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THE ENERGY IN ONE.DIMENSIONAL RATE-TYPE
SEMILINEAR VISCOELASTICITY

C. FAcIU and M. Mtsi.lrnscu-SULICIU
Institute of Mathematics, Str. Academiei 14, Bucharest,.Romania

(Receiued 6 September 1985 in reuised form 2 December 1986)

Abstract-The existence and properties of a free energy function compatible with the second law
of thermodynamics in one-dimensional rate-type semilinear viscoelasticity is analysed. Necessary
and sufficient conditions are given such that a free energy as a function of strain and stress exists
and is unique, that it is a non-negative function and possesses a monotony property with respect to
the equilibrium curve. A bound in energy for the smooth solutions of certain initial and boundary
value problems with respect to the input data is established when the equilibrium curve is a non-
monotonic curve (i.e. the free energy function is a non-convex one). Thus iron-like behaviour, for
instance is  a lso included. An Lr-approach to equi l ibr ium is a iso discussed.

I .  INTRODTJCTION

The existence of a free energy function compatible with the second law of thermodynamics
for rate-type constitutive equations has largely been investigated in the literature. References

[1,2] deal with the hypoelastic case and Refs [3,4] with the viscoplastic and viscoelastic
cases. For the elastic-perfectly plastic one-dimensional constitutive equation see Chap.4,
Section 4 in Ref. [5].

In the quasilinear viscoelastic case, the existence and uniqueness up to a constant of
the free energy function is proved in Ref. [3] under the assumption that the equilibrium
curve is smooth and its slope is always strictly smaller than the instantaneous slope.

For the semilinear case, if the equilibrium curve has always a strictly positive slope, it
is shown in Ref. [4] that this energy function is positive, convex and possesses a monotony
property with respect to the equilibrium curve. By means of the energy function one gives
in Ref. [4] several energy estimates of the smooth solutions of some initial and boundary
value problems.

In this paper we also consider one-dimensional rate-type semilinear viscoelastic consti-
tutive equations. In Section 2 we give necessary and sufficient conditions, on the constitutive
functions, for the free energy function to exist (and we construct it), to be non-negative and
to possess a monotony property with respect to the equil ibrium curve. We notice that these
conditions allow the equil ibrium curve to be continuous only and not necessarily increasing.
These constitutive assumptions are weaker than those of Ref. [4] and more interesting since
they allow us to describe materials, like iron for instance, for which the equilibrium curve
has not always a positive slope (see for instance p. 577 in Ref. [6]), thus the free energy may
be a non-convex function.

In Section 3 we show that all the energetic properties proved in Ref. [4] for the smooth
solutions of some init ial and boundary value problems sti l l  remain valid under our weaker
constitutive assumptions. These properties are: the total energy at any time remains
bounded by the energy of the initial data plus the energy exchanged by the body with the
external world and the solution is continuously dependent upon the input data. We also
obtain that in the case of an isolated body problem (i.e. for a body which does not exchange
energy with the external world) there is an asymptotic L2-approach to equilibrium. This
property suggests (as in Ref. [a]) a rate-type viscoelastic approach to non-linear elasticity.
But, unlike in Ref. [4J, we obtain an L2-approach of the solutions of a hyperbolic system
(the viscoelastic one) to the solution of a possible non-hyperbolic system (the non-linear
elastic one) since the equil ibrium curve has not always a positive slope.
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Fig. l. The constitutive domain ? (bounded by dotted lines) corresponding to the equiiibrium curve
o :  o^(e) ,  t ,e I  :  [e, ,  e J.  For ee [0,  eJ the equi l ibr ium curve is  chosen here s imi lar  to that  of  i ron in

a uniaxial standard test.

We also consider the case when the constitutive domain (in the stress strain plane) is
bounded and we show that this domain cannot be arbitrari ly chosen since it is determined
by the equil ibrium curve, and the instantaneous reponse curves (see Section 2 and Fig. 1).

