AN EXAMPLE-BASED
INTRODUCTION TO K

Dorel Lucanu

Alexandru loan Cuza University, lasi,
Romania

dlucanu@info.uaic.ro

Sinaia, March 1st 2011

Joint work with Grigore Rosu and Traian Serbanuta

CONTEXT

A short motivation, K and DAK projects

K Project

Started in 2003 by Grigore Rosu at UIUC, motivated
mainly by teaching programming languages and noticing
that the existing semantic frameworks have limitations

Project thesis:

Rewriting gives an appropriate environment to formally
define the semantics of real-life programming languages
and to test and analyze programs written in those
languages.

UIUC team

Chucky Ellison, Michael llseman, Patrick Meredith, Grigore Rosu,
Traian Serbanuta, Andrei Stefanescu

DAK

DAK is a Romanian funded project

DAK goal: to contribute at the development of the K
framework (semantics execution engine, analysis tools,
definition of languages)

Grigore Rosu is the external expert
a strong cooperation between the two groups from UIUC and UAIC

UAIC team:

Andrei Arusoae, Irina Asavoae, Mihai Asavoae, Gheorghe
Grigoras, Dorel Lucanu, Radu Mereuta, Elena Naum

Challenges in Programming Language

Design / Semantics / Analysis

- Programming languages are continuously born, updated
and extended
- C#, CIL; Java memory model, Scheme R6RS, C1X
- Concurrency is the norm, not the exception

- Executable specifications could help
- Design and maintain mathematical definitions
- Easily test/analyze language updates/extensions
- Explore/Abstract non-deterministic executions

Shortcomings of Existing Frameworks

Hard to deal with control (except evaluation contexts)
halt, break/continue, exceptions

Non-modular (except Modular SOS)

Adding new features require changing unrelated rules

Lack of semantics for true concurrency (except
CHAM)

Big-Step captures only all possible results of computation

Reduction approaches only give interleaving semantics
Tedious to find next redex (except evaluation
contexts)

One has to write the same descent rules for each construct

Inefficient as interpreters (except for Big-Step SOS)

K FRAMEWORK

based on Grigore’s and Traian’s presentations and Cink
example

The K Framework

The K Framework

P Rewrite Semantics
e N Project
: S Reduction
Small-Step . :
[SOS Semantics with P

P ~ | Evaluation Contexts "

~ —
-
/

| Big-Step ” . Modular |
- sos }Rewntlng Logic | “gos

7 " The Chemical J

~

Abstract Machine

| (CHAW) The K Semantic

Framework

The K framework
@ KK technique: for expressive, modular, versatile, and clear PL definitions

@ K rewriting: more concurrent than regular rewriting
@ Representable in RWL for execution, testing and analysis purposes

The K Framework K in a nutshell

K In a nutshell

Komputations
@ Sequences of tasks, including syntax
@ Capture the sequential fragment of programming languages
@ Syntax annotations specify order of evaluation

Konfigurations
@ Multisets (bags) of nested cells
@ High potential for concurrency and modularity

K rules
@ Specify only what needed, precisely identify what changes

@ More concise, modular, and concurrent than regular rewrite rules

K in a nutshell (cont.)

@ the semantics is given by means of a set of rewrite rules transforming
the abstract syntax trees (ASTs) into results, eventually using some
intermediate structures

@ the notion of result is a generic one: could be either the output, the
result of a type-checking algorithm, the result of a static
analyser/verifier and so on

@ the machine on which the programs are executed is abstractly
described as a configuration of cells

@ examples of cells: computation steps, environment, memory, call
stack, formulas to be verified

@ K Rewrite Abstract Machine (KRAM) executes the rewrite rules in
faithful way

Running example: Cink

- a kernel of C
- functions
- int expressions
- input/output
- basic flow control (if, if-else, while, sequential composition)

- pointers and arrays
- structures

- In this talk

- a K semantic definition of Cink (without pointers and structures)

- a static analyzer derived from K definition (infeasible paths, infinite
loops, reading non-initialized variables, ...)

