Hspec language definition?
— version 1.1.0 —

Mihai Codescu' and Razvan Diaconescu?
nstitute of Mathematics ”Simion Stoilow” of the Romanian
Academy, Research Group of the project PED-0494, Bucharest,
Romania
’Institute of Mathematics ”Simion Stoilow” of the Romanian
Academy, Bucharest, Romania

!This work was supported by a grant of the Romanian National Authority for
Scientific Research and Innovation, CNCS/CCCDI - UEFISCDI, project number PN-
[11-P2-2.1-PED-2016-0494, within PNCDI III.

Chapter 1

Hspec overview

A Hspec document consists of either specification of new hybrid logics or spec-
ification of reconfigurable systems in a hybrid logic.

Hybrid logic We introduce a declarative syntax for specifying the parameters
of the generic hybridization method. They are:

e the name of the new hybridized logic,

e the name of the logic being hybridzed,

e the kinds of symbols allowed to appear in a quantification,
e the constraints made on the models of the logic.

We make the assumption that a library of possible constraints for each base logic
is available, and the user must choose among the constraints of the specified base
logic when making a new hybridization. Two types of constraints are possible:

e on the accessibility relations [3]:

— reflexive: (Yw)R(w,w)
— symmetric: (Vwy, wa)R(wy,ws) = R(wa, w1)

transitive: (Vwy, wa, w3)R(wy, wa) A R(wa, ws) = R(w,ws)
serial: (Ywq)(Jws)R(w1, ws)

Euclidean: (Ywy, we, ws)R(w1, we) A R(wy, w3) = R(w2,ws)

functional: (Vwy)(3'wse)R(wy, ws)

— linear: (Ywi, we,w3)(R(wi,ws) A R(wy,ws)) = (R(wq,ws) V
R(ws, wa) V Qy,w3)

— total: (Vwy,ws)R(wy,ws) V R(ws,w)

where w, w1, wo, w3 are worlds and R is the accessibility relation on worlds.

e on the local models:

the set of worlds of each local model is the same

the nominals are interpreted in the same way in each local model

— symbols of some kind are interpreted in the same way in each local
model

partial functions are defined on the same elements in each local model

Alternatively, one can add further semantic constraints or other kinds of
symbols used in quantifications on an existing hybridized logic.

Hspec specifications Hspec basic specifications over a hybrid logic have
three parts:

e the name of the hybrid logic,

e the name of a specification in the base logic of the hybridized logic, con-
taining the data part of the specification,

e a configuration part, consisting of declarations of state names and events
and sentences in the hybrid logic.

For structuring, we will make use of the DOL language [5]. DOL is a meta-
language for structuring of ontologies, specifications and MDE models, indepen-
dent of the formalism used at the basic level. A DOL structured specification
can contain parts written in different logics. In our setting, we will only make use
of homogeneous structuring, where all specifications appearing in a structured
specifications are in the same logic.

Chapter 2

Hspec syntax

2.1 Abstract syntax

2.1.1 Hspec documents

Document ::= HLogicDef | HDefx

HLogicDef ::= hlogic LogicName HLogic

HLogic ::= hybridizeBase
LogicName

[QuantRestr x]
[SemConstr *]

| addQuantOrConstr
LogicName
[QuantRestr x]
[SemConstr *]

LogicName = Name
QuantRestr = Name
SemConstr = Reflexive | Transitive | Symmetric
| Serial | Euclidean | Functional
| Linear | Total
| Samelnterpretation Kind
| SameDomain PartialOrRigid
PartialOrRigid ::= partial | rigid partial
Kind ::= world | nominal

| Name | rigid Name

2.1.2
HDef

HSpec

BaseSpec

SymbolMap

Hspec structured specifications

hDef SpecName HSpec

BaseSpec

HBasicSpec

extension HSpec HBasicSpec
union HSpec HSpec
renaming HSpec SymbolMap

<logic specific syntax>

symbolMap (Id, Id)+

2.1.3 Hspec basic specifications

HBasicSpec
SpecName
LogicPart
DataPart
ConfigPart

HybridDecl
NomDecl
ModDecl

HSen

BasicSen
Nominal
Negation
Conjunction
Disjunction
Implication
AtSen

BoxSen
DiamondSen
QuantifiedSen

QualQuant
Quant

hBasicSpec LogicPart DataPart ConfigPart
Name

logic Name

data SpecName

configuration HybridDecl* HSenx

NomDecl | ModDecl
nominals Namet+
modalities (Name, Nat)+

BasicSen | Nominal | Negation
Conjunction | Disjunction | Implication
AtSen | BoxSen| DiamondSen
QuantifiedSen

