase, for each value α associated to some wire at the sharing

phase, we will have a corresponding value gαsT attached to the same wire during the

reconstruction phase.

recon_CAS(Γ, P (Γ) = gpΓ , S = gs, ⟨e(g, g)qi(j)s, ..., ⟩):

During the reconstruction phase in out ABE system, for each satisfied input wire

i.j of the CAS-node Γ, we will have some value e(g, g)qi(j)s, which represents the
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result of an equation of form:

e(g, g)yis · e(g, g)ai.1js · . . . · e(g, g)ai.ti−1j
ti−1s·

e(g, g)β1jtis · . . . · e(g, g)βT jT+ti−1s = e(g, g)qi(j)s

which is equivalent with

e(g, g)s(yi+ai.1j+ai.2j
2+...+ai.ti−1j

ti−1+β1jti+...+βT jT+ti−1) = e(g, g)qi(j)s

We need to select from each compartment ℓi wires, namely ji.1, ji.2, . . . ji.ℓi , such

that ℓ1 ≥ t1, ℓ2 ≥ t2, . . . ℓk ≥ tk and
∑k

i=1 ℓi = t.

Putting all such equations together from all input wires, we obtain an equation

system which can be solved only if the the CAS node is satisfied.

KP-ABE for CAS-circuits Our KP-ABE scheme for CAS-circuits[13] is built

over [10], by using our share_CAS procedure in the key generation step, along-

side with recon_CAS on the decryption phase. We use two intermediate procedures

share_CAS_circuit and recon_CAS_circuit, which recursively apply share_CAS

and recon_CAS to the nodes in the CAS-circuit.

Theorem 5.2. Our scheme is secure in the selective model under the decisional bilinear

Diffie-Hellman assumption. [13]

Proof. In the full version of this thesis

5.2 Efficiency and Improvements

Beside the obvious benefit of creating an efficient ABE construction for CAS-circuits,

the CAS sharing technique allows to optimize existing schemes by replacing a sub-

circuit which can be modelled as a CAS. While it may not seem a great benefit at the
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Table 5.1: Worst case decryption key size

ABE system Bolean Formulae CAS-circuit Boolean circuits
Goyal et al. [10] n Unsupported Unsupported

Tiplea-Dragan [24] n nj + n+ jr nj + n+ jr

Hu-Gao [12] n n+ jr n+ jr

Ours-1 (CAS-circuit) n+ q n+ q Unsupported
Ours-2 (general circuit) n n+ q n+ jr

first sight, we can actually observe that a lot of circuits can be expressed as CASs, by

creating virtual compartments with threshold equal to zero.

Comparison with other ABE systems When compared to other schemes, ours

clearly extends the usable access structures in the context of ABE. Regarding the

notations used, we denoted with n the number of input nodes in an access structure,

and with r the number of FO-gates. The FO-gates are considered to have j input

wires each, and the total number of internal gates to be q. Using these notation,

we have compiled a complete analysis in Table 5.1. “Ours-1” represents the vanilla

scheme proposed by us, using CAS-circuit access structures. The second one, “Ours-

2”, features, beside CAS-nodes, also threshold gates from [10] and FO-gates from [24].

5.3 Boolean Circuits and MSP

The open problem of constructing efficient secret sharing for general (unrestricted)

monotone Boolean circuits has been widely studied, especially in the context of ABE.

Using Beimel’s Theorem of equivalence between LSSS and MSP [3], we can study focus

on MSP lower bounds in order to prove lower bound for LSSS.

Going along this line, we provide a simple proof which states that there can not be

constructed a general ideal LSSS for unrestricted monotone Boolean circuits.

Theorem 5.3. [20] There is no ideal linear secret sharing scheme for the class of

access structures represented by monotone Boolean circuits.



Contents 21

Proof. Omitted due to space limitation.

