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Chapter 1

INTRODUCTION

1.1 Fluid-structure interaction (FSI) problems - literature

review

Fluid–structure interaction (FSI) is the interaction of some movable or deformable structure

with an internal or surrounding fluid flow. In the case of fluid flow and elastic material, each of

the subproblems acts on the other. The coupling is acting at the interface which is the surface

between the fluid and solid problems, these being the surface-coupled multiphysics problems.

The approach for computational fluid-structure interaction in real-life applications involves

designing efficient coupling techniques. A mathematical analysis of the coupled FSI of

equations that portrays the full FSI problem is still a novelty. Because the two subproblems,

meaning the Navier-Stokes incompressible equations for the fluid and an equation for the

elastic solid are mathematical obstacles, it is no wonder that results for the coupled problem

are rarely spread. The interaction between a fluid and a solid (elastic or rigid) structure is a

phenomenon that appears in many fields of real life. The distortion of aircraft wings caused

by the aerodynamical forces, the influence of a vessel wall characteristics on the blood flow

parameters, lubricant fluxes in ball-bearings are only a few important examples of (FSI)

problems. Due to the practical applications and to the mathematical challenges as well, FSI

problems have been studied extensively in the last years.

For the Navier-Stokes equations in fluid-dynamics and conservation equations for nonlin-

ear hyperelastic materials, many theoretical questions are still not answered. Moreover, the

motion of the fluid domain may lead to lose smoothness of the interface, where the coupling
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CHAPTER 1. INTRODUCTION

occurs. Having a fully coupled model for the whole problem, we can also use strongly coupled

solution schemes like Newton linearization, multigrid or Krylov subspace methods for the

complete problem without subiterating between fluid and solid domains. In the last 40 or 50

years, the Arbitrary Lagrangian Eulerian coordinate framework has been introduced to work

with flow problems on moving domains [23], [39], [40] where numerical methods are used.

Fluid-structure interaction is called a surface coupled multiphysics problem, as opposed to

volume coupled multiphysics problems, where two (or more) subproblems all live in the same

domain. A typical example for such volume coupled problems would be given by chemically

reactive flows, where the chemical reaction interacts with a flow problem [11], [66]. As an

example of FSI problem with moving domains, we can cite [57] where there are two rigid

bodies moving. Existence and regularity for the coupled problem has been investigated in [2]

(analyzes a parabolic-hyperbolic model of a coupled system which appears when an elastic

structure is immersed in the fluid), [3] - [5] study a coupled parabolic-hyperbolic with the

elastic structure immersed in the fluid by the semigroup theory, in [24] a time-dependent

system that is modelling the interaction between a Stokes fluid and an elastic structure is de-

scribed, [25] studies a linear fluid-structure interaction problem. For an in-depth introduction

to optimization and parameter identification with partial differential equations, we refer to the

literature [38], [49], [63], [64]. Optimization results for fluid-structure interaction problems

can be found, e.g., in [14], [15], [27], [56], [59], [60]. Other works that study different

aspects of interest from mathematical and numerical points of view regarding FSI problems

are presented in what follows. Examples of venous insufficiency studies are in [20], [42],

[46] and [50]. In [9] the authors prove the existence of the weak solutions in the interaction

problem between a Stokes fluid and a multilayered poroelastic structure, [19] presents new

algorithms for predicting the hemodynamics in large arteries, [21] proposes investigating

from a numerical point of view of a fluid-structure interaction problem that is based on the

decomposition theory, in [34] existence results are obtained in a fluid-structure interaction

problem when in the elastic structure biological motors are considered, [52] represents a

variational analysis in a fluid-structure interaction problem when Young’s modulus and the

density of the plate are big or small parameters, [53] presents an asymptotic analysis in a

fluid-structure interaction depending on two small parameters, the thickness of the elastic

medium and the fluid one, while [55] gives a mathematical introduction to modelling, analysis

and simulation techniques for FSI problems.
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CHAPTER 1. INTRODUCTION

1.2 Motivation and starting point of the study

This work is associated with the complex real-life phenomenon of blood flow through the

circulatory system. Due to its obvious practical importance, numerous mathematical models

have been elaborated in the specialized literature to describe as well as possible the charac-

teristics of this phenomenon. Articles that take into account the complicated structure of the

blood system ([8] describes a procedure of reconstruction of the pressure for thin domains,

[41] proves the existence and uniqueness of the weak solution for steady-state Navier-Stokes

equations in a thin tube structure), the interaction between the blood and the elastic vessel wall

(see e.g., [10], [53]), or the role of the viscosity on the fluid flow (in [7] an incompressible

micropolar fluid flowing through a pipe system, [54] studies a nonsteady viscous flow in a thin

channel with elastic wall, [59] studies viscous fluid-elastic structure interaction problems)

are only a few examples of recent works dedicated to this topic. In all the previous cited

works it was supposed that the fluid and the elastic medium temperatures are constant; so,

they do not affect the characteristics of the FSI. This assumption is a simplification, as most

elastic materials and fluids have a strong dependency on the temperature. In real life there

are many situations in which the interaction between a fluid and an elastic medium is strongly

influenced by temperature variations. As an example of the important role played by the

temperature we mention the connection between the ambient temperature and the variation

of the blood pressure (see e.g., [44], [65]).

Before starting the study of the research topic presented in this thesis, in 2020, multiple

searches have been made to see if there are other approaches for similar problems. We found

only one article, [28], where it is presented a simplified model of the coupled FSI problem

when the temperature variations of the two media are taken into account. Considering the sta-

tionary case, the authors study a weak coupling between the two media, as follows: they solve

firstly the problem in the fluid domain; then, they solve the convection-difusion temperature

equation in the entire domain, meaning the reunion of the fluid and solid subdomains; lastly,

they solve the linear thermoelasticity system that describes the elastic medium deformation.

This weak coupling diminishes the computation cost because it is not needed to solve a

coupled monolithic system.

In addition to [28], we can mention two more articles ([47, 48]) published after 2020

dealing with thermal FSI problems. The characteristic of the models studied in these two

articles is that the elastic structure has a lower dimension than that of the fluid domain (this
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CHAPTER 1. INTRODUCTION

means that the elastic structure represents a part of the fluid domain boundary).

1.3 Novelty

In this thesis we propose a double coupled mathematical model for describing a thermal (FSI)

problem when the fluid and the solid domains have the same dimension. By means of this

model, we obtain qualitative results such as existence, regularity, uniqueness of the unknown

functions; moreover, we perform numerical simulations that highlight some aspects character-

izing phenomena of real life. The novelty of our approach is that, unlike the problems studied

in [28, 47, 48], we succeed in analyzing, both from mathematical and numerical viewpoints,

a double coupled system with nonlinear equations and nonhomogeneous boundary and initial

conditions, in the case when the fluid and the elastic structure occupy domains with same

dimension. In our model the fluid motion is described by the incompressible Navier–Stokes

system in the Boussinesq approximation; the behavior of the elastic medium is modeled by

the linear thermoelasticity equation and, in addition, the variation of the temperature is given

by a convection-diffusion equation corresponding to each medium (nonlinear in the fluid

domain). The coupling conditions on the interface between the two media are the continuity

of velocities and temperatures, and, also, the continuity of normal stresses and of heat fluxes.

Even though the specialty literature from the last years contains a big number of works

that capture different aspects of the interaction between a viscous fluid and an elastic structure

(for example, [13] studies a three-dimensional fluid-structure interaction problem between a

viscous fluid and a thin elastic plate where strong convergence results and quantitative error

estimates are obtained, [29] a stable semi-implicit scheme and a Chorin-Temam projection

are studied in an incompressible fluid-elastic structure coupling, in [37] an unsteady nonlinear

fluid–structure interaction problem without decoupling the fluid from the structure is studied,

[51] describes a nonlinear, moving boundary fluid FSI problem between an incompressible,

viscous Newtonian fluid with a two-dimensional Navier-Stokes equation and an elastic struc-

ture with Navier slip boundary conditions where the method used is the time discretization

via operator splitting, [52] studies a two-dimensional time dependent model between a thin

elastic plate and a Newtonian viscous fluid with an asymptotic expansion, in [54] a nonsteady

viscous flow with viscosity constant almost everywhere and an asymptotic expansion of the

solution is constructed, [59] determines a viscosity function that realizes an optimal blood
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CHAPTER 1. INTRODUCTION

pressure configuration), the thermal coupling between the two media is still a novelty.

