Multiple Parameterised Specifications with Sharing

Ionuţ Ţuţu

Department of Computer Science, University of Leicester

"Simion Stoilow" Institute of Mathematics of the Romanian Academy

Sinaia, 2012

 $\mathsf{Sig}\colon\mathsf{Specifications}\to\mathsf{Signatures}$

 parameterised specifications and their instantiation depend heavily on the properties of both signatures and Sig

The signatures

Example (Many-sorted algebra (MSA))

signatures: (S, F)

- *S* is a set of sorts,
- F is a family $\{F_{w\to s}\mid w\in S^*, s\in S\}$ of operation symbols

morphisms: $\varphi: (S, F) \rightarrow (S', F')$

- $\varphi^{st} : S \to S'$ is a function
- $\varphi^{op}=\left\{ arphi_{w o s}^{op}\colon F_{w o s}\to F'_{arphi^{st}(w) o arphi^{st}(s)}
 ight\}$ is a family of functions

Example (Order-sorted algebra (OSA))

Example (Partial algebra (PA))

The signatures

Example (Many-sorted algebra (MSA))

Example (Order-sorted algebra (OSA))

signatures: (S, \leq, F)

- (S, F) is a **MSA** signature such that $s_1 \leq s_2$ whenever $w_1 \leq w_2$ and $F_{w_1 \to s_1} \cap F_{w_2 \to s_2} \neq \emptyset$
- $(S \leq)$ is a partially ordered set

morphisms: $\varphi: (S, \leq, F) \rightarrow (S', \leq', F')$

- $\varphi \colon (S,F) \to (S',F')$ is a **MSA** signature morphism
- $\varphi^{st}: (S, \leq) \to (S', \leq')$ is a monotone function

Example (Partial algebra (PA))

The signatures

Example (Many-sorted algebra (MSA))

Example (Order-sorted algebra (OSA))

Example (Partial algebra (PA))

signatures: (S, F, TF)

- \bullet (S, F) is a **MSA** signature
- $TF = \{TF_{w \to s} \subseteq F_{w \to s}\}$ is a family of total operation symbols

morphisms: $\varphi: (S, F, TF) \rightarrow (S', F', TF')$

- $\varphi \colon (S,F) \to (S',F')$ is a **MSA** signature morphism
- $\bullet \varphi_{w \to s}^{op}(TF_{w \to s}) \subseteq TF'_{\varphi^{st}(w) \to \varphi^{st}(s)}$

Definition (Parameterised specification)

A parameterised specification, denoted SP(P), consists in a specification morphism $\iota \colon P \to SP$ such that $Sig(\iota)$ is the inclusion $Sig(P) \subseteq Sig(SP)$.

an inclusion of signatures $Sig(P) \subseteq Sig(SP)$ such that for each model M of SP, the reduct $M \upharpoonright_{Sig(P)}$ is a model of P

Single parameterised specifications Inclusions of signatures

Definition (Inclusion)

An *inclusion of (algebraic) signatures* is a signature morphism with all components defined as set-theoretic inclusions.

Example (Inclusions of MSA signatures)

$$(S,F)\subseteq (S',F')$$
:

•
$$F_{w \to s} \subseteq F'_{w \to s}$$

Example (Inclusions of **OSA** signatures)

Example (Inclusions of PA signatures)

Definition (Inclusion)

An *inclusion of (algebraic) signatures* is a signature morphism with all components defined as set-theoretic inclusions.

Example (Inclusions of MSA signatures)

Example (Inclusions of **OSA** signatures)

$$(S, \leq, F) \subseteq (S', \leq', F')$$
:

- $\bullet (S,F) \subseteq (S',F')$
- $(S, \leq) \subseteq (S', \leq')$

Example (Inclusions of PA signatures)

Definition (Inclusion)

An *inclusion of (algebraic) signatures* is a signature morphism with all components defined as set-theoretic inclusions.

