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Cyclic covers are a useful tool in algebraic geometry. The simplest example is the field extension

K ⊂ K( n
√
ϕ)

obtained by adjoining to a field the root of an element. For example, the equation tn − ϕ
∏

i z
mi
i

over K simplifies to tn −
∏

i z
mi
i over K( n

√
ϕ).

In classical algebraic geometry, cyclic covers were used to construct new examples from known
ones. Given a complex projective variety X, a torsion line bundle L over X induces canonically a
cyclic (topological) covering π : X ′ → X such that π∗L becomes trivial. If L has torsion index r
and s ∈ Γ(X,Lr) is nowhere zero, the covering can be constructed as the r-th root of s (as in the
function field case, the pullback of s becomes an r-th power of a section of the pullback of L). We
may denote it by π : X[ n

√
s]→ X. The choice of s is not important, up to isomorphism, since X is

compact. Many invariants of X ′ can be read off those of X, but with coefficients in negative powers
of L. For example,

π∗Ω
p
X′ = ⊕r−1

i=0 Ωp
X ⊗ L

−i.

So one may construct manifolds with prescribed invariants by taking roots of torsion line bundles
on known manifolds. The process may be reversed: known statements on the invariants of X ′

translate into similar statements on X, twisted by negative powers of L. For example, the Kähler
differential of X ′ decomposes into integrable flat connections on L−i, so that ⊕r−1

i=0 Ω•X(L−i) is the
Hodge complex π∗Ω

•
X′ on X. In particular, the E1-degeneration for (Ω•X′ , F ) translates into the

E1-degeneration for (Ω•X′(L−i), F ), for every i. This exchange of information between the total and
base space of a cyclic cover is called the cyclic covering trick.

The range of applications of the cyclic covering trick extends dramatically if s is allowed to have
zeros. In this case s is a non-zero global section of the n-th power of some line bundle L on X. The
n-th root of s is defined just as above. We obtain for example the same formula

π∗OX[ n√s] = ⊕n−1
i=0 L

−i.

The morphism π is still cyclic Galois and flat, but ramifies over the zero locus of s. The total
space X[ n

√
s] may be disconnected (even if s vanishes nowhere), it may have several irreducible

components, and it always has singularites over the zero locus of s. These singularities are partially
resolved by the normalization X̄[ n

√
s] → X[ n

√
s]. The induced morphism π̄ : X̄[ n

√
s] → X is cyclic

Galois and flat, and one computes

π̄∗OX̄[ n√s] = ⊕n−1
i=0 L

−i(b i
n
Z(s)c).

Here Z(s) is the effective Cartier divisor cut out by s, and the round down of the Q-divisor i
n
Z(s)

is defined componentwise. If SuppZ(s) has no singularities, then X̄[ n
√
s] has no singularities.

Differential forms or vector fields on X̄[ n
√
s] are computed in terms of X,L, and the Q-divisor

1
n
Z(s). For example

π̄∗Ω
p

X̄[ n√s] = ⊕n−1
i=0 Ωp

X(log Supp{ i
n
Z(s)})⊗ L−i(b i

n
Z(s)c),
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If the singularities of SuppZ(s) are at most simple normal crossing, then X̄[ n
√
s] has at most quotient

singularities, and if Y → X̄[ n
√
s] is a desingularization, with ν : Y → X the induced generically finite

morphism, then

ν∗Ω
p
Y = ⊕n−1

i=0 Ωp
X(log Supp{ i

n
Z(s)})⊗ L−i(b i

n
Z(s)c).

This formula, and its logarithmic version, is behind the vanishing theorems used in birational
classification (see [6, 9, 10]). Statements on divisors of the form KX +

∑
j bjEj + T , with X

nonsigular,
∑

j Ej simple normal crossing, bj ∈ [0, 1], and T a torsion Q-divisor, are reduced to

similar statements on Y with bj ∈ {0, 1} and T = 0.
Cyclic covers also appear in semistable reduction [8]. In its simplest form, a complex projective

family over the unit disc f : X → ∆ has nonsingular general fibers Xt (t 6= 0), while the special fiber

X0 is locally cut out by monomials
∏d

i=1 z
mi
i (mi ∈ N) with respect to local coordinates z1, . . . , zd.

The family is semistable if moreover X0 is reduced. If we base change with n
√
t (with n divisible by

all multiplicities mi), and normalize X̃ → X ×∆ ∆̃, the new family X̃ → ∆̃ has reduced special fiber
X̃0, and X̃ \ X̃0 ⊂ X̃ is a quasi-smooth toroidal embedding. If the irreducible components of X0 are
nonsingular, the toroidal embedding is also strict and X̃ admits a combinatorial desingularization.
An equivalent description of X̃ is the normalization of the n-th root of f , viewed as a holomorphic
function on X . Therefore the local computations of [8] give in fact the following statement: if X is
complex manifold, and 0 6= s ∈ Γ(X,Ln) is such that Σ = SuppZ(s) is a normal crossing divisor,
then X̄[ n

√
s]\ π̄−1(Σ) ⊂ X̄[ n

√
s] is a quasi-smooth toroidal embedding, and π̄ is a toroidal morphism.