1.4 Thesis structure and main results

The thesis is divided into six chapters and a bibliography containing 67 titles. In Chapter

2 we present known functional analysis results from the literature that we use in the thesis.

In Chapter 3 we introduce and study the fully nonlinear coupled system modelling the

thermal FSI problem with boundary, coupling and initial conditions. We define the FSI

problem corresponding to a Navier-Stokes incompressible fluid and an elastic solid, both

are coupled with temperature equations, the two media being coupled on the interface by

the continuity of velocity, normal tensions, temperature and heat fluxes, presented in Main

Problem. By linearizing the system and introducing dimensionless expressions, we obtain

the partial differential coupled system analyzed in what follows. Then, we introduce two new

unknown functions in order to reduce the number of unknowns. In this way, we transform

the differential system into an integro-differential one. For obtaining the variational analysis

of the problem, we present the functional spaces, the regularity of the data and we define two

new unknowns satisfying homogeneous boundary and initial conditions. We introduce the

notion of weak solution to the integro-differential system and we obtain the first main result

of this chapter: the weak solution existence and uniqueness. The existence result is proven by

means of the Galerkin’s method applied for the variational problem associated with the new

unknown functions. We obtain two sets of estimates for the unknowns and the derivatives of

the unknowns. As the variational problem does not provide enough regularity in the elastic

domain, we approximate it with a family of viscoelastic variational problems, depending on a

small parameter 𝜀. The difference between the initial variational problem and a viscoelastic

problem from this family is represented by an additional small term contained by the last

one. This term corresponds to the regularity in the elastic domain ”uncovered” by the initial

variational problem and it is necessary in what follows for obtaining the convergence of the

numerical scheme. We prove existence, uniqueness and regularity results for the viscoelastic

problems and some estimates. This approximation is justified by an error estimate theorem

that gives an error of order O(𝜀1/4) between the exact solution and the viscoelastic one with

respect to suitable norms. As a consequence we obtain, as 𝜀 → 0, the strong convergence

of the family of viscoelastic solutions to the solution of the initial variational problem with
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respect to suitable norms. The last part of this chapter, is devoted to the numerical analysis

of the problem for the case 𝑛 = 2. For any fixed value of 𝜀, we associate to the corresponding

viscoelastic problem a numerical scheme, using a finite difference method in time and a finite

element method for the space approximation. The additional viscoelastic term allows us to

obtain suitable estimates for the unique solution of the numerical scheme in the elastic domain,

followed by a stability theorem. The second main result of this chapter is the convergence

theorem We show first that the sequence of solutions to the numerical scheme is weakly

convergent (with respect to suitable spaces) to a triplet that satisfies the same variational

equalities as the viscoelastic solution, but that has less regularity than this solution. Then,

we improve step by step the regularity of this triplet until we obtain a regularity (still inferior

to that of the viscoelastic solution), but which allows us to obtain a uniqueness result that has

as consequence the fact that the previously obtained weak limit of the sequence of numerical

solutions is unique and it represents the unique solution of the viscoelastic problem.

Chapter 4 presents theoretical results concerning the fluid pressure. The theoretical re-

sults of this chapter include the equivalence between the variational problem without pressure

(VP) and the variational problem with pressure, the existence and uniqueness of the pressure

by use of the Stokes formula. We prove the approximation of the pressure by a sequence

of viscoelastic pressure functions and then, the weak convergence of this sequence to the

pressure. We mention that the pressure uniqueness is not a trivial result, as it is known

that Navier-Stokes problems do not give the uniqueness of the fluid pressure. We present

a numerical approximation scheme with stability and convergence results. Last part of the

chapter is dedicated to the Uzawa algorithm whose role is to approximate a function subject to

restrictions by a sequence of functions without restrictions. Uzawa’s algorithm for Stokes and

Navier-Stokes equations is used, for example, in [62]. The role of this algorithm is to approxi-

mate a function that needs to verify the condition
∫
S

div ®𝛼ℎd𝑥 = 0, ∀S ∈ S 𝑓

ℎ
with a sequence

of functions that are not subjected anymore to these restrictions. This is necessary because

it is difficult to build a precise basis of space Wℎ =

{
®𝛼ℎ ∈ 𝑊ℎ

���� ∫
S

div ®𝛼ℎd𝑥 = 0, ∀S ∈ S 𝑓

ℎ

}
because of the restriction of this space. We generalise this algorithm for the studied doubled

coupled problem and, in addition from what it is proven in [62], we also prove that the

sequence of functions which approximates the pressure has an unique limit point.

Chapter 5 deals with some numerical simulations chosen in order to emphasize physical

phenomena related to the considered problem. These simulations rely on the numerical
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schemes presented before and highlight the following aspects:

1. the way in which the temperature variation influences the variation of the fluid

longitudinal velocity;

2. the way in which the changes of the exterior temperature influence the blood pressure

variations;

3. the influence of the forces acting in the elastic domain on the fluid longitudinal velocity;

Chapter 6 presents the conclusions of our theoretical and numerical approach.

1.5 Interdisciplinarity of the study

This characteristic is highlighted by the fact that, starting from a physical problem (the

influence of temperature on the blood flow through an elastic blood vessel), a mathematical

model is constructed in order to describe this phenomenon and then, by means of this

model, numerical simulations are performed, which validate the proposed model since these

simulations lead to the expected physical results.

1.6 Limits of the research and perspectives for further re-

search

Because of the complexity of the mathematical model (double coupled, nonlinear, nonho-

mogeneous system) introduced in order to describe as faithfully as possible the temperature

influence on a viscous fluid-elastic structure interaction when the solid domain has the same

dimension as the fluid one, it was necessary for its study to make a small simplification

consisting of linearization of the system equations.

Since our work represents a mathematical and numerical study associated with a simplified

model of blood flow through the circulatory system, some directions of future research could

be to consider a more realistic geometry of the problem or a model closer to reality for

modelling blood flow. A next stage would be domains in R3 and then a tube structure.

The domain called tube structure is a mathematical model aimed to describe structures that

contain several tubes connected at their points called nodes. More precisely, it is a special

structure of thin domains. From the physical point of view, these structures can be used as

geometrical models of the blood vessel systems, hydraulic installations, and so on.
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Chapter 2

A THERMAL FLUID-STRUCTURE

INTERACTION PROBLEM:

MODELLING, VARIATIONAL AND

NUMERICAL ANALYSIS

The results presented in this chapter were published in Ciorogar, A., Stavre, R., 2023.

A Thermal Fluid–Structure Interaction Problem: Modeling, Variational and Numerical

Analysis, J. Math. Fluid Mech. 25, 37.

2.1 Description of the mathematical model

We consider the nonstationary interaction between a viscous, incompressible fluid and an

elastic solid. Let Ω ⊂ R𝑛, 𝑛 = 2, 3 be an open, bounded, Lipschitz set with a 𝐶1-piecewise

boundary and Ω 𝑓 ⊂ Ω with the same properties. Denote Ω𝑠 = Ω \ Ω 𝑓 . Ω 𝑓 represents

the domain occupied by the viscous fluid and Ω𝑠 is the elastic domain. The fluid flow is

described by the Navier-Stokes equations in Boussinesq approximation, where we consider

the temperature variation. We also consider the influence of body forces, corresponding to

the weight, 𝜌®𝑔 where 𝜌 is the density and ®𝑔 is the gravitational acceleration. The unknowns

are the velocity ®𝑣, the fluid temperature 𝑇 𝑓 and the pressure 𝑝. In this approximation, the

density variation is neglected in the inertial terms but the gravity is sufficiently important

to highlight the density variation. The density depends linearly on the temperature with the
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CHAPTER 2. A THERMAL FLUID-STRUCTURE INTERACTION PROBLEM

expression 𝜌 = 𝜌0 − 𝜌0𝛼 𝑓 (𝑇 −𝑇0), 𝜌0 being a positive constant representing the fluid density

at temperature 𝑇0 and 𝛼 𝑓 the thermal expansion coefficient.