Example (Inclusions of MSA signatures)

Example (Inclusions of **OSA** signatures)

Example (Inclusions of **PA** signatures)

$$(S, F, TF) \subseteq (S', F', TF')$$
:

•
$$(S,F)\subseteq (S',F')$$

•
$$TF_{w \to s} \subseteq TF'_{w \to s}$$

Definition (Instantiation of parameters)

- ullet consider a parameterised specification SP(P) and
- a specification morphism $v: P \rightarrow P'$ that preserves P'

The instantiation of the parameterised specification SP(P) by v is

$$SP(P \Leftarrow v) = SP \star v' \cup P' \star i$$

given by the *pushout* of signatures depicted below.

$$Sig(P) \cup \left(Sig(SP) \cap Sig(P')\right) \xrightarrow{\subseteq} Sig(SP)$$

$$\downarrow^{v \vee id} \qquad PO \qquad \qquad \downarrow^{v'}$$

$$Sig(P') \xrightarrow{i} \Sigma'$$

Single parameterised specifications

Unions and intersections

Definition

Unions are least upper bounds in the category of inclusions. Dually, *intersections* are greatest lower bounds.

Example (Unions and intersections of MSA signatures)

$$(S_1, F_1) \cup (S_2, F_2) = (S, F)$$

$$\bullet S = S_1 \cup S_2$$

$$\bullet F_{w \to s} = \bigcup_{\substack{i \in \{1, 2\} \\ w \in S_i^*, s \in S_i}} (F_i)_{w \to s}$$

$$(S_1, F_1) \cap (S_2, F_2) = (S, F)$$

$$\bullet S = S_1 \cap S_2$$

$$\bullet F_{w \to s} = (F_1)_{w \to s} \cap (F_2)_{w \to s}$$

Example (Unions and intersections of **OSA** signatures)

Definition

Unions are least upper bounds in the category of inclusions. Dually, *intersections* are greatest lower bounds.

Example (Unions and intersections of MSA signatures)

Example (Unions and intersections of **OSA** signatures)

unions may not exist because of antisymmetry

$$\bigcirc \bullet \bigcirc \bullet \bigcirc \cup \bigcirc \bullet \bigcirc = \bigcirc \bullet \bigcirc ? \bullet \bigcirc$$

Unions and intersections

Definition

Unions are least upper bounds in the category of inclusions. Dually, *intersections* are greatest lower bounds.

Example (Unions and intersections of MSA signatures)

Example (Unions and intersections of preorder-based **OSA** signatures)

$$(S_1, \leq_1, F_1) \cup (S_2, \leq_2, F_2)$$

= (S, \leq, F)

•
$$(S,F) = (S_1,F_1) \cup (S_2,F_2)$$

$$\bullet \leq = (\leq_1 \cup \leq_2)^{m*}$$

$$(S_1, \leq_1, F_1) \cap (S_2, \leq_2, F_2)$$

•
$$(S,F) = (S_1,F_1) \cap (S_2,F_2)$$

• $\leq = \leq_1 \cap \leq_2$

$$=(S,\leq,F)$$

$$\leq \leq \leq_1 \mid 1 \leq_2$$

Definition

Unions are least upper bounds in the category of inclusions. Dually, *intersections* are greatest lower bounds.

Example (Unions and intersections of MSA signatures)

Example (Unions and intersections of preorder-based OSA signatures)

$$(S_1, F_1, TF_1) \cup (S_2, F_2, TF_2)$$

= (S, F, TF)

$$(S_1, F_1, TF_1) \cap (S_2, F_2, TF_2)$$

= (S, F, TF)

$$(S,F) = (S_1,F_1) \cup (S_2,F_2)$$

•
$$TF = TF_1 \cup TF_2$$

$$(S,F) = (S_1,F_1) \cup (S_2,F_2)$$

•
$$TF = TF_1 \cap TF_2$$

Definition (Compatible morphisms)

Two morphisms $\varphi_1 \colon \Sigma_1 \to \Sigma_1'$ and $\varphi_2 \colon \Sigma_2 \to \Sigma_2'$ are *compatible* when

$$(\Sigma_1\cap\Sigma_2\subseteq\Sigma_1);\varphi_1;(\Sigma_1'\subseteq\Sigma_1'\cup\Sigma_2')=(\Sigma_1\cap\Sigma_2\subseteq\Sigma_2);\varphi_2;(\Sigma_2'\subseteq\Sigma_1'\cup\Sigma_2').$$

A morphism φ preserves a signature Σ if φ and 1_{Σ} are compatible. It strongly preserves a signature Σ when, in addition to preserving Σ , it satisfies $\operatorname{cod}(\varphi) \cap \Sigma \subseteq \operatorname{dom}(\varphi) \cap \Sigma$.