K definition of

MobuLE CINK-SYNTAX
IMPORTS PL-ID+PL-INT
Declld ::= int Exp
| void Id
Eaxp == Int
| Id
| Ezp + Exp [strict]
| Exp - Exp [strict]
| Ezp * Exp [strict]
| Ezp > Exp [strict]
| Exp = Exp [strict(2)]
| printf ("%d;", Ezp) [strict]
| scanf ("%d",& Id)
| Id (List{ Exp}) [strict(2)]

| Id O
| Declld
Id ::=main
Stmt ::= Exp ; [strict]

[{}
| { StmtList }

| if (Exp) Stmt
| if (Exp) Stmt else Stmt [strict(1)]
| while(Exp) Stmt
| return Ezp ;
| Declld (List{ Declld}){ StmtList }
| Declld (){ StmtList }
StmtList ::= Stmt
| StmtList StmtList
Pgm ::= StmtList
List{ Bottom} ::= .Bottom
| Bottom
| List{ Bottom} , List{ Bottom} [id: .Bottom strict hybrid assoc]
List{Id} := Id
| List{ Bottom}
| List{1d} , List{Id} [id: .Bottom ditto assoc]
List{ DeclId} ::= Declld
| List{ Bottom}
| List{ Declld} , List{ Declld} [id: .Bottom ditto assoc]
List{ Exp} := Exp
| List{1d}
| List{ DeclId}
| List{ Ezp} , List{ Ezp} [id: .Bottom ditto assoc]
END MODULE

MobpuLE CINK-DESUGARED-SYNTAX
IMPORTS CINK-SYNTAX

MACRO: if(E) St=if(E) Stelse {}

MACRO: [() =1(.Bottom)

MACRO: Declld (){ Stmts } = Declld (.Bottom){ Stmts }
MACRO: void X = int X

MACRO: int X=F; =int X; X=F;

END MODULE

Cink

MobpuLe CINK-SEMANTICS

IMPORTS K-SHARED
MPORTS PL-CONVERSION+K+CINK-DESUGARED-SYNTAX
Val ::= Int

| void
Eap = Val
List{ Val} ::= List{ Val} , List{ Val} [id: .Bottom ditto assoc]

| Val

List{ Ezp} ::= List{ Val}
KResult ::= List{ Val}
K ::i= List{ Exp}

| List{Id}

| List{ Declldy

| StmtList

| Pgm

| String
Nat ::= initialLoc
K = initial

| restore(Map)

| increment (Nat , Nat)

| endOfFunction
List{ K} ::= Nat .. Nat

| varNameList (List{ K})

INITIAL CONFIGURATION:

B Gl G

RULE: I + 1o — 1) —p I

RULE: [} = I — 1) — 1o 2
RULE: Iy % Ip — I % I2

RULE: [> I — Bool2Int (I} > 12)

VAR-DECL RULE:
MEM-LOOKUP RULE:

(3]
WHILE RULE: _while(F7) St _
ifCED {5t while(E) St} else {}

IF-FALSE RULE: if(/) — — — else St — St when /==, 0

IF-TRUE RULE: if([) Stelse — — — — St when —poor I ==n: 0
INSTR-EXPR RULE: V5 — .
BLOCK RULE: { Sts} — Sts
BLOCK-EMPTY RULE: {} — o

SEQ-COMP RULE: St Sts — St~ Sts

READ-LOCAL RULE:

0 (i)
scanf ("%d",& X)
void

() oup
prINT RULE: [PTintf("%d;", 1) E S
void |\ S *string ME2StriE (1D *st00my 57

[(3) en)

Enuv
varNameList (X1) — VI

RETURN-MIDDLE RULE: when K # poo end0fFunction
()
RETURN-LAST RULE: return £ ; ~ endOfFunction
E
k
NO-RETURN RuLg: (end0fFunction

NONVOID-FUN-RETURN RULE:

X V)
Sts ~ endOfFunction ~ restore(Env)