The elastic medium behavior is modeled by the linear thermoelasticity equation, with

the small strain tensor components given in terms of the displacement vector ®𝑢, considered

to be decomposed by 𝜀𝑖 𝑗 = 𝜀𝑀
𝑖 𝑗

+ 𝜀𝑇
𝑖 𝑗

, 𝜀𝑀
𝑖 𝑗

representing the components of mechanical strain

and 𝜀𝑇
𝑖 𝑗

the components of thermal strain (see e.g., [45]), the unknown variables being the

displacement vector ®𝑢 and the solid temperature 𝑇𝑠. Using the theory from [58], we have

𝜎𝑖 𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖 𝑗 + 2𝜇𝜀𝑖 𝑗︸              ︷︷              ︸
𝜀𝑀
𝑖 𝑗

−𝑘𝛼𝑠 (𝑇 − 𝑇0)𝛿𝑖 𝑗︸               ︷︷               ︸
𝜀𝑇
𝑖 𝑗

.

In addition to the previous equations, we consider two non-stationary convection-diffusion

equations corresponding to the heat transfer in the fluid and in the elastic solid.

We suppose that the elastic medium deformation is small, so the equations for the two

media can be written with a good approximation in the initial corresponding domains. The

boundaries of the two phases have the following properties: 𝜕Ω 𝑓 = Γ 𝑓 ∪Γ, 𝜕Ω𝑠 = Γ𝑠∪Γ, with

meas(Γ 𝑓 ∩Γ) = 0, meas(Γ𝑠 ∩Γ) = 0, Γ 𝑓 ∪Γ𝑠 = 𝜕Ω, meas(Γ 𝑓 ∩Γ𝑠) = 0 and Γ = 𝜕Ω 𝑓 ∩ 𝜕Ω𝑠

represents the two phases interface. In addition, corresponding to different types of boundary

conditions, we consider Γ𝑠 = Γ1
𝑠 ∪ Γ2

𝑠 , with meas(Γ1
𝑠 ∩ Γ2

𝑠 ) = 0. The coupling conditions

(represented by the velocity, the stress vector, temperature and heat flux continuity) are

imposed on the fixed interface separating these domains (for details concerning the coupling

conditions in FSI see e.g., [55]).

As we previously said, the blood system has a complicated geometric structure. However,

for the purpose of our approach, this structure is not one of the main aspects, so we consider

a simplified geometry of the problem.

For a better identification of the boundaries we present below particular domains in R2

and R3.

10
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Figure 2.1: Particular domains in R2 and R3

We formulate now the Main Problem, the nonstationary thermal FSI modeled by the

nonlinear system of equations.

Find ®𝑣, ®𝑢, 𝑝, 𝑇 𝑓 , 𝑇𝑠 solutions of the nonlinear partial differential equation system:



𝜌0®𝑣 ′+𝜌0(®𝑣 ·∇)®𝑣−2𝜈 div(𝐷 (®𝑣))+𝜌0𝛼 𝑓 (𝑇 𝑓 −𝑇 𝑓0) ®𝑔+∇𝑝= 𝜌0®𝑔

in Ω 𝑓 ×(0,𝜏),
div ®𝑣 = 0

𝜌𝑠 ®𝑢 ′′ −
𝑛∑︁

𝑖, 𝑗=1

𝜕

𝜕𝑥𝑖

(
𝐴𝑖 𝑗

𝜕 ®𝑢
𝜕𝑥 𝑗

)
+ 𝑘𝛼𝑠∇(𝑇𝑠 − 𝑇𝑠0) = ®𝑓𝑠 in Ω𝑠×(0,𝜏),

𝜌0𝑐 𝑓𝑇
′
𝑓 + 𝜌0𝑐 𝑓 ®𝑣 · ∇𝑇 𝑓 − 𝑘 𝑓Δ𝑇 𝑓 = 𝑄 𝑓 in Ω 𝑓 ×(0,𝜏),

𝜌𝑠𝑐𝑠𝑇
′
𝑠 + 𝑘𝛼𝑠𝑇𝑠0 (div ®𝑢 ′) − 𝑘𝑠Δ𝑇𝑠 = 𝑄𝑠 in Ω𝑠×(0,𝜏),

(2.1)

with boundary conditions



®𝑣 = ®0 on Γ 𝑓 × (0, 𝜏),

®𝑢 = ®0 on Γ𝑠 × (0, 𝜏),
𝜕𝑇 𝑓

𝜕𝑛
= 0 on Γ 𝑓 × (0, 𝜏),

𝜕𝑇𝑠

𝜕𝑛
= 0 on Γ1

𝑠 × (0, 𝜏),

𝑇𝑠 = 𝑇𝑔 on Γ2
𝑠 × (0, 𝜏),

(2.2)
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junction conditions



®𝑣 = ®𝑢 ′

−𝑝®𝑛 + 2𝜈𝐷 (®𝑣) ®𝑛 =
𝑛∑︁

𝑖, 𝑗=1
𝐴𝑖 𝑗

𝜕 ®𝑢
𝜕𝑥 𝑗

𝑛𝑖 − 𝑘𝛼𝑠 (𝑇𝑠 − 𝑇𝑠0) ®𝑛

𝑇 𝑓 = 𝑇𝑠

𝑘 𝑓
𝜕𝑇 𝑓

𝜕𝑛
= 𝑘𝑠

𝜕𝑇𝑠

𝜕𝑛

on Γ × (0, 𝜏), (2.3)

and initial conditions


®𝑣(0) = ®𝑣0 in Ω 𝑓 ,

®𝑢(0) = ®𝑢 ′(0) = ®0 in Ω𝑠,

𝑇 (0) = 𝑇0 in Ω.

(2.4)

2.2 The variational problem

Variational Problem

Find ( ®𝜔, 𝑆) ∈ 𝐻W × 𝐻T solution of:∫
Ω

𝜒1 ®𝜔′(𝑡) · ®𝜑 +
∫
Ω 𝑓

( ®𝜔(𝑡) · ∇) ®𝑤0 · ®𝜑 +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔(𝑡) · ®𝜑

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔(𝑡)) : 𝐷 ( ®𝜑) + 𝛼 𝑓
∫
Ω 𝑓

𝑆(𝑡) ®𝑔 · ®𝜑 + 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆(𝑡) · ®𝜑

+ 𝜌𝑠

𝜌0

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕

𝜕𝑥 𝑗

(∫ 𝑡

0
®𝜔(𝑠)d𝑠

)
· 𝜕 ®𝜑
𝜕𝑥𝑖

=

∫
Ω

®𝐾 (𝑡) · ®𝜑,

∀ ®𝜑 ∈ W a.e. in (0, 𝜏),∫
Ω

𝜒2𝑆
′(𝑡)𝜂 +

∫
Ω 𝑓

𝜂 ®𝜔(𝑡) · ∇𝑇0 +
∫
Ω 𝑓

𝜂 ®𝑤0 · ∇𝑆(𝑡) +
∫
Ω

𝜒3∇𝑆(𝑡) · ∇𝜂

− 𝑐𝑠
𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂) · ®𝜔(𝑡) =
∫
Ω

𝐺 (𝑡)𝜂 −
∫
Ω

®𝐹 (𝑡) · ∇𝜂,

∀𝜂 ∈ T a.e. in (0, 𝜏),

®𝜔(0) = ®0 in H ; 𝑆(0) = 0 in 𝐿2(Ω).