<logic specific syntax>

Id

negation HSen

conjunction HSen HSen

disjunction HSen HSen

implication HSen HSen

at Id HSen

box Id HSen+

diamond Id HSen+

quantification QualQuant QualNom HSen
quantification QualQuant BaseSpec HSen

qualQuant Quant LogicName
forallH | existsH

QualNom ::= nominals LogicName Name+

Id ::= QualName | Name
Name = Y%letters , digits and special characters
QualName ::= qualName Name LogicName

2.2 Relation with DOL

Hspec can be regarded as an extension of a fragment of DOL. This can be
explained as follows:

e At the level of libraries, we add a new type of library item for logic defi-
nitions. HDef is a renaming of OMSDefinition.

e At the level of structured specifications, all Hspec constructs are inherited
from DOL.

e At the level of basic specifications, a Hspec specification
spec S = logic: L data: D configuration: C
can be equivalently written in DOL as

spec S = logic L : { data D C }

2.3 Concrete syntax

2.3.1 Hspec documents

Document ::= HLogicDef | HDefx
HLogicDef ::= ‘hlogic ¢ LogicName ‘=°‘ HLogic
HLogic ::= ‘base:‘ LogicName °.°
[“quant:‘ QuantRestrx ‘. °]
[“constr:‘ SemConstrx ‘. °]
| ‘hlogic:‘ LogicName ‘.
[“quant:‘ QuantRestrsx *.°]
[“constr:‘ SemConstrs ¢. ‘]
LogicName = Name
QuantRestr = Name
SemConstr = ‘Reflexive ¢ | ‘Transitive * | ‘Symmetric*
| ‘Serial ¢ | ‘Euclidean‘ | ‘Functional ‘
| ‘Linear‘ | ‘Total*®
| ‘Samelnterpretation(‘ Kind+ *)°
| ‘SameDomain (¢ PartialOrRigid ¢)°
PartialOrRigid ::= ‘partial ¢ | ‘rigid partial*
Kind 2= ‘world‘ | ‘nominal*
| Name | ‘rigid ¢ Name

2.3.2 Hspec structured specifications

HSpec ::= BaseSpec

| HBasicSpec

| HSpec ‘then‘ HBasicSpec

| HSpec ‘and‘ HSpec

| HSpec ‘with ¢ SymbolMap
BaseSpec = <logic specific syntax>
SymbolMap = (Id |—>¢ Id)+

2.3.3 Hspec basic specifications

Developer-oriented notation

HBasicSpec ::= LogicPart DataPart ConfigPart
SpecName ::= Name

LogicPart := ‘logic:‘ Name

DataPart ;= ‘data:‘ SpecName

ConfigPart

HybridDecl
NomDecl
ModDecl
ModItem

HSen

BasicSen
Nominal
Negation
Conjunction
Disjunction
Implication
AtSen

BoxSen
DiamondSen
QuantifiedSen

QualQuant
QualNom

Id
Name
QualName

Abbreviations:

At s
Sel
Seno
seny

end

for

At s
At s

senj
seng
At s
end

Seng

‘configuration:‘ HybridDecl* HSenx

NomDecl | ModDecl
‘states ¢ Name, ...,
‘events ¢ Modltem, ...,
Name ‘:‘ Nat

Name
ModItem

BasicSen | Nominal | Negation
Conjunction | Disjunction | Implication
AtSen | BoxSen| DiamondSen
QuantifiedSen

<logic specific syntax>
Id
‘not ¢
HSen
HSen

HSen

‘/\ ¢ HSen

‘\/‘ HSen

HSen ‘=>°‘ HSen

‘At¢ Id ‘:° HSen
‘Through ¢ Id ‘always"
‘Through ‘¢ Id ‘sometimes *
QualQuant QualNom HSen
QualQuant BaseSpec HSen