FUN-CALL RULE:

VOID-FUN-RETURN RULE:

RULE: Ny .. Ni — JList{ K}
RULE: Ni..sya N= N, Ny .. N
RULE: varNameList(KI) — eraseKLabel (int_, K1)
END MODULE
MobuLe CINK
MpORTS K-SHARED
IMPORTS CINK-SEMANTICS+CINK-PROGRAMS+CINK-SYNTAX

Bag = run(KLabel)
| run(KLabel , List{K})

@™
(3
L C.List{K}) ~main O

@

RULE: run(L) —

RULE: run(L, [1) —

k.

END MODULE

The K Framework K in a nutshell

K computations and K syntax

Computations

@ Extend PL syntax with a “task sequentialization” operation
o 1 ~ b~ ...~ Iy, Where tj are computational tasks

@ Computational tasks: pieces of syntax (with holes), closures, ...

@ Mostly under the hood, via intuitive PL syntax annotations

K Syntax: BNF syntax annotated with strictness

Exp ::= Id
| * Exp [strict]
| Exp = Exp [strict(2)]
Stmt ::= Exp ; [strict]
| Stmt Stmt [seqstrict]

The K Framework K in a nutshell

Heating syntax through strictness rules

Computation

K Syntax: BNF syntax annotated with strictness

Exp ::= Id
| * Exp [strict]
| Exp = Exp [strict(2)
Stmt .= Exp ; [strict
| Stmt Stmt [seqstrict] SRed S = SRed~0O S

The K Framework K in a nutshell

Heating syntax through strictness rules

Computation

K Syntax: BNF syntax annotated with strictness

Exp ::= Id
| * Exp [strict]
| Exp = Exp [strict(2)]

Stmt ::= Exp ; [strict] ERed ; = ERed ~ O;
| Stmt Stmt [seqgstrict]

The K Framework K in a nutshell

Heating syntax through strictness rules

Computation

K Syntax: BNF syntax annotated with strictness

Exp ::=Id

| * Exp [strict]

| Exp = Exp [strict(2)] E = ERed
Stmt ::= Exp ; [strict]

| Stmt Stmt [seqstrict]

—
—

ERed ~ E=0O

The K Framework K in a nutshell

Heating syntax through strictness rules

Computation

K Syntax: BNF syntax annotated with strictness

Exp ::= Id
| * Exp [strict] *ERed = ERed ~ * O
| Exp = Exp [strict(2)]

Stmt ::= Exp ; [strict]
| Stmt Stmt [segstrict]

Heating syntax through strictness rules

Computation

The K Framework

K Syntax: BNF syntax annotated with strictness

Exp ::= Id

| * EXp

| Exp = Exp
Stmt ::= Exp ;

| Stmt Stmt

[strict]
[strict(2)]
[strict
[seqstrict

K in a nutshell

Configuration for Cink

* Nested multisets (bags) of labeled cells
« containing lists, sets, , maps and

auto memory

komputations

Configuration for Cink with pointers

environment

memory

auto memory mgmt.

pointers mgmt.

The K Framework K rules

K rules: expressing natural language into rules

Focusing on the relevant part

Reading from environment

If a local variable X is the next thing to be processed ...
...and if X is mapped to a value V in the environment ...
...then process X, replacing it by V

0
(k)
C)

The K Framework K rules

K rules: expressing natural language into rules

Unnecessary parts of the cells are abstracted away

Reading from environment

If a local variable X is the next thing to be processed ...
...and if X is mapped to a value V in the environment . ..
...then process X, replacing it by V

The K Framework K rules

K rules: expressing natural language into rules

Underlining what to replace, writing the replacement under the line

Reading from environment

If a local variable X is the next thing to be processed ...
...and if X is mapped to a value V in the environment . ..
...then process X, replacing it by V

The K Framework K rules

K rules: expressing natural language into rules

Configuration Abstraction: Keep only the relevant cells

Reading from environment

If a local variable X is the next thing to be processed ...
...and if X is mapped to a value V in the environment . ..
...then process X, replacing it by V