(VP)

12
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2.3 Approximation of the variational problem with a family

of viscoelastic problems

Proposition 2.1. The pair ( ®𝜔, 𝑆) is solution for (VP) if and only if the triplet ( ®𝜔, ®𝑢, 𝑆) is

solution for the problem:

Find ( ®𝜔, ®𝑢, 𝑆) ∈ 𝐻W × 𝐻W𝑠 × 𝐻T such that:∫
Ω

𝜒1 ®𝜔′(𝑡) · ®𝜑 +
∫
Ω 𝑓

( ®𝜔(𝑡) ·∇) ®𝑤0 · ®𝜑 +
∫
Ω 𝑓

( ®𝑤0 ·∇) ®𝜔(𝑡) · ®𝜑

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔(𝑡)) :𝐷 ( ®𝜑) + 𝛼 𝑓
∫
Ω 𝑓

𝑆(𝑡) ®𝑔 · ®𝜑 + 𝜌𝑠

𝜌0

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢(𝑡)
𝜕𝑥 𝑗

· 𝜕 ®𝜑
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆(𝑡) · ®𝜑 =

∫
Ω

®𝐾 (𝑡) · ®𝜑, ∀ ®𝜑 ∈ W a.e. in (0, 𝜏),

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢 ′(𝑡)
𝜕𝑥 𝑗

· 𝜕
®𝜓

𝜕𝑥𝑖
=

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔(𝑡)
𝜕𝑥 𝑗

· 𝜕
®𝜓

𝜕𝑥𝑖
, ∀ ®𝜓 ∈ W𝑠 a.e. in (0, 𝜏),

∫
Ω

𝜒2𝑆
′(𝑡)𝜂 +

∫
Ω 𝑓

𝜂 ®𝜔(𝑡) · ∇𝑇0 +
∫
Ω 𝑓

𝜂 ®𝑤0 · ∇𝑆(𝑡)

+
∫
Ω

𝜒3∇𝑆(𝑡) · ∇𝜂 −
𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂) · ®𝜔(𝑡)

=

∫
Ω

𝐺 (𝑡)𝜂 −
∫
Ω

®𝐹 (𝑡) · ∇𝜂, ∀𝜂 ∈ T a.e. in (0, 𝜏),

®𝜔(0) = ®0 in H ; ®𝑢(0) = ®0 in W𝑠; 𝑆(0) = 0 in 𝐿2(Ω).

(2.5)

2.3.1 The family of viscoelastic problems

For proving the convergence of the numerical scheme to the initial variational problem, the

𝐻1-regularity of ®𝜔 in Ω𝑠 should be provided by a corresponding term, since here it is not

possible anymore to use the data regularity in time, the numerical scheme being independent

of 𝑡.

Let 𝜀 > 0 be a small parameter. Consider the problem:

13
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Viscoelastic Variational Problem

Find ( ®𝜔𝜀, ®𝑢𝜀, 𝑆𝜀) ∈ 𝐻W × 𝐻W𝑠 × 𝐻T such that:∫
Ω

𝜒1 ®𝜔 ′
𝜀 (𝑡) · ®𝜑 +

∫
Ω 𝑓

( ®𝜔𝜀 (𝑡) · ∇) ®𝑤0 · ®𝜑 +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔𝜀 (𝑡) · ®𝜑

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔𝜀 (𝑡)) : 𝐷 ( ®𝜑) + 𝛼 𝑓
∫
Ω 𝑓

𝑆𝜀 (𝑡) ®𝑔 · ®𝜑 + 𝜌𝑠

𝜌0

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝜀 (𝑡)
𝜕𝑥 𝑗

· 𝜕 ®𝜑
𝜕𝑥𝑖

+ 𝜀 𝜌𝑠
𝜌0

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐵𝑖 𝑗
𝜕 ®𝜔𝜀 (𝑡)
𝜕𝑥 𝑗

· 𝜕 ®𝜑
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆𝜀 (𝑡) · ®𝜑 =

∫
Ω

®𝐾 (𝑡) · ®𝜑,

∀ ®𝜑 ∈ W a.e. in (0, 𝜏),
𝑛∑︁

𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢′𝜀 (𝑡)
𝜕𝑥 𝑗

· 𝜕
®𝜓

𝜕𝑥𝑖
=

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔𝜀 (𝑡)
𝜕𝑥 𝑗

· 𝜕
®𝜓

𝜕𝑥𝑖
, ∀ ®𝜓 ∈ W𝑠 a.e. in (0, 𝜏),

∫
Ω

𝜒2𝑆
′
𝜀 (𝑡)𝜂 +

∫
Ω 𝑓

𝜂 ®𝜔𝜀 (𝑡) · ∇𝑇0 +
∫
Ω 𝑓

𝜂 ®𝑤0 · ∇𝑆𝜀 (𝑡)

+
∫
Ω

𝜒3∇𝑆𝜀 (𝑡) · ∇𝜂 −
𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂) · ®𝜔𝜀 (𝑡)

=

∫
Ω

𝐺 (𝑡)𝜂 −
∫
Ω

®𝐹 (𝑡) · ∇𝜂, ∀𝜂 ∈ T a.e. in (0, 𝜏),

®𝜔𝜀 (0) = ®0 in H ; ®𝑢𝜀 (0) = ®0 in W𝑠; 𝑆𝜀 (0) = 0 in 𝐿2(Ω).

(VVP)

Corollary 2.1. Let ( ®𝜔, ®𝑢, 𝑆) be the unique solution of the problem (2.5) and {( ®𝜔𝜀, ®𝑢𝜀, 𝑆𝜀)}𝜀
the family of viscoelastic solutions. Then, the following convergences hold, when 𝜀 → 0:



®𝜔𝜀 → ®𝜔 strongly in 𝐿∞(0, 𝜏; (𝐿2(Ω))𝑛),

𝑆𝜀 → 𝑆 strongly in 𝐿∞(0, 𝜏; 𝐿2(Ω)),

®𝜔𝜀 → ®𝜔 strongly in 𝐿2(0, 𝜏; (𝐻1(Ω 𝑓 ))𝑛),

𝑆𝜀 → 𝑆 strongly in 𝐿2(0, 𝜏;𝐻1(Ω)),

®𝑢𝜀 → ®𝑢 strongly in 𝐿∞(0, 𝜏; (𝐻1(Ω𝑠))𝑛).

2.4 Numerical approximation schemes, estimates, stability,

convergence for the case 𝑛 = 2

We consider a viscoelastic problem corresponding to a fixed 𝜀 and we associate it a numerical

scheme using a finite element approximation in space and a finite difference approximation

in time. All the unknowns appearing in what follows depend on 𝜀, but, for simplifying the

writing, we omit it.

14
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2.4.1 The numerical scheme independent of time

For a fixed value of 𝜀, we associate to the viscoelastic problem (VVP) the following numerical

scheme



For ®𝜔0
ℎ,𝑁
, .., ®𝜔𝑚−1

ℎ,𝑁
∈Wℎ; ®𝑢0

ℎ,𝑁
, .., ®𝑢𝑚−1

ℎ,𝑁
∈𝑊 𝑠

ℎ
; 𝑆0

ℎ,𝑁
, .., 𝑆𝑚−1

ℎ,𝑁
∈Tℎ given,

( ®𝜔0
ℎ,𝑁 , ®𝑢

0
ℎ,𝑁 , 𝑆

0
ℎ,𝑁 )= (®0, ®0, 0), find ( ®𝜔𝑚ℎ,𝑁 , ®𝑢

𝑚
ℎ,𝑁 , 𝑆

𝑚
ℎ,𝑁 ) ∈Wℎ×𝑊 𝑠

ℎ×Tℎ s.t.