HSen+
HSen+

‘“forallH . ‘LogicName |
‘states . ‘LogicName Namet
QualName | Name

%%list of letters ,
Name ‘::‘ LogicName

‘existsH . ‘LogicName

digits and special characters

Through e,
for

Through e,

/\
Through e,

only sen

sometimes sen

always sen

Mathematical-oriented notation

HBasicSpec
SpecName
LogicPart
DataPart
ConfigPart

HybridDecl
NomDecl
ModDecl
ModItem

HSen

BasicSen
Nominal
Negation
Conjunction
Disjunction
Implication
AtSen

BoxSen
DiamondSen
QuantifiedSen

QualQuant
QualNom
1d

Name
QualName

LogicPart DataPart ConfigPart

Name
‘logic:‘ Name
‘data:‘ SpecName

‘configuration:‘ HybridDeclx HSenx

NomDecl | ModDecl
‘nominals ¢ Name, ., Name
‘modalities ¢ Modltem, ...,
Name ‘:‘ Nat

ModItem

BasicSen | Nominal | Negation
Conjunction | Disjunction | Implication
AtSen | BoxSen| DiamondSen
QuantifiedSen

<logic specific syntax>
Id

‘not * HSen

HSen ‘/\‘ HSen

HSen ¢\/‘ HSen

HSen ‘=>‘ HSen

‘@“ Id ‘: ¢ HSen
‘(¢ Id ‘)¢ HSent+
‘<t Id ‘> HSen+

QualQuant QualNom HSen
QualQuant BaseSpec HSen

‘forallH . ‘LogicName |
‘nominals. ‘LogicName Name+
QualName | Name

%%list of letters
Name ‘::°¢ LogicName

‘existsH . ‘LogicName

digits and special characters

Chapter 3

Hspec semantics

3.1 Foundations

Definition 3.1.1. Let Set be the category! having all small sets as objects and
functions as arrows, and let Cat be the category of categories and functors.? An
institution [2] is a tuple I = (Sign, Sen, Mod, |=) consisting of the following:

e a category Sign of signatures and signature morphisms,

e a functor Sen: Sign — Set giving, for each signature X, the set of sen-
tences Sen(X), and for each signature morphism o : ¥ — ¥’ the sentence
translation map Sen(o) : Sen(X) — Sen(X’), where often Sen(c)(yp) is
written as o(p),

e a functor Mod : Sign®” — Cat giving, for each signature X, the category
of models Mod(X), and for each signature morphism o: ¥ — ¥’ the
reduct functor Mod(o) : Mod(X') — Mod(X), where often Mod(o)(M') is
written as M’|,, and M’|, is called the o-reduct of M’, while M’ is called
a o-expansion of M'|,,

e a satisfaction relation =y C [Mod(X)| x Sen(X) for each ¥ € |Sign|,

such that for each o: ¥ — ¥/ in Sign the following satisfaction condition
holds:

() M o(p) iff M, Fx @

for each M’ € |Mod(X')| and ¢ € Sen(X), expressing that truth is invariant
under change of notation and context. O

1See [1, 4] for an introduction into category theory.
2Strictly speaking, Cat is not a category but only a so-called quasicategory, which is a
category that lives in a higher set-theoretic universe.

Definition 3.1.2. Let Sign be a category and let D be a subclass of arrows
from Sign. D is called a quantification space if for any x : ¥ — ¥’ € D and any
2 — 31, there is a designated pushout

Z$21

J o

¥ —s3%
elx]

with x(¢) € D and such that

e the horizontal composition of designated pushouts is a designated pushout,
i.e. in the following digram

24@>21 49>22

Xl lx(«p) J{X(LP)(G)_X(%G)

e e
v[x] Ox ()

(»:0)[x]

we have that x()(0) = x(#;0) and (;0)[x] = ¢[x]; O[x(¢)],
e x(1y) = x and 1x[x] = 1

Definition 3.1.3. An institution with kinded symbols is a tuple (Z,kind :
Symbols — Kinds, Sym : Sign — Symbols) where

e 7 is an institution,

e kind : Symbols — Kinds is a function from a set Symbols of symbols
to a set Kinds of kinds, giving the kind of each symbol,

e Sym : Sign — Symbols is a faithful functor® assigning to each signature
Y a set Sym(X) C Symbols of Y-symbols and to each o : ¥ — ¥’
a function Sym(o) : Sym(X) — Sym(X’) such that for each symbol
s € Sym(Y), kind(Sym(o)(s)) = kind(s).