2. THE FREE ENERGY FUNCTION AND SOME OF ITS PROPERTIES

Let us consider a rate-type constitutive equation (see Refs [7-9])

o  :  E i * G ( e , o )

where o : o(t) is the stress, e : 4t) is the strain and

E :  C O f l S t .  >  0

G:9 -- R, G Lipschitz continuous on I

0 :  { ( e , o ^ ( 0 - t E ( e - 0 ) ;  ( e , 0 e  f  x I }

1g R an interval containing 0 as an interior point

( 1 )

(2a)

(2b)

(2c)

si

'  P=(E,( f )

G : 0 if and only if o : on(s)
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(o -  o p(e))  G(e ,  o)  (

rate-type semilinear viscoelasticity

0 for any (e, o) e 0
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(2d)

where

o n ' .  I  -v  R,  oa(0)  :  0 ,  o  Re Co Q) . (2e)

The curve o : o n(t) in the e o plane is called the equilibrium curve. E is the dynamrc

Young's modulus. Assumption (2c) ensures that the constitutive equation, eqn (1), is a

viscoelastic one (unlike in Refs 11-91where the models are viscoplastic) and condition (2a)

implies that the model is semilinear (i.e. with a l inear elastic instantaneous response) and

has real acceleration waves.
A pair  (e(r) ,  o( t ) ) ,  re [0,7) is cal led a smooth process i f  ee Cr110, T)) ,e( t )e l for  any

re [0, Q, (e(0), o"(0)) e I whlle o(t), te [0, Z) is the solution of eqns (1) and (2) for the given

e(r) and o(0), such that (e (r)' o(r)) e I for any t e [0, Z). Then assumption (2d) represents

the necessary and sufficient condition for the equilibrium curve to be stable with respect to

relaxation processes, i.e. each constant strain process (t : to, o : o(t)), t > 0 starting at

(e6, o(0)) eQ has infinite duration and approaches op in the sense that l im o(t): on(eo).

Thi; assumption reflects some experimental evidence.
The choice of domain g in relation (2b) (see Fig. l) is based on the following remark:

any process starting in I wil l always remain in 0. The proof of this remark is given at the

end of  th is sect ion.
The constitutive equation, eqn (l), is said to have a free energy function of strain and

stress, compatible with the second law of thermodynamics if there exists a smooth function

rlt : rl, @, o), {/ : 0 -+ R such that

oe- pr!  2 0

for any process (s(r), o(t)), re [0,7) (see Ref. [1]). Here p > 0 is the mass density in the

reference confi guration.

2.1. Existence and uniqueness
We give first the necessary and sufficient conditions on the constitutive functions in

conditions (2) such that the constitutive equations, eqns (1) and (2), admit a free energy
function. Following Ref. [a] the proof is based on the construction of this energy function.

Proposition I. The constitutive equations, eqns (1) and (2), admit a unique free energy
(modulo a constant) if and only if

o n ( t r ) - o ^ ( e r )i ' ) .  1 r  " '  "  <  E  f o r  a n y  E 1 , E 2 e  I ,  t 1 *  s 2 .
E t - E z

(3)

Proof. A smooth function t :9 --+ R is a lree energy for the constitutive equations,

eqns (1) and (2), if and only if (see Ref. [3])

atL
0t,

AtL o
+  E ; L :  -

0 0 p
(4a)

at7 ̂
^ ' G ( e , o ) ( 0 .
o6

Equation (4a) has the general solution

for  any  @,o)e9

(4b)
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o 2
p r ! ( t . o ) :  -  - * Q @ - E e )

/ .L

where (-l is an arbitrary smooth function of argument o-Ee. On
hypothesis (2d), inequality (ab) is equivalent to

Atl/
Ao

( o - o p ( e ) ) > 0  o n  L

Now 0r!lAo must vanish for o: on(s) since otherwise inequality
-fhus

(5)

the other hand, under

(6)

(6) wil l be violated.

(e ,op(e) )  :  0  fo r  any  ee I .