Definition (Instantiation of parameters)

- \bullet consider a parameterised specification SP(P) and
- a specification morphism $v: P \rightarrow P'$ that preserves P'

The instantiation of the parameterised specification SP(P) by v is

$$SP(P \Leftarrow v) = SP \star v' \cup P' \star i$$

given by the *pushout* of signatures depicted below.

$$Sig(P) \cup \left(Sig(SP) \cap Sig(P')\right) \xrightarrow{\subseteq} Sig(SP)$$

$$\downarrow^{v \vee id} \qquad PO \qquad \qquad \downarrow^{v'}$$

$$Sig(P') \xrightarrow{i} \Sigma'$$

Example (Lists of natural numbers) $\left(\begin{array}{l} \{ \texttt{Nat} \}, \\ \{ \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s_:} \ \texttt{Nat} \to \texttt{Nat} \} \end{array} \right) \xrightarrow{\subseteq} \left\{ \begin{array}{l} \{ \texttt{Nat}, \texttt{List} \}, \\ \{ \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s_:} \ \texttt{Nat} \to \texttt{Nat}, \\ \texttt{nil:} \ [] \to \texttt{List}, \texttt{_:} \ \texttt{Nat} \ \texttt{List} \to \texttt{List} \} \end{array} \right)$

• consider the single instantiation $SP(P \leftarrow v)$

$$\operatorname{Sig}(P) \cup \left(\operatorname{Sig}(SP) \cap \operatorname{Sig}(P')\right) \xrightarrow{\subseteq} \operatorname{Sig}(SP)$$

$$\subseteq \downarrow \qquad \qquad \downarrow \subseteq \qquad \qquad \downarrow \supseteq \square$$

$$\operatorname{Sig}(P) \cup \operatorname{Sig}(P') \xrightarrow{PO} \qquad \qquad \downarrow \nu' \qquad \qquad \downarrow \nu' \qquad \qquad \downarrow \square$$

$$\operatorname{Sig}(P') \xrightarrow{i} \qquad \qquad \downarrow \Sigma'$$

Proposition

The outer square is a pushout square if and only if the lower square is a pushout square.

Instantiation of parameters via free extensions

Definition (Instantiation of parameters)

- ullet consider a parameterised specification SP(P) and
- a specification morphism $v: P \rightarrow P'$ that preserves P'

The instantiation of the parameterised specification SP(P) by v is

$$SP(P \Leftarrow v) = SP \star (\iota; \nu') \cup P' \star \iota'$$

given by the free extension depicted below.

$$\begin{array}{c} \operatorname{Sig}(SP) \\ \operatorname{Sig}(P) \cup \operatorname{Sig}(P') \stackrel{\subseteq}{\longrightarrow} \operatorname{Sig}(SP) \cup \operatorname{Sig}(P') \\ \\ \operatorname{vv1}_{\operatorname{Sig}(P')} \downarrow \qquad \operatorname{FE} \qquad \qquad \downarrow_{\nu'} \\ \operatorname{Sig}(P') \stackrel{\iota'}{\longrightarrow} \Sigma' \end{array}$$

Definition (Free extension)

Let $\varphi_1 \colon \Sigma_1 \to \Sigma_1'$ be a signature morphism and $\Sigma_1 \subseteq \Sigma_2$.

A free extension of φ_1 along $\Sigma_1 \subseteq \Sigma_2$ is a signature morphism $\varphi_2 \colon \Sigma_2 \to \Sigma_2'$ such that the square below is a pushout square and every signature preserved by φ_1 is also preserved by φ_2 .

$$\begin{array}{c|c} \Sigma_1 \stackrel{\subseteq}{\longrightarrow} \Sigma_2 \\ \varphi_1 & PO & \varphi_2 \\ \Sigma_1' \stackrel{\subseteq}{\longrightarrow} \Sigma_2' \end{array}$$

Single parameterised specifications

Free extensions along inclusions

Example (Free extensions of functions)