The semantics of H specifications is given in the context of a heterogeneous
logical environment T', consisting of

e a list I'jy, of institutions with kinded symbols together with

3A functor is faithful if it is injective when restricted to each set of morphisms that have
a given source and target.

10

— a partial function baseLogic giving the base institution for a hy-
bridised institution,

— a function sem? giving the semantics of a basic specification in Z and
a function sem% giving the semantics of a basic specification in the
context Y of previous declarations.

e a mapping I'yes from specification names to semantics of specifications,
giving access to previous declarations.

We make the assumption that the category of signatures of each institution
of the logical environment admits unions and differences.

If T is a heterogeneous logical environment, I'jo4[L +— Z] extends I' with a
new institution Z named L, and T[S — (Z,%, M)] extends I' with a new
specification named S whose semantics is (Z, %, M). The lookup functions for
institutions and specifications are denoted I'(L) and T'(S) respectively.

For each syntactic category in the abstract syntax, we specify a semantic
domain, giving the possible values for the semantics. The semantics is defined
using semantic rules, involving a function sem, whose last argument is always
the syntactic entity for which semantics is defined, while the other arguments
determine the context in which semantics is defined.

3.2 Hspec documents

sem(T',HLogicDef) =T"
: Logical Env

sem(I',hlogic L I) =T o4[L — T]
where
e [is a name that is not in the domain of T",

e sem(T',I) =1,

sem(I',HLogic) =7
: Institution

sem(T, hybridizeBase L Q C) =T’
where
e I'(L) =7 = (Sign, Sen, Mod, |=),
e sem(Z,Q) =D,

e 7’ is the institution defined by:

11

1. the category Sign’ of I’-signatures has as objects triples of the form
A = (%,Nom, A) where ¥ is a signature in Z, Nom is a set (of state
names, usually called nominals) such that Nom and Sen(X) are dis-
joint and A = {A,}nen is a N-sorted set (of modalities). A sig-
nature morphism ¢ : A' — A? betweeen two I’-signatures Al =
(X', Nom*, AY) and A? = (X2,Nom? A?) consists of a Z-signature
morphism 58" : £ — $2 4 function ¢N°™ : Nom' — Nom? and a
family of functions p* = {¢? : AL — A2},en.

2. if A = (X,Nom, A) is a T'-signature, the set Sen’(A) of A-sentences
is the least set such that:

— i € Sen’(A), for i € Nom,
— e € Sen’(A), for e € Sen(%),

¢ € Sen’(A), for ¢ € Sen’(A),

& % & € Sen’(A), for &1,& € Sen’(A) and x € {A,V, = },

@;¢ € Sen’(A), for ¢ € Sen’(A) and i € Nom,

— [Al(&1, ..., &) and (A (&1, .., &) € Sen/(A), for A € Aj4q and
€1,...,&, € Sen’(A) and
— (Vx)&, (3x)¢ € Sen’(A), for x : A — A’ € D and ¢’ € Sen(A).
If o : A — Ay is an I’-signature morphism, the sentence translation
function Sen’(p) : Sen’(A) — Sen’(A;) is defined by
— Sen’(p) (i) = ¢N°m(i), for i € Nom,
— Sen’(p)(e) = Sen(p>8&")(e), for e € Sen(X),

(¢
()(e

— Sen’(p)(=¢) = —Sen’(p)(¢), for £ € Sen’(A),
() (&

/

/

— Sen’(y) % *52) = Sen’(p)(&1) x Sen’(p)(£2), for &1,& € Sen’(A)
and x €
— Sen’(p)(@ §) Nom(i)Sen'(go)(ﬁ), for ¢ € Sen’(A) and i € Nom,
= Sen’(9)([N(&1; -+, 6n)) = [@A(/\)](Sen()(€1), - Sen' () (€n))
(@) (N (s €)= (™ (A

and Sen’(p = (™ (V) (Sen’(¢)(51) -, Sen’(¢) (&)
for A € A,yq and &1, ...,&, € Sen’(A) and

= Sen’(9)((VX)€') = (Vx(¥))Sen’(¢[x])(¢) and Sen’()((3x)E') =
(Ix(p))Sen’ ([x]) (&), for x : A — A’ € D and &' € Sen’(A).