Cyclic covers are used to classify the singularities that appear in the birational classification of
complex manifolds. Such singularities P ∈ X are normal, and the canonical Weil divisor KX is a
torsion element of Cl(OX,P ). If r is the torsion index, there exists a rational function ϕ ∈ C(X)∗

such that rKX = div(ϕ). The normalization of X in the Kummer extension C(X) → C(X)( r
√
ϕ)

becomes a cyclic cover P ′ ∈ X ′ π→ P ∈ X. It is called the index one cover of P ∈ X, since being
étale in codimension one, KX′ = π∗KX ∼ 0. The known method to classify P ∈ X is to first classify
the index one cover, and then understand all possible actions of cyclic groups (see [14]).

We have discussed roots of rational functions, (normalized) roots of multi sections of line bundles,
and index one covers of torsion Q-divisors on normal varieties. This paper gives a unified treatment
of all these concepts, based on normalized roots of rational functions on normal varieties. One
advantage is to remove the smoothness assumption and the use of desingularization in the cyclic
covering trick for vanishing theorems, by working inside the category of toroidal embeddings.

To state the main result, let k be an algebraically closed field. Let X/k be an normal algebraic
variety. Let ϕ be an invertible rational function on X, let n be a positive integer such that char k - n.
Denote D = 1

n
div(ϕ), so that D is a Q-Weil divisor on X with nD ∼ 0. Let π : Y → X be the

normalization of X with respect to the ring extension

k(X)→ k(X)[T ]

(T n − ϕ)
.

The right hand side is a product of fields, and Y identifies with the disjoint union of the normalization
of X in each field. By construction, Y/k is a normal algebraic variety (possibly disconnected).

a) The class of T becomes an invertible rational function ψ on Y such that ψn = π∗ϕ. We
have π∗D = div(ψ) and

π∗OY = ⊕n−1
i=0OX(biDc) · ψi.

The morphism π is étale exactly over X \ Supp{D}. It is flat if and only if the Weil
divisors biDc (0 < i < n) are Cartier.
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b) Suppose U ⊆ X is a quasi-smooth toroidal embedding and D|U has integer coefficients.
Then π−1(U) ⊆ Y is a quasi-smooth toroidal embedding, and π is a toroidal morphism.

Moreover, π∗Ω̃p
X/k(log ΣX)

∼→Ω̃p
Y/k(log ΣY ) and by the projection formula

π∗Ω̃
p
Y/k(log ΣY ) = Ω̃p

X/k(log ΣX)⊗ π∗OY .

c) Suppose char k = 0. Let U ⊆ X and U ′ ⊆ X ′ be toroidal embeddings over k, let

µ : X ′ → X be a proper morphism which induces an isomorphism U ′
∼→U . Then

Rqµ∗Ω̃
p
X′/k(log ΣX′) =

{
Ω̃p
X/k(log ΣX) q = 0

0 q 6= 0

Statement a) is elementary. The toroidal part of b) is implicit in [8] if (X,ΣX) is log smooth, as
already mentioned. The general case (Theorem 3.8) is proved by reduction to the following fact:
the normalized root of a toric variety with respect to a torus character consists of several isomorphic
copies of a toric morphism (Proposition 3.7). The sheaf Ω̃p

X/k(log ΣX) consists of the rational p-

forms ω of X such that both ω, dω have at most simple poles, along the prime components of ΣX .
It is called the sheaf of logarithmic p-forms of (X/k,ΣX), in the sense of Zariski-Steenbrink. It is
constructed by ignoring closed subsets of X of codimension at least two, so in general it is singular.
But if X \ΣX ⊂ X is a toroidal embedding, it is locally free [15, 3]. If X is nonsingular and ΣX is a
normal crossing divisor, this sheaf coincides with the sheaf of logarithmic forms Ωp

X/k(log ΣX) in the

sense of Deligne (see [6] for the algebraic version, with ΣX assumed simple normal crossing). We
note that differential forms or vector fields on Y can be computed without the toroidal assumption
(Lemma 3.6).

Statement c) is the invariance of the logarithmic sheaves under different toroidal embeddings,
which is interesting in itself. One corollary is that

Hq(X, Ω̃p
X/k(log ΣX))→ Hq(X ′, Ω̃p

X′/k(log ΣX′))

is an isomorphism for every p, q. If X is proper and (X,X \ U) is log smooth, the corollary follows
from the E1-degeneration of the spectral sequence induced in hypercohomology by the logarithmic
De Rham complex endowed with the naive filtration (Deligne [4]). If X is projective and X \ U is
a simple normal crossing divisor, Esnault-Viehweg [5, Lemma 1.5] proved that the corollary implies
c). We use the same idea, combined with a result of Bierstone-Milman [2], in order to compactify
strict log smooth toroidal embeddings (Corollary 1.11).

The normalization of roots of multi sections of line bundles on normal varieties, and the index
one covers torsion Q-divisors on normal varieties, are both examples of normalized roots of rational
functions. In practice, index one covers are most useful. They preserve irreducibility, so one can
work in the classical setting of function fields. Their drawback is that they do not commute with
base change to open subsets. For this reason, at least for proofs, we need to consider normalized
roots of rational functions, which commute with étale base change.
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