Fully Weighted ABE and Boolean circuits We noticed that the special circuit

(refferd to as U-gate) which we discussed in section 5.3 can also be expressed as a fully

weighted access structure. An important consequence of this is the following theorem:

Theorem 5.4. There are no ideal LSSS representing fully weighted access structures.

Proof. Suppose there exists an ideal LSSS for representing fully weighted access struc-

tures. Then, we can construct an ideal LSSS for a U-node, which is impossible due to

Theorem 5.3

Exponential Lower Bound for LSSS for Boolean circuits [21] proved that

a monotone access structure which is in the monotone P circuit class can only be

expressed by exponential MSPs. This implies that we cannot construct sub-exponential

ABE schemes for Boolean circuits from LSSS.
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Heuristic Optimizations in

Attribute-based Encryption
While accepting the possibility that it is impossible to build efficient ABE schemes for

Boolean circuits, we have switched our attention to optimizations which may be made

to existing schemes. One possible approach would be to rewrite the Boolean circuit

into an equivalent form, for which the secret sharing produces less shares, as we can see

in Figure 6.1 As a standard for comparison we will use the state of the art scheme in

ABE for Boolean circuits schemes using bilinear maps from [24]. In the secret sharing

algorithm from this scheme, the number of shares that will be associated to each input

wire of the circuit is equal to the number of paths from the respective input node to

the output node of the circuit. When writing the circuit in the multiplicative equation

form, we can observe that every path in the circuit corresponds to a literal in the

formula. We will consider the cost function c(C) = the number of shares the secret

sharing technique in ABE is producing on C Moreover, to simplyfy notation we use

addition to represent OR operations, and multiplication for AND .

6.1 Our Approach

We have made two different attempts for the optimization of Boolean circuits for ABE systems.

The first one was based on replacing parts of a circuit with sub-circuit which have a better

secret sharing technique. This did not lead to great results, due to the high computational

power required and lack of flexibility. The second method was based on the Abstract Syntex

Tree (AST), and tried to directly optimize the formula using three operations on the tree:

22
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Out

A B C

ORP1

ANDP2 AND P3

FOP4

((A AND B)OR(B AND C))

a)

Out

A B C

AND R1

OR R2

(B AND (A OR C))

b)

Figure 6.1: Two equivalent Boolean circuits, alongside their equivalent logical for-
mulas

1. factorization – We make use of the fact that the OR is distributive under AND and

viceversa. Therefore, a formula such as AB+AC can be re-written to A(B+C). This

obviously reduces the total number of literals, leading to a lower cost.

2. defactorization – This is the inverse operation of factorization. It works by making the

cross-product between the terms of two parenthesis from a conjunction. For example,

(A + B)(C + D) would convert into AC + AD + BC + BD. Note that the resulting

formula after the defactorization will have a strictly higher cost.

3. absorption is the operation of eliminating 1s after the factorization and defactorization.

For example, A+AB can be factorized into A(1+B), the latter which is equivalent to

A.

Using these operations, we have constructed various heuristic algorithms.

Hill Climbing Our first approach in using these techniques in some heuristics was a Hill

Climbing algorithm. Since the factorization will always reduce the cost of the circuit, we used
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to search a local minimum. Therefore, our approach was straight-forward: while it is possible,

choose two nodes that can be factorized and apply the operation. Obviously, depending on

the choices we could end up with different results.

Simulated Annealing Our second attempt was using the probabilistic method described

in [15], known as Simulated Annealing. The basic idea is to consider at each iteration of

the algorithm a solution of the problem. This solution will be assigned a probability to be

accepted, based on its score and temperature: The higher the score and the temperature, the

higher the probability for it to be accepted.