3. for each T’-signature A, the category Mod’(A) has as objects pairs
(W, M) where |W| is a set (of states), for each i € Nom, W, € |W]|,
for each A € A,,, Wy is an n-ary relation on |W| and M,, € Mod(X)
for each w € |W/|. A model homomorphism h : (W, M) — (W', M")
consists of a function hg : [W| — |W’| such that hg(W;) = W/ and
Wiz, ...,xn) = Wi(hst(z1),...,ha(zy)) for z1,...,2, € |W|
and A € A,, and a natural transformation h : M = M’ o hy, i.e. a
family of Z-homomorphisms hy, : My, — M; (w) for each w € [W.

¥
en

If o : A — A’ is a signature morphism and (W', M’) is a A’-model,
its p-reduct (W', M’)|, = (W, M) is defined as follows

— |W| — |WI|, WZ = Ww'rLUTYL(i) and W)\ = W;A()\)

12

— for each w € |W|, My = M;,|gsis.

The list of semantic constraints determines the following restriction
on the classes of models:

’ Semantic constraint \ Restriction on binary modalities
Reflexive All binary modalities must be reflexive
Transitive All binary modalities must be transitive
Symmetric All binary modalities must be symmetric
Serial All binary modalities must be serial
Euclidean All binary modalities must be Euclidean
Functional All binary modalities must be functional
Linear All binary modalities must be linear
Total All binary modalities must be total

’ Semantic constraint \ Restriction on local models
SameInterpretation world Same set of worlds
SameInterpretation nominal | Nominals have the same interpretation
SameInterpretation k Symbols of kind k have the same interpretation
SameDomain partial Partial functions are defined on same arguments.
SameDomain rigid partial Rigid partial functions are defined on same arguments.

4. for a signature A, a A-model (W, M) and a world w € W, we define
the satisfaction of a sentence in the world w as follows:

- (W, M) ¥ i iff W; = w, for i € Nom,

— (W, M) EY e iff M, [= e, for e € Sen(X),

— (W, M) ¥~ I (W, M) B €, for & € Sen'(A),

- (W, M) =" & A& iff (W, M) E* & and (W, M) EY &, for
€1,& € Sen’(A),

- (W, M) = & v & iff (W, M) = & or (W, M) " &, for
€1,& € Sen’(A),

- (WM) ¥ & = & it (W, M) Y & whenever (W, M) E*
61, for 51,62 € Sen/(A),

— (W, M) v Q¢ iff (W, M) Wi ¢, for € € Sen’(A) and i € Nom,

- (W, M) E* [N(&,...,&) iff for each wy,...,w, € |W| such
that Wy (w, w1, ..., w,) we have that (W, M) EY: & for some
i=1,...,n,

- (W, M) E*Y (\) (&1, - -+, &) I exists wy, ..., w, € [W] such that
Wi (w,wy,...,w,) and (W, M) ¥ &; for each i =1,...,n,

— (W, M) E* (Vx)¢ iff for each y-expansion (W', M') of (W, M),
we have that (W/,M') =¥ ¢, where x : A - A’ € D and
¢ € Sen’(A)

— (W, M) E¥ (3x)¢&’ iff there is a y-expansion (W', M") of (W, M)
such that (W', M') =¥ &, for x : A - A’ € D and ¢ €
Sen’(A).

Then (W, M) = ¢ it (W, M) =" ¢ for any w € |W]|.

13

sem(I",addQuantOrConstr L Q C) =7’

where

e I'(L) = T and baseLogic(L) is defined (which ensures that L is a hy-
bridized institution),

e 7’ is the institutiton obtained by replacing the quantification space of Z
with its extension determined by sem(T, Q),

e the classes of models of each signature are further restricted as given in

C.

sem(Z,QuantRestr+) =D
: MorphismsClass

sem(Z,ny ny ...ng) =D

where D is the class of signature extensions in Z with symbols whose kind is
among nq,...,ng. All kinds must be valid for Z, i.e. n; € Kinds for each
i=1,...,k.