A function $f: A \to A'$ admits free extensions along $A \subseteq B$ if and only if A' and $B \setminus A$ are disjoint. The free extension $g: B \to B'$ is defined by $B' = (B \setminus A) \cup A'$ and

$$g(a) = \begin{cases} f(a) & a \in A, \\ a & a \notin A. \end{cases}$$

Proposition (Free extensions of MSA signature morphisms)

Every **MSA** signature morphism $\varphi_1: (S_1, F_1) \to (S'_1, F'_1)$ such that $(S'_1, F'_1) \subseteq (S_1, F_1)$ has free extensions φ_2 along any inclusion of signatures $(S_1, F_1) \subseteq (S_2, F_2)$.

Moreover, for any fixed signature (S_0, F_0) , we can choose the free extension $\varphi_2 \colon (S_2, F_2) \to (S_2', F_2')$ such that

$$(S_0, F_0) \cap (S'_2, F'_2) \subseteq (S_0, F_0) \cap (S_2, F_2).$$

Example (Predicates on natural numbers) $\left(\begin{array}{l} \{ \texttt{Elt}, \texttt{Nat} \}, \\ \{ \texttt{0} \colon [] \to \texttt{Nat}, \texttt{s}_{-} \colon \texttt{Nat} \to \texttt{Nat} \} \right) \xrightarrow{\subseteq} \left\{ \begin{array}{l} \{ \texttt{Elt}, \texttt{Bool}, \texttt{Nat} \}, \\ \{ \texttt{true} \colon [] \to \texttt{Bool}, \texttt{false} \colon [] \to \texttt{Bool}, \\ \texttt{P} \colon \texttt{Elt} \to \texttt{Bool}, \\ \texttt{0} \colon [] \to \texttt{Nat}, \texttt{s}_{-} \colon \texttt{Nat} \to \texttt{Nat} \} \end{array} \right)$ ${\tt Elt} {\mapsto} {\tt Nat}$ $\left(\begin{array}{l} \{ \texttt{Nat} \}, \\ \{ \texttt{O:} \ [] \to \texttt{Nat}, \texttt{s_{-}} : \texttt{Nat} \to \texttt{Nat} \} \end{array} \right) = \subseteq \left\{ \begin{array}{l} \{ \texttt{Nat}, \texttt{Bool} \}, \\ \{ \texttt{O:} \ [] \to \texttt{Nat}, \texttt{s_{-}} : \texttt{Nat} \to \texttt{Nat}, \\ \texttt{true:} \ [] \to \texttt{Bool}, \texttt{false:} \ [] \to \texttt{Bool} \\ (\texttt{P}, \texttt{Elt}, \texttt{Bool}, \texttt{F_0}) : \texttt{Nat} \to \texttt{Bool} \} \end{array} \right\}$

 are obtained by lifting free extensions from the category of MSA signatures

$$(S_{1}, \leq_{1}, F_{1}) \xrightarrow{\subseteq} (S_{2}, \leq_{2}, F_{2})$$

$$\downarrow^{\varphi_{1}} \qquad \qquad \downarrow^{\varphi_{2}}$$

$$(S'_{1}, \leq'_{1}, F'_{1}) \xrightarrow{\subseteq} (S'_{2}, (\varphi_{2}^{st}(\leq_{2}) \cup \leq'_{1})^{m*}, F'_{2})$$

Proposition (Free extensions of PA signature morphisms)

 are obtained by lifting free extensions from the category of MSA signatures

$$(S_{1}, \leq_{1}, F_{1}) \xrightarrow{\subseteq} (S_{2}, \leq_{2}, F_{2})$$

$$\downarrow^{\varphi_{1}} \qquad \qquad \downarrow^{\varphi_{2}}$$

$$(S'_{1}, \leq'_{1}, F'_{1}) \xrightarrow{\subseteq} (S'_{2}, (\varphi_{2}^{st}(\leq_{2}) \cup \leq'_{1})^{m*}, F'_{2})$$