Custom Heuristic Since we felt that we can obtain better results with a different ap-

proach, we also constructed a custom heuristic algorithm, which was meant to combine the

factorization and defactorization algorithms in a simpler manner than the one used in simu-

lated annealing. The pseudocode for our algorithm is presented below, in Algorithm 2

Algorithm 2: Custom Heuristic for circuit optimization.
1 for k ∈ {1, 2, . . . , kmax do
2 if random(0, 1) < kmax−k

5kmax
then

3 operation ← defactorization
4 else
5 operation ← factorization

6 u← choose neighbor of u using operation ;

7 if cost(u) < cost(umin) then
8 umin ← u

9 apply factorization to umin until formula is not improved anymore

Iterated Versions We have also provided iterated versions for our algorithms, in the hope

of finding the global optimum, or, at least, a better local optimum.
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6.2 Practical Tests

We have tested our heuristics agains four datasets, with variable count between 15 and 25, and

literal count between 20 and 200. The last dataset contains circuits modelling comparisons

over numeric attributes, represented in binary.

Our runs have been summarized in the Table 6.1: For each dataset we have three result

observed for each of the six algorithms: mean optimization (M. Opt.), best over iterations

(BOI), and average running time (Avg. RunTime). On the first column we have the six

algorithms we have tested, identified by their initials. Their iterated versions can be easily

identified by the letter "I" in front of them.

Dataset 1 Dataset 2
M. Opt. BOI Avg. RunTime M. Opt. BOI Avg. RunTime

HC 15.0 % 16.3 % 0.00 s 35.1 % 41.9 % 0.00 s

IHC 16.3 % 16.3 % 0.08 s 42.0 % 42.1 % 0.34 s

SA 26.9 % 43.1 % 0.16 s 41.0 % 59.1 % 0.86 s

ISA 40.1 % 46.9 % 2.39 s 57.8 % 66.0 % 13.1 s

CH 24.8 % 44.0 % 0.13 s 35.8 % 61.8 % 0.38 s

ICH 43.0 % 47.8 % 2.74 s 61.3 % 68.6 % 7.50 s

Dataset 3 Dataset 4
M. Opt. BOI Avg. RunTime M. Opt. BOI Avg. RunTime

HC 42.6 % 56.5 % 0.01 s 4.8 % 7.2 % 0.00 s

IHC 56.5 % 56.5 % 2.03 s 7.2 % 7.2 % 0.11 s

SA 43.0 % 58.6 % 0.76 s 32.3 % 50.0 % 0.10 s

ISA 59.3 % 63.1 % 13.6 s 48.5 % 50.4 % 1.44 s

CH 39.8 % 59.4 % 0.42 s 20.8 % 47.8 % 0.14 s

ICH 60.6 % 64.9 % 7.82 s 48.5 % 50.4 % 2.94 s

Table 6.1: (Iterated) Hill Climbing/ Simulated Annealing/ Custom Heuristic results
on each dataset
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Conclusions and Future Work
This work focused on finding expressive, yet efficient access structures for ABE schemes devel-

oped with bilinear maps. We have pointed out that current results already prove that LSSS

for Boolean circuits imply an exponential expansion of shares. Also, while the previous effi-

cient ABE were limited to Boolean formulae or threshold trees, after our work, we extend the

class of access structures for which we know efficient implementations of ABE to the access

structure which we have introduced as CAS-tree.

In addition, we have proposed and implemented several heuristics which transform a Boolean

circuits into an equivalent circuit, for which the secret sharing schemes will produce fewer

shares.

Also regarding ABE expressiveness, we developed two new weighted ABE scheme for bilinear

maps. The first scheme offers a slight advantage in implementing "greater than" comparisons

over numerical attributes. The second scheme is the first fully weighted ABE scheme.

Open Problems and Future Work From our work, various open problems stand out,

requiring more study and exploration. One of the most interesting open problems is to build

sub-exponential schemes for fully weighted ABE. Another important open problem is whether

is it possible to construct polynomial multi-linear secret sharing schemes for Boolean circuits.

We believe the answer is negative to this question, and we also believe that a potential proof

could be based on U-trees or similar access structures.

Also, we believe that the gap between CAS-trees and Boolean circuits which represent the lim-

its of access structures for which we can build efficient ABE constructions, could be tightened

even more. There could be many more access structure which are not yet addressed.

26
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