1
𝜏/𝑁

∫
Ω

𝜒1 ®𝜔𝑚ℎ,𝑁 · ®𝜑ℎ +
∫
Ω 𝑓

( ®𝜔𝑚ℎ,𝑁 · ∇) ®𝑤0 · ®𝜑ℎ +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔𝑚ℎ,𝑁 · ®𝜑ℎ

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔𝑚ℎ,𝑁 ) : 𝐷 ( ®𝜑ℎ) + 𝛼 𝑓
∫
Ω 𝑓

𝑆𝑚ℎ,𝑁 ®𝑔 · ®𝜑ℎ

+ 𝜌𝑠

𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝜀 𝜌𝑠
𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐵𝑖 𝑗
𝜕 ®𝜔𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆𝑚ℎ,𝑁 · ®𝜑ℎ =
1
𝜏/𝑁

∫
Ω

𝜒1 ®𝜔𝑚−1
ℎ,𝑁 · ®𝜑ℎ +

∫
Ω

®𝐾𝑚𝑁 · ®𝜑ℎ, ∀ ®𝜑ℎ ∈Wℎ,

1
𝜏/𝑁

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

−
2∑︁

𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

=
1
𝜏/𝑁

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚−1

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

, ∀ ®𝜓ℎ ∈ 𝑊 𝑠
ℎ,

1
𝜏/𝑁

∫
Ω

𝜒2𝑆
𝑚
ℎ,𝑁𝜂ℎ +

∫
Ω 𝑓

( ®𝜔𝑚ℎ,𝑁 · ∇𝑇0)𝜂ℎ +
∫
Ω 𝑓

( ®𝑤0 · ∇𝑆𝑚ℎ,𝑁 )𝜂ℎ

+
∫
Ω

𝜒3∇𝑆𝑚ℎ,𝑁 · ∇𝜂ℎ −
𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂ℎ) · ®𝜔𝑚ℎ,𝑁

=
1
𝜏/𝑁

∫
Ω

𝜒2𝑆
𝑚−1
ℎ,𝑁 𝜂ℎ +

∫
Ω

𝐺𝑚
𝑁𝜂ℎ −

∫
Ω

®𝐹𝑚𝑁 · ∇𝜂ℎ, ∀𝜂ℎ ∈ Tℎ.

(NS)

Theorem 2.1. There exists 𝑁0 ∈ N∗ such that for any 𝑁 ≥ 𝑁0, 𝑚 ∈ {1, . . . , 𝑁} and ℎ > 0

the problem (NS) has a unique solution.

2.4.2 Stability

Let ( ®𝜔𝑚
ℎ,𝑁
, ®𝑢𝑚

ℎ,𝑁
, 𝑆𝑚

ℎ,𝑁
) be the unique solution to the system (NS); define the following functions

depending on 𝑥 and 𝑡:


®𝜔ℎ,𝑁 ∈ 𝐿2(0, 𝜏;Wℎ)

®𝜔ℎ,𝑁 (𝑡) = ®𝜔𝑚ℎ,𝑁 if 𝑡 ∈
[
(𝑚 − 1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1, 𝑁,

(2.6)
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
®𝑢ℎ,𝑁 ∈ 𝐿2(0, 𝜏;𝑊 𝑠

ℎ)

®𝑢ℎ,𝑁 (𝑡) = ®𝑢𝑚ℎ,𝑁 if 𝑡 ∈
[
(𝑚 − 1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1, 𝑁,

(2.7)


𝑆ℎ,𝑁 ∈ 𝐿2(0, 𝜏;Tℎ)

𝑆ℎ,𝑁 (𝑡) = 𝑆𝑚ℎ,𝑁 if 𝑡 ∈
[
(𝑚 − 1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1, 𝑁,

(2.8)

and


®𝑤ℎ,𝑁 ∈ 𝐶0( [0, 𝜏];Wℎ)

®𝑤ℎ,𝑁 (𝑡)= ( ®𝜔𝑚ℎ,𝑁− ®𝜔𝑚−1
ℎ,𝑁 )

(
𝑡

𝜏/𝑁 − 𝑚
)
+ ®𝜔𝑚ℎ,𝑁 , 𝑡 ∈

[
(𝑚−1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1,𝑁,

(2.9)


®𝜉ℎ,𝑁 ∈ 𝐶0( [0, 𝜏];𝑊 𝑠

ℎ)

®𝜉ℎ,𝑁 (𝑡)= ( ®𝑢𝑚ℎ,𝑁− ®𝑢𝑚−1
ℎ,𝑁 )

(
𝑡

𝜏/𝑁 − 𝑚
)
+®𝑢𝑚ℎ,𝑁 , 𝑡 ∈

[
(𝑚−1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1,𝑁,

(2.10)


𝜎ℎ,𝑁 ∈ 𝐶0( [0, 𝜏];Tℎ)

𝜎ℎ,𝑁 (𝑡)= (𝑆𝑚ℎ,𝑁− 𝑆
𝑚−1
ℎ,𝑁 )

(
𝑡

𝜏/𝑁 − 𝑚
)
+𝑆𝑚ℎ,𝑁 , 𝑡 ∈

[
(𝑚−1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1,𝑁.

(2.11)

Let us define the sets:


E𝜔 = { ®𝜔ℎ,𝑁 , ℎ > 0, 𝑁 ∈ N∗, 𝑁 ≥ 𝑁̂},

E𝑢 = {®𝑢ℎ,𝑁 , ℎ > 0, 𝑁 ∈ N∗, 𝑁 ≥ 𝑁̂},

E𝑆 = {𝑆ℎ,𝑁 , ℎ > 0, 𝑁 ∈ N∗, 𝑁 ≥ 𝑁̂}.

Theorem 2.2. Let ℎ > 0 and 𝑁 ∈ N∗, 𝑁 ≥ 𝑁̂ be the two parameters characterizing the space

and the time discretization, respectively. Then:

(i) the set E𝜔 is 𝐿∞(0, 𝜏; (𝐿2(Ω))2) ∩ 𝐿2(0, 𝜏; (𝐻1
0 (Ω))

2) stable;

(ii) the set E𝑢 is 𝐿∞(0; 𝜏;W𝑠) stable;

(iii) the set E𝑆 is 𝐿∞(0, 𝜏; 𝐿2(Ω)) ∩ 𝐿2(0, 𝜏;T) stable.

(2.12)

2.4.3 The convergence of the numerical scheme
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CHAPTER 2. A THERMAL FLUID-STRUCTURE INTERACTION PROBLEM

Define the functions:

®̃𝐾𝑁 ∈ 𝐿2(0, 𝜏; (𝐿2(Ω))2)
®̃𝐾𝑁 (𝑡) = ®𝐾𝑚𝑁 for 𝑡 ∈

[
(𝑚 − 1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1, 𝑁,

𝐺̃𝑁 ∈ 𝐿2(0, 𝜏; 𝐿2(Ω))

𝐺̃𝑁 (𝑡) = 𝐺𝑚
𝑁 for 𝑡 ∈

[
(𝑚 − 1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1, 𝑁,

®̃𝐹𝑁 ∈ 𝐿2(0, 𝜏; (𝐿2(Ω))2)
®̃𝐹𝑁 (𝑡) = ®𝐹𝑚𝑁 for 𝑡 ∈

[
(𝑚 − 1) 𝜏

𝑁
, 𝑚

𝜏

𝑁

)
, 𝑚 = 1, 𝑁.