Proposition (Free extensions of PA signature morphisms)

ullet note that we can no longer always choose $arphi_2$ such that

$$(S_0, \leq_0, F_0) \cap (S'_2, \leq'_2, F'_2) \subseteq (S_0, \leq_0, F_0) \cap (S_2, \leq_2, F_2)$$

for a fixed signature (S_0, \leq_0, F_0)

$$\big(\{\mathtt{s},\mathtt{s}'\},\{\mathtt{s}\leq_{0}\mathtt{s}'\},\emptyset\big)$$

$$\begin{split} \Big(\{ \mathtt{t}, \mathtt{s}' \}, \emptyset, \emptyset \Big) & \stackrel{\subseteq}{\longrightarrow} \Big(\{ \mathtt{s}, \mathtt{t}, \mathtt{s}' \}, \{ \mathtt{s} \leq_2 \mathtt{t} \}, \emptyset \Big) \\ \downarrow^{\mathtt{t} \mapsto \mathtt{s}'} & \downarrow^{\mathtt{t} \mapsto \mathtt{s}'} \\ \Big(\{ \mathtt{s}' \}, \emptyset, \emptyset \Big) & \stackrel{\subseteq}{\longrightarrow} \Big(\{ \mathtt{s}, \mathtt{s}' \}, \{ \mathtt{s} \leq_2' \mathtt{s}' \}, \emptyset \Big) \end{split}$$

Proposition (Free extensions of **PA** signature morphisms)

Proposition (Free extensions of PA signature morphisms)

 are obtained by lifting free extensions from the category of MSA signatures

$$(S_{1}, F_{1}, TF_{1}) \xrightarrow{\subseteq} (S_{2}, F_{2}, TF_{2})$$

$$\varphi_{1} \downarrow \qquad \qquad \qquad \downarrow \varphi_{2}$$

$$(S'_{1}, F'_{1}, TF'_{1}) \xrightarrow{\subseteq} (S'_{2}, F'_{2}, \varphi_{2}^{op}(TF_{2}) \cup TF'_{1})$$

• moreover, for any fixed signature (S_0, F_0, TF_0) , we can choose a free extension φ_2 such that

$$(S_0, F_0, TF_0) \cap (S'_2, F'_2, TF'_2) \subseteq (S_0, F_0, TF_0) \cap (S_2, F_2, TF_2)$$

Proposition (Free extensions of PA signature morphisms)

 are obtained by lifting free extensions from the category of MSA signatures

$$(S_{1}, F_{1}, TF_{1}) \xrightarrow{\subseteq} (S_{2}, F_{2}, TF_{2})$$

$$\downarrow^{\varphi_{1}} \qquad \qquad \downarrow^{\varphi_{2}}$$

$$(S'_{1}, F'_{1}, TF'_{1}) \xrightarrow{\subseteq} (S'_{2}, F'_{2}, \varphi_{2}^{op}(TF_{2}) \cup TF'_{1})$$

• moreover, for any fixed signature (S_0, F_0, TF_0) , we can choose a free extension φ_2 such that

$$(S_0, F_0, TF_0) \cap (S'_2, F'_2, TF'_2) \subseteq (S_0, F_0, TF_0) \cap (S_2, F_2, TF_2)$$

Proposition (Free extensions of PA signature morphisms)

 are obtained by lifting free extensions from the category of MSA signatures

$$(S_{1}, F_{1}, TF_{1}) \xrightarrow{\subseteq} (S_{2}, F_{2}, TF_{2})$$

$$\downarrow^{\varphi_{1}} \qquad \qquad \downarrow^{\varphi_{2}}$$

$$(S'_{1}, F'_{1}, TF'_{1}) \xrightarrow{\subseteq} (S'_{2}, F'_{2}, \varphi_{2}^{op}(TF_{2}) \cup TF'_{1})$$

• moreover, for any fixed signature (S_0, F_0, TF_0) , we can choose a free extension φ_2 such that

$$(S_0, F_0, TF_0) \cap (S'_2, F'_2, TF'_2) \subseteq (S_0, F_0, TF_0) \cap (S_2, F_2, TF_2)$$

Instantiation of parameters via free extensions

Definition (Instantiation of parameters)

- ullet consider a parameterised specification SP(P) and
- a specification morphism $v \colon P \to P'$ that preserves P'

The instantiation of the parameterised specification SP(P) by v is

$$SP(P \Leftarrow v) = SP \star (\iota; \nu') \cup P' \star \iota'$$

given by the free extension depicted below.