3.3 Hspec structured specifications

sem(I',HDef) =T"
: LogicalEnv

sem(T',hdef N S)=T[N — (Z,%, M)]
where sem(T, S) = (Z,%, M).

sem(T',HSpec) = (Z,%, M)
: (Institution, Signature, ModelClass)

sem(T', baseSpec) = (Z,%, M)
where Z is the logic of baseSpec and sem? (baseSpec) = (3, M).
sem(T', extension S1 S2) = (Z,%, M)
where
o sem(I’, S1) = (Z,%1, M1),
o sem§ (52) = (Z,%, My),
e M={Me M| Mg, €My}

14

sem(T,union S1 52) = (Z,%, M)
where
e sem(T’,S1) = (Z,%1, My),
e sem(T, S2) = (Z,%3, M>),
e X =13 Uy,
e M ={McMod(%) | Mg, € M;}

sem(T, renaming S1 symmap) = (Z,3, M)
where
e sem(T',S1) = (Z,%1, M),
e sem(I', X1, symmap) =0 : X1 — %,

o M ={MeMod(®) | Mlg, € M;}

sem(T', X, SymbolMap) =o:% — ¥’
: Morphism

3.4 Hspec basic specifications

sem(T',HBasicSpec) = (Z,%, M)
: (Institution, Signature, ModelClass)

sem(I',hBasicSpec logicPart dataPart configPart) = (Z,%, M)

where
e sem(T, logicPart) = Z,
o sem(I',Z, dataPart) = (Zgata; Mdata)s
o sem(I',Z, Xyata, configPart) = (A, M)
e M={MeM | Mls,,, € Maata}

sem(T',LogicPart) =7
: Institution

sem(T',logic L) =T'(L)

15

sem(T',Z,DataPart) = (X, M)
: (Signature, ModelClass)

sem(I',Z,data S') = (X, M)
where
o I'(S) = (T, 2, M),
e baseLogic(Z) =T .

sem(T',Z, X 4qtq, ConfigPart) = (A, M)
: (Signature, ModelClass)

sem(T',Z, 3 gqtq, configuration hdecls hsens) = (A, M)

where
* Ao = (Zdatar 0, {0} nen),
o sem(T, T, Ao, hdecls) = A
o sem(I, T, A, hsens) — Az
o M= {M eMod(A) | M & Az}

sem(D,Z, Ajpit, HybridDecl+) = A
: Signature

sem(T,Z, Ajpit, hdecly, . .., hdecl,) = A
where
o sem(T,Z, Ajpnit, hdecly) = Aq
e ...

o sem(T,Z,A,_1,hdecl,) = A

sem(I',Z, Ajpit, HybridDecl) = A
: Signature

sem(I',Z, Ajpit,nominals idy . ..idg) = A
where
° Ainit = (Za N0m7A),

e id; does not appear in Nom for i =1,... k,

16

e A= (X,NomuU{id; |i=1,...,k}A).

sem(T',Z, Ajpit,modalities (idy,nq)... (idg,ng)) = A
where
e Ajnit = (X,Nom, A),
e id; does not appear in A fori=1,...,k,
o for n € N, Al, = A, U{id; | (idj,n) a newly declared modality},
e A =(3,Nom,A).

sem(T',Z,A,HSen+) = Ax
: Set(Sentence)

sem(D,Z, A, hseny ...hsen,) = Ax
where
e sem(I',Z,A, hseny) =&,
o sem(T',Z,A, hseng) = &,

e ...
o sem(I',Z,A, hsen,) = &,,
o Ax={&,... &}
sem(l,Z,A,HSen) =¢
: Sentence
sem(D,Z, A, basicSen) = &
where

e A= (3,Nom,A),
e baseLogic(T) =T,
o sem(I',I', %, basicSen) = &.

sem(I,Z, A, qid) = id.L
where
e A =(3,Nom,A)

o sem(I',Z, A, nominal, qid) = id.L,

17

e ifT'(L) = Z, id must be in Nom, otherwise id.L = sem(T", base Logic(Z), %, gid)

sem(T,Z, A,negation sen) = =&
where sem(I',Z, A, sen) = £.

sem(I',Z, A, conjunction sen; seng) =& Ao

where sem(T',Z, A, sen;) = &;, for i = 1,2.

sem(I',Z,A,disjunction sen; seng) =& V&
where sem(I',Z, A, sen;) = &;, for i = 1,2.
sem(T,Z,A,implication senj sens) =& = &
where sem(T,Z, A, sen;) = &;, for i = 1,2.
sem(I',Z, A, at qid sen) = @4

where

o A= (,Nom,A)

e sem(T',Z, A, nominal, qid) = id.L,

e if I'(L) =7 then if id is in Nom, sem(T',Z, A, sen) = &

e if I'(L) # Z, then @;4¢ = sem(T', baseLogic(T), X, at qid sen).