(2.13)

Proposition 2.2. If ( ®𝜔𝑚
ℎ,𝑁
, ®𝑢𝑚

ℎ,𝑁
, 𝑆𝑚

ℎ,𝑁
) represents the unique solution of the problem (NS),

then, ®𝜔ℎ,𝑁 , ®𝑢ℎ,𝑁 , 𝑆ℎ,𝑁 , ®𝑤ℎ,𝑁 , ®𝜉ℎ,𝑁 , 𝜎ℎ,𝑁 defined by (2.6) - (2.11) verify the time dependent

numerical scheme:



∫
Ω

𝜒1 ®𝑤′
ℎ,𝑁 (𝑡) · ®𝜑ℎ +

∫
Ω 𝑓

( ®𝜔ℎ,𝑁 (𝑡) · ∇) ®𝑤0 · ®𝜑ℎ +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔ℎ,𝑁 (𝑡) · ®𝜑ℎ

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔ℎ,𝑁 (𝑡)) : 𝐷 ( ®𝜑ℎ) + 𝛼 𝑓
∫
Ω 𝑓

𝑆ℎ,𝑁 (𝑡) ®𝑔 · ®𝜑ℎ

+ 𝜌𝑠

𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢ℎ,𝑁 (𝑡)
𝜕𝑥 𝑗

· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝜀 𝜌𝑠
𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐵𝑖 𝑗
𝜕 ®𝜔ℎ,𝑁 (𝑡)
𝜕𝑥 𝑗

· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆ℎ,𝑁 (𝑡) · ®𝜑ℎ =
∫
Ω

®̃𝐾𝑁 (𝑡) · ®𝜑ℎ, ∀ ®𝜑ℎ ∈ Wℎ a.e. in (0, 𝜏),

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜉′

ℎ,𝑁
(𝑡)

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

=

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔ℎ,𝑁 (𝑡)
𝜕𝑥 𝑗

· 𝜕
®𝜓ℎ
𝜕𝑥𝑖

,

∀ ®𝜓ℎ ∈ 𝑊 𝑠
ℎ a.e. in (0, 𝜏),∫

Ω

𝜒2𝜎
′
ℎ,𝑁 (𝑡)𝜂ℎ +

∫
Ω 𝑓

( ®𝜔ℎ,𝑁 (𝑡) · ∇𝑇0)𝜂ℎ +
∫
Ω 𝑓

( ®𝑤0 · ∇𝑆ℎ,𝑁 (𝑡))𝜂ℎ

+
∫
Ω

𝜒3∇𝑆ℎ,𝑁 (𝑡) · ∇𝜂ℎ −
𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂ℎ) · ®𝜔ℎ,𝑁 (𝑡)

=

∫
Ω

𝐺̃𝑁 (𝑡)𝜂ℎ −
∫
Ω

®̃𝐹𝑁 (𝑡) · ∇𝜂ℎ, ∀𝜂ℎ ∈ Tℎ a.e. in (0, 𝜏).

(NST)

Theorem 2.3. For any ℎ > 0, 𝑁 ∈ N∗, 𝑁 ≥ 𝑁̂ and 𝑚 = 1, 𝑁 , let ( ®𝜔𝑚
ℎ,𝑁
, ®𝑢𝑚

ℎ,𝑁
, 𝑆𝑚

ℎ,𝑁
) be the

unique solution of the problem (NS) and ®𝜔ℎ,𝑁 , ®𝑢ℎ,𝑁 , 𝑆ℎ,𝑁 , ®𝑤ℎ,𝑁 , ®𝜉ℎ,𝑁 , 𝜎ℎ,𝑁 the functions

defined by (2.6) - (2.11). Let ( ®𝜔𝜀, ®𝑢𝜀, 𝑆𝜀) be the unique solution of the viscoelastic problem

(VVP). Then, ( ®𝜔𝜀, ®𝑢𝜀, 𝑆𝜀) is the only weak limit point of the sequence {( ®𝜔ℎ,𝑁 , ®𝑢ℎ,𝑁 , 𝑆ℎ,𝑁 )}ℎ,𝑁
when ℎ → 0, 𝑁 → ∞ in the sense of the weak convergences in the sets where we have

stability given by Theorem 2.2.
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CHAPTER 3. ANALYSIS OF THE FLUID PRESSURE

3.1 The viscoelastic variational problem with pressure

Viscoelastic Variational Problem with Pressure

( ®𝜔𝜀, ®𝑢𝜀, 𝑝𝜀, 𝑆𝜀) ∈ 𝐻̃ × 𝐻W𝑠 × 𝐿2(Ω 𝑓 × (0, 𝜏)) × 𝐻T∫
Ω

𝜒1 ®𝜔′
𝜀 · ®𝜑 +

∫
Ω 𝑓

( ®𝜔𝜀 · ∇) ®𝑤0 · ®𝜑 +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔𝜀 · ®𝜑

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔𝜀) : 𝐷 ( ®𝜑) −
∫
Ω 𝑓

𝑝𝜀div ®𝜑 + 𝛼 𝑓
∫
Ω 𝑓

𝑆𝜀 ®𝑔 · ®𝜑

+ 𝜌𝑠

𝜌0

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝜀
𝜕𝑥 𝑗

· 𝜕 ®𝜑
𝜕𝑥𝑖

+ 𝜀 𝜌𝑠
𝜌0

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐵𝑖 𝑗
𝜕 ®𝜔𝜀
𝜕𝑥 𝑗

· 𝜕 ®𝜑
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆𝜀 (𝑡) · ®𝜑 + 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

𝑆𝜀div ®𝜑

=

∫
Ω

®𝐾 · ®𝜑 − 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

(𝑇𝑔 − 𝑇0)div ®𝜑, ∀ ®𝜑 ∈ (𝐻1
0 (Ω))

𝑛 in 𝐿2(0, 𝜏),

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢′𝜀
𝜕𝑥 𝑗

· 𝜕
®𝜓

𝜕𝑥𝑖
=

𝑛∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔𝜀
𝜕𝑥 𝑗

· 𝜕
®𝜓

𝜕𝑥𝑖
, ∀ ®𝜓 ∈ W𝑠 in 𝐿2(0, 𝜏),

∫
Ω

𝜒2𝑆
′
𝜀𝜂 +

∫
Ω 𝑓

𝜂 ®𝜔𝜀 (𝑡) · ∇𝑇0 +
∫
Ω 𝑓

𝜂 ®𝑤0 · ∇𝑆𝜀 +
∫
Ω

𝜒3∇𝑆𝜀 · ∇𝜂

− 𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂) · ®𝜔𝜀 =
∫
Ω

𝐺𝜂 −
∫
Ω

®𝐹 · ∇𝜂, ∀𝜂 ∈ T in 𝐿2(0, 𝜏),∫
Ω 𝑓

𝑞div ®𝜔𝜀 = 0, ∀ 𝑞 ∈ 𝐿2(Ω 𝑓 ) in 𝐿2(0, 𝜏),

®𝜔𝜀 (0) = ®0 in H , ®𝑢𝜀 (0) = ®0 in W𝑠, 𝑆𝜀 (0) = 0 in 𝐿2(Ω).

(VVPP)
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CHAPTER 3. ANALYSIS OF THE FLUID PRESSURE

3.2 The numerical approximation scheme with pressure
1
𝜏/𝑁

∫
Ω

𝜒1 ®𝜔𝑚ℎ,𝑁 · ®𝜑ℎ +
∫
Ω 𝑓

( ®𝜔𝑚ℎ,𝑁 · ∇) ®𝑤0 · ®𝜑ℎ +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔𝑚ℎ,𝑁 · ®𝜑ℎ

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔𝑚ℎ,𝑁 ) : 𝐷 ( ®𝜑ℎ) + 𝛼 𝑓
∫
Ω 𝑓

𝑆𝑚ℎ,𝑁 ®𝑔 · ®𝜑ℎ −
∫
Ω 𝑓

𝜋𝑚ℎ,𝑁𝐷ℎ ®𝜑ℎ

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

𝑆𝑚ℎ,𝑁div ®𝜑ℎ +
𝜌𝑠

𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝜀 𝜌𝑠
𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐵𝑖 𝑗
𝜕 ®𝜔𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆𝑚ℎ,𝑁 · ®𝜑ℎ =
1
𝜏/𝑁

∫
Ω

𝜒1 ®𝜔𝑚−1
ℎ,𝑁 · ®𝜑ℎ

+
∫
Ω

®𝐾𝑚𝑁 · ®𝜑ℎ − 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

((𝑇𝑔)𝑚𝑁 − 𝑇0)div ®𝜑ℎ, ∀ ®𝜑ℎ ∈ 𝑊ℎ,

1
𝜏/𝑁

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

−
2∑︁

𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔𝑚

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

=
1
𝜏/𝑁

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚−1

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

, ∀ ®𝜓ℎ ∈ 𝑊 𝑠
ℎ,

1
𝜏/𝑁

∫
Ω

𝜒2𝑆
𝑚
ℎ,𝑁𝜂ℎ +

∫
Ω 𝑓

𝜂ℎ ®𝜔𝑚ℎ,𝑁 · ∇𝑇0 +
∫
Ω 𝑓

𝜂ℎ ®𝑤0 · ∇𝑆𝑚ℎ,𝑁

+
∫
Ω

𝜒3∇𝑆𝑚ℎ,𝑁 ·∇𝜂ℎ −
𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂ℎ) · ®𝜔𝑚ℎ,𝑁

=
1
𝜏/𝑁

∫
Ω

𝜒2𝑆
𝑚−1
ℎ,𝑁 𝜂ℎ +

∫
Ω

𝐺𝑚
𝑁𝜂ℎ −

∫
Ω

®𝐹𝑚𝑁 · ∇𝜂ℎ, ∀𝜂ℎ ∈ Tℎ.