$$\begin{array}{c} \operatorname{Sig}(SP) \\ \operatorname{Sig}(P) \cup \operatorname{Sig}(P') \stackrel{\subseteq}{\longrightarrow} \operatorname{Sig}(SP) \cup \operatorname{Sig}(P') \\ \\ \operatorname{vv1}_{\operatorname{Sig}(P')} \downarrow \qquad \operatorname{FE} \qquad \qquad \downarrow \nu' \\ \operatorname{Sig}(P') \stackrel{\iota'}{\longrightarrow} \Sigma' \end{array}$$

Lists of natural numbers via free extensions

Example (Lists of natural numbers via free extensions) $\left\{ \begin{aligned} & \left\{ \texttt{Elt}, \texttt{Nat} \right\}, \\ & \left\{ \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s_:} \ \texttt{Nat} \to \texttt{Nat} \right\} \end{aligned} \right\} \overset{\subseteq}{\longrightarrow} \left\{ \begin{aligned} & \left\{ \texttt{Elt}, \texttt{List}, \texttt{Nat} \right\}, \\ & \left\{ \texttt{nil:} \ [] \to \texttt{List}, _: \ \texttt{Elt} \ \texttt{List} \to \texttt{List} \right\}, \\ & \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s_:} \ \texttt{Nat} \to \texttt{Nat} \right\} \end{aligned} \right\}$ Elt⊢Nat $\left(\begin{array}{l} \{ \texttt{Nat} \}, \\ \{ \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s_:} \ \texttt{Nat} \to \texttt{Nat} \} \end{array} \right) \xrightarrow{\subseteq} \left\{ \begin{array}{l} \{ \texttt{Nat}, \texttt{List} \}, \\ \{ \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s_:} \ \texttt{Nat} \to \texttt{Nat}, \\ \texttt{nil:} \ [] \to \texttt{List}, _. : \texttt{Nat} \ \texttt{List} \to \texttt{List} \} \end{array} \right.$

Multiple parameterised specifications The definition

Definition

A multiple parameterised specification is a specification with several parameters, denoted $SP(P_1, \ldots, P_n)$.

Multiple parameterised specifications Foundations

• for any multiple parameterised specification $SP(P_1, \ldots, P_n)$ we have that $SP(P_1 \cup \cdots \cup P_n)$ is a single parameterised specification

Proposition

Let $\{v_i \colon P_i \to P_i' \mid 1 \le i \le n\}$ be a set of pairwise compatible morphisms. Then there exists $\bigvee v_i \colon \bigcup P_i \to \bigcup P_i'$ such that

$$(P_j \subseteq \bigcup P_i); \bigvee v_i = v_j; (P'_j \subseteq \bigcup P'_i), \text{ for any } 1 \leq j \leq n.$$

Moreover, if the inclusion system is distributive, for any set of signatures $\{Q_j \mid 1 \leq j \leq m\}$, if v_i preserves Q_j , for all $1 \leq i \leq n$ and $1 \leq j \leq m$, then the join $\bigvee v_i$ preserves the union $\bigcup Q_j$.

Multiple parameterised specifications On distributivity

Proposition

The **MSA** inclusion system and the **PA** inclusion system are both distributive.

note that the OSA inclusion system is not distributive

$$\Sigma_1$$
: Σ_2 : Σ_3 : Σ_3 : Σ_4 : Σ_5 : Σ_5 : Σ_5 : Σ_5 : Σ_7 :

Multiple parameterised specifications On distributivity

Proposition

The **MSA** inclusion system and the **PA** inclusion system are both distributive.

note that the OSA inclusion system is not distributive

Simultaneous instantiation of parameters

Definition (Simultaneous instantiation of parameters)

Let us consider a multiple parameterised specification $\Sigma(P_1,\ldots,P_n)$ and a set of pairwise compatible morphisms $\{v_i\colon P_i\to P_i'\mid 1\leq i\leq n\}$ such that any morphism v_i preserves any specification P_j' , for $1\leq i,j\leq n$.