sem (T, Z, A,box qid seny ...seny) = [id](&1, ... &n)
where
e A =(3,Nom,A)
o sem(I',Z, A, modality, gid) = id.L
o if (L) =7 then if id is in Ay,yq, sem(T,Z, A, sen;) =&; for i = 1,n,

o ifI'(L) # Z, then [id](&1, . . . &) = sem(T, baseLogic(T), o, box gid seny . .. sen,)

sem(T',Z, A,diamond qid sen; ...seny) = (id)(&1,...&n)
where
e A= (3,Nom,A)
o sem(I',Z, A, modality, gid) = id.L
o if '(L) =Z then if id is in Ayy1, sem(T,Z, A, sen;) =&; for i = 1,n,

18

o ifT'(L) # Z, then (id)(&1, ... &) = sem(T, baseLogic(T), o, diamond gid seny . .. sen,)

sem(T',Z, A,quantification gquant gnom sen) =&
where
o sem(I', I/, A’ gnom) = p : A" — A"
o sem(I', I/, A" sen) =&,
«t= (3p)¢ q = existsH
(V)¢ q = forallH
sem(I',Z, A,quantification gquant bspec sen) = £
where

e A =(3,Nom,A)

sem(T,Z, A, qquant) = (¢,Z', A'),

e if 7 = baseLogic(T'), sem% (bspec) = (Z",%', M) such that for each
s € Sym(X')\ Sym(X), quantification on symbols of kind kind(s) is legal
in 7 and M = Mod(%')*

o ©: A - A’ is the extension of A’ with all symbols in Sym(%’)\ Sym(X).

sem(T, I, A" sen) = &',

¢ = (3p)¢ q = existsH
| (V)¢ q = forallH

sem(T',Z,A,QualQuant) = (¢q,Z',A")
: (Quantifier, Institution, Signature)

sem(I',Z,A,qualQuant q L) = (quantH,Z', A")
where
e A =(3,Nom,A)
o T =T(L),
e sem(q) = quantH
o if7/ =7, A" = A, otherwise sem(T",Z, A, qualQuant q L) = sem(T",Z’, %, qualQuant ¢q L)

4This ensures that there are no axioms in bspec.

19

sem(Quant) = forallH | existsH
: Quantifier

sem(foralll) = forallH

sem(existsH) = existsH

sem(T,Z,A,Quallom) =o
: Morphism

sem(T,Z, A,nominals L iy ... ip) =0
where
e A =(3,Nom,A)

e fI(L)=7Z,0: A — (X,NomU{iy,...,in}, A) is the extension of A with
the nominal variables iy, ..., 1,,

e otherwise, let o/ = sem(I",baseLogic(Z),¥,nominals L i1 ... i,) and
expand ¢’ to 0 : A — A’ by letting o be the identity on nominals and
modalities on a level of hybridization higher than the one given by L.

sem(T,Z,Ak,I1d) = symName.qualification
: Name.LogicName

sem(l',Z, A, k,qualName nl n2) = nl.n2
if n1 € Sym(A) and kind(nl) = k.

sem(T,Z,Ak,n) =n.L

where if A = (3, Nom, A) if ny, ..., ng is the list of all symbols in Symbols(A)
with name n and kind k, then

e if k =1, then L is the unique logic name such that I'(L) = Z,

e if k£ > 1, if there exists a symbol n; such that n; is not a symbol in X,
then L is the unique logic name such that I'(L) = Z, otherwise n.L =
sem(T', baseLogic(T), 3, n).

20

Bibliography

1]

2]

J. Addmek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories.
Wiley, New York, 1990.

J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing
Machinery, 39:95-146, 1992.

Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling
and reasoning about systems (2. ed.). Cambridge University Press, 2004.

S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.

T. Mossakowski, M. Codescu, F. Neuhaus, and O. Kutz. The Road to Uni-
versal Logic—Festschrift for 50th birthday of Jean-Yves Beziau, Volume II,
chapter The distributed ontology, modelling and specification language -
DOL. Studies in Universal Logic. Birkh&user, 2015.

21