(NSP)
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CHAPTER 3. ANALYSIS OF THE FLUID PRESSURE

Time dependent numerical scheme

Proposition 3.1. ( ®𝜔𝑚
ℎ,𝑁
, ®𝑢𝑚

ℎ,𝑁
, 𝜋𝑚

ℎ,𝑁
, 𝑆𝑚

ℎ,𝑁
) is a solution for (NSP) if and only if ®𝜔ℎ,𝑁 , ®𝑢ℎ,𝑁 ,

𝜋ℎ,𝑁 , 𝑆ℎ,𝑁 ; ®𝑤ℎ,𝑁 , ®𝜉ℎ,𝑁 , 𝜎ℎ,𝑁 verify the problem



∫
Ω

𝜒1 ®𝑤′
ℎ,𝑁 (𝑡) · ®𝜑ℎ +

∫
Ω 𝑓

( ®𝜔ℎ,𝑁 (𝑡) · ∇) ®𝑤0 · ®𝜑ℎ +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔ℎ,𝑁 (𝑡) · ®𝜑ℎ

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔ℎ,𝑁 (𝑡)) : 𝐷 ( ®𝜑ℎ) + 𝛼 𝑓
∫
Ω 𝑓

𝑆ℎ,𝑁 (𝑡) ®𝑔 · ®𝜑ℎ −
∫
Ω 𝑓

𝜋ℎ,𝑁 (𝑡)𝐷ℎ ®𝜑ℎ

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

𝑆ℎ,𝑁 (𝑡)div ®𝜑ℎ +
𝜌𝑠

𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢ℎ,𝑁 (𝑡)
𝜕𝑥 𝑗

· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝜀 𝜌𝑠
𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐵𝑖 𝑗
𝜕 ®𝜔ℎ,𝑁 (𝑡)
𝜕𝑥 𝑗

· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆ℎ,𝑁 (𝑡) · ®𝜑ℎ

=

∫
Ω

®̃𝐾𝑁 (𝑡) · ®𝜑ℎ + 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

(𝑇0 − �(𝑇𝑔)𝑁 )div ®𝜑ℎ, ∀ ®𝜑ℎ ∈ 𝑊ℎ in 𝐿2(0, 𝜏),

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜉 ′

ℎ,𝑁
(𝑡)

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

=

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔ℎ,𝑁 (𝑡)
𝜕𝑥 𝑗

· 𝜕
®𝜓ℎ
𝜕𝑥𝑖

,

∀ ®𝜓ℎ ∈ 𝑊 𝑠
ℎ in 𝐿2(0, 𝜏),∫

Ω

𝜒2𝜎
′
ℎ,𝑁 (𝑡)𝜂ℎ +

∫
Ω 𝑓

𝜂ℎ ®𝜔ℎ,𝑁 (𝑡) · ∇𝑇0 +
∫
Ω 𝑓

𝜂ℎ ®𝑤0 · ∇𝑆ℎ,𝑁 (𝑡)

+
∫
Ω

𝜒3∇𝑆ℎ,𝑁 (𝑡) · ∇𝜂ℎ −
𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂ℎ) · ®𝜔ℎ,𝑁 (𝑡)

=

∫
Ω

𝐺̃𝑁 (𝑡)𝜂ℎ −
∫
Ω

®̃𝐹𝑁 (𝑡) · ∇𝜂ℎ, ∀𝜂ℎ ∈ Tℎ in 𝐿2(0, 𝜏).

(NSPT)

The following theorem gives the convergence of the scheme (NSPT) to the problem

(VVPP).

Theorem 3.1. Let ℎ > 0, 𝑁 ∈ N∗, 𝑁 ≥ 𝑁̂ . For all𝑚 ∈ {1, . . . , 𝑁} let ( ®𝜔𝑚
ℎ,𝑁
, ®𝑢𝑚

ℎ,𝑁
, 𝜋𝑚

ℎ,𝑁
, 𝑆𝑚

ℎ,𝑁
)

be the unique solution of problem (NSP) Let ( ®𝜔𝜀, ®𝑢𝜀, 𝑝𝜀, 𝑆𝜀) be the unique solution of the

problem (VVPP). Then, this solution represents the only weak limit point of the sequence{
( ®𝜔ℎ,𝑁 , ®𝑢ℎ,𝑁 , 𝜋ℎ,𝑁 , 𝑆ℎ,𝑁 )

}
ℎ,𝑁

when ℎ → 0, 𝑁 → ∞ with respect to the weak convergence in

the sets for which the stability of the sets E𝜔, E𝑢, E𝜋, E𝑆 holds.
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CHAPTER 3. ANALYSIS OF THE FLUID PRESSURE