The simultaneous instantiation of $\Sigma(P_1, \ldots, P_n)$ by $\{v_1, \ldots, v_n\}$, denoted

$$\Sigma(\{P_i \Leftarrow v_i \mid 1 \leq i \leq n\}),$$

is defined as the single parameter instantiation

$$\Sigma\big(\bigsqcup P_i \Leftarrow \bigvee v_i\big).$$

Pairs of natural numbers and Boolean values

Example (Pairs of natural numbers and Boolean values)

```
 \left\{ \begin{aligned} & \left\{ & \texttt{Elt}_1, \texttt{Elt}_2, \texttt{Nat}, \texttt{Bool} \right\}, \\ & \left\{ \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s\_:} \ \texttt{Nat} \to \texttt{Nat}, \\ & \texttt{true:} \ [] \to \texttt{Bool}, \texttt{false:} \ [] \to \texttt{Bool} \right\} \end{aligned} \right\} \overset{\subseteq}{\longrightarrow} \left\{ \begin{aligned} & \left\{ \begin{aligned} & \left\{ \texttt{Elt}_1, \texttt{Elt}_2, \texttt{Pair}, \texttt{Nat}, \texttt{Bool} \right\}, \\ & \left\{ \langle -, - \rangle : \texttt{Elt}_1 \ \texttt{Elt}_2 \to \texttt{Pair}, \\ & \texttt{0:} \ [] \to \texttt{Nat}, \texttt{s\_:} \ \texttt{Nat} \to \texttt{Nat}, \\ & \texttt{true:} \ [] \to \texttt{Bool}, \texttt{false:} \ [] \to \texttt{Bool} \right\} \end{aligned} \right\} 
                                                                             Elt_1 \mapsto Nat
  \left( \begin{cases} \{ \text{Nat}, \text{Bool} \}, \\ \{ \text{O:} \ [] \to \text{Nat}, \text{s\_:} \ \text{Nat} \to \text{Nat}, \\ \text{true:} \ [] \to \text{Bool}, \text{false:} \ [] \to \text{Bool} \} \end{cases} \right) \xrightarrow{\subseteq} \left( \begin{cases} \{ \text{Nat}, \text{Bool}, \text{List} \}, \\ \{ \text{O:} \ [] \to \text{Nat}, \text{s\_:} \ \text{Nat} \to \text{Nat}, \\ \text{true:} \ [] \to \text{Bool}, \text{false:} \ [] \to \text{Bool}, \\ \langle -, - \rangle \colon \text{Nat} \ \text{Bool} \to \text{Pair} \} \end{cases}
```

Towards sequential instantiation of parameters

Proposition

Let $\Sigma(P_1,\ldots,P_n)$ be a multiple parameterised specification and $v_i\colon P_i\to P_i'$ a morphism that preserves the instance P_i' and all parameter specifications P_j , for $1\leq j\neq i\leq n$.

If the instantiation of parameters is based on free extensions then $\Sigma(P_i \leftarrow v_i)$ is a parameterised specification, with the parameters $\{P_j \mid 1 \leq j \neq i \leq n\}$.

Definition (Sequential instantiation of parameters)

Let us consider a multiple parameterised specification $\Sigma(P_1,\ldots,P_n)$ and a set of pairwise compatible morphisms $\{v_i\colon P_i\to P_i'\mid 1\leq i\leq n\}$ such that for every $1\leq i\leq n$, v_i preservers P_i' and all P_j , where $1\leq j\neq i\leq n$.

The sequential instantiation of $\Sigma(P_1, \ldots, P_n)$ by $\{v_1, \ldots, v_n\}$, denoted

$$\Sigma(P_i \Leftarrow v_i)_{1 \leq i \leq n}$$

is defined as the iterated (single) parameter instantiation

$$\Sigma(P_0 \Leftarrow v_0) \cdots (P_{n-1} \Leftarrow v_{n-1}).$$

Pairs of natural numbers and Boolean values

The isomorphism theorem

Theorem

Let $\Sigma(P_1, \ldots, P_n)$ be a multiple parameterised specification and $\{v_i \colon P_i \to P_i' \mid 1 \le i \le n\}$ a set of morphisms such that for every $1 \le i \le n$, v_i preserves P_i and P_k' , for all $1 \le j \ne i, k \le n$.