The K Framework K rules

K rules: expressing natural language into rules

Configuration Abstraction: Keep only the relevant cells

Reading from environment

If a local variable X is the next thing to be processed ...
...and if X is mapped to a value V in the environment ...
...then process X, replacing it by V

8

env

VWA

t— 1

The K Framework K rules

K rules: expressing natural language into rules

Generalize the concrete instance

Reading from environment

If a local variable X is the next thing to be processed ...
...and if X is mapped to a value V in the environment . ..
...then process X, replacing it by V

8

env
XV

A
VWA

The K Framework K rules

K rules: expressing natural language into rules
Voila!
Reading from environment

If a local variable X is the next thing to be processed ...
..and if X is mapped to a value V in the environment . ..
..then process X, replacing it by V

@ ASCII notation:
X'—>V rule <k> X:Id => V <_/k>
<env_> X |-> V <_/env>

Examples of rules

FUN-CALL RULE:

D
varNameList(XI) — VI
uns

X int X (XI){ Sts } |

k cell as a stack

k
RETURN-MIDDLE RULE: return £ ; ~ K when K #p,,; end0fFunction
.
skip code
k

RETURN-LAST RULE: return £ ; ~ endOfFunction

E b

(o)

restore envrnmt.

NONVOID-FUN-RETURN RULE: C/ ~ restore(fnv) ¢

FROM PL DEFINITION TO A
STATIC ANALYZER

A simple static analyzer for Cink

From the definition to semantic tools

- We may take the advantage of having a formal definition
of PL and build analyzing and verification tools which are
sound w.r.t. the formal definition

- it is recommended to have just one formal definition

- for all tools, it can be proved the soundness w.r.t. this
definition

- in this talk we present a static analyzer for Cink, able to

discover infinite cycles, unfeasible paths in the flow graph,
reading uninitiated variables

- the analyser is obtained by transforming the concrete
semantics into a symbolic execution

Symbolic values

- we extend Int with symbolic values Symint

- the value of a variable can be an axpression
Int Symint < Explint

- we assume a decision procedure SOLVER s.t.

SOLVER = s@LVE(EB)=-s@T

iff £B is satisfiable, and

SOLVER = s@LVE(EB)=-UNSQ@T

iff EB is satisfiable

Configuration for symbolic execution

» We reorganize the configuration by
 allowing many configurations (one for each path in
the flow graph),
» adding cells forconstraints (path formulas),
 cells for counting and storing unfeasible paths
« a cell supporitng to generate new symbolic values

T
config
ath constr
o List true
infeasible) (nfPaths) (@extSymVar)
eMap @

Symbolic definition of while

wing s (o anile(E) St
strictWhile(£) { St endWhile(E, Mem) }¢

confi

save the state

SWHILE RULE- k D N while starts
' strictWhile(I) St K) CFG

the two while
branches config

k ath
éa:sume(I==1:0) K) (Path WhileFalse> C@

Discovering unfeasible paths

k

FEASIBLE RULE: assume(£B)

EB’
EB Apooi EB’

when search s@lve EB Apy, EB’ = S0t

confi nfea81ble infPaths)
. . k constr)
INFEASIBLE RULE: assune(EB) | (E B) path) CFG N +na 1 + Nat 1 N— wlist Path}

when search s@lve EB Ag,, EB’ = uns@t

the comp. cofig.
is discarded w

Discovering infinite loops

k
: Y :
INFINITE-CYCLE RULE: endWhile(£, Mem')
error 3

when getReduct (Mem , getVar(E')) =gy, getReduct(Mem' , getVar(E))

variables of
expression E

memory of a
given set of vars

Conclusion

- K Framework
- ExpressiveModular—at least as Modular SOS
- Concurrent
- Concise

- K Maude
- a prototype for executing and analyzing K definitions
- Future work

- improve K Maude tool
- more formal definitions for real PLs
- analysis and verification semantics (Matching Logic)