3.3 Uzawa’s algorithm

Uzawa’s Algorithm

For ( ®𝜔0
ℎ,𝑁
, ®𝑢0

ℎ,𝑁
, 𝜋

1,0
ℎ,𝑁
, 𝑆0

ℎ,𝑁
) = (®0, ®0, 0, 0), find, for all 𝑚 ∈ {1, . . . , 𝑁} and for all 𝑟 ∈ N,

( ®𝜔𝑚,𝑟+1
ℎ,𝑁

, ®𝑢𝑚,𝑟+1
ℎ,𝑁

, 𝜋
𝑚,𝑟+1
ℎ,𝑁

, 𝑆
𝑚,𝑟+1
ℎ,𝑁

) ∈ 𝑊ℎ ×𝑊 𝑠
ℎ
× 𝑋ℎ × Tℎ such that

1
𝜏/𝑁

∫
Ω

𝜒1 ®𝜔𝑚,𝑟+1
ℎ,𝑁

· ®𝜑ℎ +
∫
Ω 𝑓

( ®𝜔𝑚,𝑟+1
ℎ,𝑁

· ∇) ®𝑤0 · ®𝜑ℎ +
∫
Ω 𝑓

( ®𝑤0 · ∇) ®𝜔𝑚,𝑟+1
ℎ,𝑁

· ®𝜑ℎ

+ 2
Re

∫
Ω 𝑓

𝐷 ( ®𝜔𝑚,𝑟+1
ℎ,𝑁

) : 𝐷 ( ®𝜑ℎ) + 𝛼 𝑓
∫
Ω 𝑓

𝑆
𝑚,𝑟+1
ℎ,𝑁

®𝑔 · ®𝜑ℎ −
∫
Ω 𝑓

𝜋
𝑚,𝑟

ℎ,𝑁
𝐷ℎ ®𝜑ℎ

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

𝑆
𝑚,𝑟+1
ℎ,𝑁

div ®𝜑ℎ +
𝜌𝑠

𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚,𝑟+1

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝜀 𝜌𝑠
𝜌0

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐵𝑖 𝑗
𝜕 ®𝜔𝑚,𝑟+1

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕 ®𝜑ℎ
𝜕𝑥𝑖

+ 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω

∇𝑆𝑚,𝑟+1
ℎ,𝑁

· ®𝜑ℎ

=
1
𝜏/𝑁

∫
Ω

𝜒1 ®𝜔𝑚−1
ℎ,𝑁 · ®𝜑ℎ +

∫
Ω

®𝐾𝑚𝑁 · ®𝜑ℎ − 𝑘𝛼𝑠
𝜌𝑠

𝜌0

∫
Ω 𝑓

((𝑇𝑔)𝑚𝑁 − 𝑇0)div ®𝜑ℎ,

∀ ®𝜑ℎ ∈ 𝑊ℎ,

1
𝜏/𝑁

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚,𝑟+1

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

−
2∑︁

𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝜔𝑚,𝑟+1

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

=
1
𝜏/𝑁

2∑︁
𝑖, 𝑗=1

∫
Ω𝑠

𝐴𝑖 𝑗
𝜕 ®𝑢𝑚−1

ℎ,𝑁

𝜕𝑥 𝑗
· 𝜕

®𝜓ℎ
𝜕𝑥𝑖

, ∀ ®𝜓ℎ ∈ W𝑠
ℎ ,

1
𝜏/𝑁

∫
Ω

𝜒2𝑆
𝑚,𝑟+1
ℎ,𝑁

𝜂ℎ +
∫
Ω 𝑓

𝜂ℎ ®𝜔𝑚,𝑟+1
ℎ,𝑁

·∇𝑇0 +
∫
Ω 𝑓

𝜂ℎ ®𝑤0 ·∇𝑆𝑚,𝑟+1
ℎ,𝑁

+
∫
Ω

𝜒3∇𝑆𝑚,𝑟+1
ℎ,𝑁

· ∇𝜂ℎ −
𝑐𝑠

𝑐 𝑓

𝜌𝑠

𝜌0
Ec𝑘𝛼𝑠

∫
Ω

∇(𝑇0𝜂ℎ) · ®𝜔𝑚,𝑟+1
ℎ,𝑁

=
1
𝜏/𝑁

∫
Ω

𝜒2𝑆
𝑚−1
ℎ,𝑁 𝜂ℎ +

∫
Ω

𝐺𝑚
𝑁𝜂ℎ −

∫
Ω

®𝐹𝑚𝑁 · ∇𝜂ℎ, ∀𝜂ℎ ∈ Tℎ,∫
Ω 𝑓

𝜋
𝑚,𝑟+1
ℎ,𝑁

𝑞ℎ + 𝜌
∫
Ω 𝑓

𝐷ℎ ®𝜔𝑚,𝑟+1
ℎ,𝑁

𝑞ℎ =

∫
Ω 𝑓

𝜋
𝑚,𝑟

ℎ,𝑁
𝑞ℎ, ∀ 𝑞ℎ ∈ 𝑋ℎ.

(UA)

The unknown of the previous problem is ( ®𝜔𝑚,𝑟+1
ℎ,𝑁

, ®𝑢𝑚,𝑟+1
ℎ,𝑁

, 𝜋
𝑚,𝑟+1
ℎ,𝑁

, 𝑆
𝑚,𝑟+1
ℎ,𝑁

) ∈ 𝑊ℎ ×𝑊 𝑠
ℎ
×

𝑋ℎ × Tℎ. We notice that, unlike ®𝜔𝑚
ℎ,𝑁

, which is subject to the constraint of the space Wℎ, the

first component of the solution to (UA) belongs to the space without constraint𝑊ℎ.

We prove next the convergence of the Uzawa’s algorithm.

Theorem 3.2. Let ℎ > 0, 𝑁 ∈ N∗ with 𝑁 ≥ 𝑁̂ , 𝑚 ∈ {1, . . . , 𝑁} and 𝑟 ∈ N. We suppose that

𝜌 satisfies:

0 < 𝜌 <
1

2Re
. (3.1)
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Then, for fixed values of ℎ, 𝑁 , 𝑚, we have the following convergences when 𝑟 → ∞:



®𝜔𝑚,𝑟
ℎ,𝑁

→ ®𝜔𝑚ℎ,𝑁 strongly in 𝑊ℎ,

𝜋
𝑚,𝑟

ℎ,𝑁
→ 𝜋𝑚ℎ,𝑁 strongly in 𝐿2(Ω 𝑓 ),

®𝑢𝑚,𝑟
ℎ,𝑁

→ ®𝑢𝑚ℎ,𝑁 strongly in 𝑊 𝑠
ℎ,

𝑆
𝑚,𝑟

ℎ,𝑁
→ 𝑆𝑚ℎ,𝑁 strongly in Tℎ.

(3.2)

The results of this section correspond to the case 𝑛 = 2.
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Chapter 4

NUMERICAL SIMULATIONS

The results presented in this chapter were published in Stavre, R., Ciorogar, A., 2025.

Influence of a Given Field of Temperature on the Blood Pressure Variation: Variational

Analysis, Numerical Algorithms and Simulations, Axioms, 14, 88.

The last part of this thesis is devoted to numerical simulations chosen in order to emphasize

physical phenomena related to the considered problem. The software used for the following

simulations was MATLAB.

In all examples presented below, we considered a simplified domain, namely Ω = [0, 4] ×

[0, 12], representing the cross-section of a blood vessel, as in Figure 2.1, left.

The approximation schemes used for the simulations are associated with the viscoelastic

problems. We use a finite difference method for time and a finite element method for space.

Then, we use Uzawa’s algorithm. The small parameter 𝜀 introduced with the family of

viscoelastic problems, which is a fixed parameter in the numerical schemes, must be higher

than max
{ 𝜏
𝑁
, d𝑥 𝑓 , d𝑥𝑠, d𝑦

}
, where

𝜏

𝑁
is the time step and d𝑥 𝑓 , d𝑥𝑠 are the space steps on

𝑂𝑥 in the fluid, solid domain respectively and d𝑦 is the space step on the 𝑂𝑦 axis. We have

chosen different space and time steps in order to obtain optimum convergence.

The results of the following sections are obtained for the two-dimensional case and have

been done starting from the (UA) system.
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CHAPTER 4. NUMERICAL SIMULATIONS

4.1 Temperature influence on the fluid–structure coupling

Figure 4.1: The velocity with temperature.

Figure 4.2: The velocity without temperature.
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CHAPTER 4. NUMERICAL SIMULATIONS

4.2 Influence of a given field of temperature on the blood

pressure variation

Figure 4.3: The pressure profile in fluid for 𝑇𝑔 = 300 K.

Figure 4.4: The pressure profile in fluid for 𝑇𝑔 = 400 K.
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CHAPTER 4. NUMERICAL SIMULATIONS

4.3 Influence of the compression forces on the blood reflux

phenomena in venous insufficiency

Figure 4.5: The velocity profile for 𝑓𝑠 = 10 mm Hg.

Figure 4.6: The velocity profile for 𝑓𝑠 = 40 mm Hg.

27



Bibliography

[1] AlAmiri, A., Khanafer, K., Vafai, K., 2014. Fluid-Structure Interactions in a Tissue

during Hyperthermia, Numerical Heat Transfer, Part A: Applications, 66(1), 1–16,

DOI: https://doi.org/10.1080/10407782.2013.869080.

[2] Avalos, G., Lasiecka, I., Triggiani, R., 2010. Higher Regularity of a Coupled Parabolic-

Hyperbolic Fluid-Structure Interactive System, Georgian Mathematical Journal, vol.

15, no. 3, pp. 403-437, DOI: https://doi.org/10.1515/GMJ.2008.403.

[3] Avalos, G., Triggiani, R., 2007. The coupled PDE system arising in fluid/structure in-

teraction. I. Explicit semigroup generator and its spectral properties, Fluids and Waves,

Contemporary Mathematics, vol. 440 (American Mathematical Society, Providence,

RI), pp. 15–54, DOI: 10.1090/conm/440/08475.

[4] Avalos, G., Triggiani, R., 2009. Semigroup well-posedness in the energy space of a
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