If the instantiation of parameters is based on free extensions then the simultaneous and the sequential instantiation procedures produce isomorphic results, provided that for any morphism $v:P\to P'$ for which we consider free extensions, and any signature Q preserved by v, we can choose a free extension of v that strongly preserves Q.

$$\Sigma\left(\bigsqcup P_i \Leftarrow \bigvee v_i\right) \cong \Sigma(P_i \Leftarrow v_i)_{1 \leq i \leq n}$$

The isomorphism theorem

 when the additional constraint doesn't hold, intricate sharing between the instances of the parameters and the body of the parameterised specification may lead to non-isomorphic results of the two instantiation procedures

Example (Pairs with an observation)
$$\left(\{ \text{Elt}_1 \}, \emptyset \right) \xrightarrow{\subseteq} \left\{ \begin{cases} \{ \text{Elt}_1, \text{Elt}_2, \text{Pair} \} \\ \{ \langle -, - \rangle : \text{Elt}_1 \text{ Elt}_2 \to \text{Pair}, \right\} \end{cases} \xrightarrow{\subseteq} \left(\{ \text{Elt}_2 \}, \emptyset \right)$$

$$\left(\{ \text{Elt}_1 \}, \emptyset \right) \xrightarrow{\text{Elt}_1 \mapsto \text{Nat}} \left\{ \begin{cases} \text{Nat} \}, \\ \{ 0 : [] \to \text{Nat}, s_- : \text{Nat} \to \text{Nat} \} \end{cases} \right)$$

$$\left(\{ \text{Elt}_2 \}, \emptyset \right) \xrightarrow{\text{Elt}_2 \mapsto \text{Nat}} \left\{ \begin{cases} \text{Nat}, \text{Pair} \}, \\ \{ 0 : [] \to \text{Nat}, s_- : \text{Nat} \to \text{Nat}, \\ \text{obs} : \text{Pair} \to \text{Nat} \} \end{cases}$$

The isomorphism theorem

 when the additional constraint doesn't hold, intricate sharing between the instances of the parameters and the body of the parameterised specification may lead to non-isomorphic results of the two instantiation procedures

Example (Pairs with an observation)

• by simultaneous instantiation we may obtain

```
	ext{PAIR}^{	ext{obs}}ig(	ext{ELT}_1 \cup 	ext{ELT}_2 \Leftarrow v_1 ee v_2ig) = egin{dcases} \{	ext{Nat}, 	ext{Pair}\} \ \{0\colon [] 	o 	ext{Nat}, 	ext{s}_-\colon 	ext{Nat} 	o 	ext{Nat}, \ \langle -, - 
angle \colon 	ext{Nat} 	o 	ext{Nat} 	o 	ext{Pair}, \ 	ext{obs}\colon 	ext{Pair} 	o 	ext{Nat}, \ 	ext{obs}'\colon 	ext{Pair} 	o 	ext{Nat}\} \end{cases}
```

The isomorphism theorem

 when the additional constraint doesn't hold, intricate sharing between the instances of the parameters and the body of the parameterised specification may lead to non-isomorphic results of the two instantiation procedures

Example (Pairs with an observation)

• by sequential instantiation we may obtain

$$ext{PAIR}^{ ext{obs}}(ext{ELT}_1 \Leftarrow ext{v_1}) = egin{bmatrix} \{ ext{Nat}, ext{Elt}_2, ext{Pair}\} \ \{0: [] o ext{Nat}, ext{s}_-: ext{Nat} o ext{Nat}, \ \langle_-, -
angle: ext{Nat} ext{Elt}_2 o ext{Pair}, \ ext{obs}: ext{Pair} o ext{Nat}\} \end{pmatrix}$$

$$ext{PAIR}^{ ext{obs}} (ext{ELT}_1 \Leftarrow v_1) (ext{ELT}_2 \Leftarrow v_2) = egin{bmatrix} \{ ext{Nat}, ext{Pair} \} \\ \{ 0: []
ightarrow ext{Nat}, ext{s_-}: ext{Nat}
ightarrow ext{Nat}
ightarrow ext{Nat}, \\ \langle -, _ \rangle : ext{Nat} ext{Nat}
ightarrow ext{Pair}, \\ ext{obs}: ext{Pair}
ightarrow ext{Nat} \} \end{bmatrix}$$

Thank you!