By using eqn (5) in eqn (7) for o : o^(s) we obtain

h(e) : o o@,) - Et, for any t,e I

then eqn (7') becomes

atL_
Ao

(7)

o n ( € . )  .  t ,"E + Q'@ ̂(t) - Ee) : g for anY

where Q'k)  :  dSQ)ldr.  I f  we denote

e e I (7',)

(8)

(e)

(10 )

In order to determine the function @(r) from eqn (9) the function /z(e) has to be
invert ib le,  i .e.

h ( t : , )  *  h ( t r )  f o r  a n y  8 , ,  e . e  I ,  t r  *  t z .

Q'(h(t)) : -t uP lor any t e I.

t  , ,  .  o n (  l t ( t ) l  ^
Q ' k ) : -  E  

f o r a n y  t e h ( l )

When condi t ion (10) holds.  95 wi l l  be the unique solut ion (modulo a constant)  of  the
fol lowrng cquat ion:

( l  l )

where ft-is the inverse function of ft. According to eqn (11) d is defined on h(I); but according
to the definit ion of I in eqn (2b), for any (e, o) e 0 there must exist an de 1 such that
o - Ee : h(i l and therefore $(o - Et) makes sense in eqn (5) for any (e, o) e I .

Now, the function:i/ in eqn (5) with $ given by eqn (11) has also to verify inequality
(6) in order to be a free energy function. Since for any (e,o) e0 there exists an ele lsuch
that o - Et : iz(d) we have

o - o p ( e ) :  h ( A - h @ )

and, according to eqn (5) we also have
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?{/  o h* h( i l  on(c)
P d o : b + E \ o - L t ) :  E  E : c - c .

Then inequality (6) requires
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(12)

( 1 3 )

(  l 4 )

(  l 5 )

(2',)

fh(e)-h(i l ]1(p-d) < 0 for any \deL

Consequently expressions (10) and (12) are the necessary and sufficient conditions tor the
existence of  a f ree energy funct ion,  i .e.  a solut ion of  eqns (4a) and (4b) in 9.By using
notation (8) they are equivalent to condition (3). Moreover, the solution of eqns (4a) and
(ab) is unique (modulo a constant) and we can write it explicit ly.

Indeed, according to expressions (10) and (12) h is strictly monotone, therefore

E(') - 6'G)

and by substituting eqn (14) - 0

The free energy function of eqns (1) and (2) for which /(0,0) :0 is then given by

eh(e):  f '  , r rdr* [" ' "  i l (D a; .  for any ter.
J , t  J o

On the other hand from eqns ( I 1) and (8) there results

o '
rL@,o) :  tE

w h e r e  t : i t ( o - E t : ) .

Rentark 1. In Ref. [a] the existence of a free energy function is
restrictive assumptions on the equil ibrium curves, i.e.

/  :  R ,  o  pe  C ' (R ) ,  o ' p ( t )  <  E  f o r  any  e  e  R .

T

D
L

into eqn (13) we obtain,  i f  d(0)

Qk) :.[ ' '  o^,r, d, - t-qYD

F -

I  o R ( c )
+  |  o o ( s )  d s -' l ^ -  

2 E
. ) t t

(  l 6 )

Q E D .

proved under more

From now on we assume that relation (3) holds, i.e. eqns ( I ) and (2) admit free energy
funct ions.  We denote by r /  that  one -eiven by expression (16) and qi  by eqn (15).

2.2. Properties of the free energy function
We study now some properties of the free energy function r/ which are important from

both the physical and mathematical point of view. The first property we investigate is the
non-negativeness of {/. In general the free energy is not required to be a non-negative
function; however, in many cases, it is supposed to be non-negative so it is interesting to
know under what conditions such a property holds. Moreover, a non-negative function 95
is very useful in studying the solutions of the system of equations which describes the
motion of a body modeled by the constitutive equations, eqns (l) and (2) (see Section 3).

Proposition 2. The function @ is non-negative on h(I) if and only if
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r r  o ' , (e\
I  o^(t)  ds > a"; '  for  any ee I .  (17)

J o  L L

R, relation ( l7) is equivalent to

f t

I  o^(r) ds ) 0 for any e e R. (17')
J o

According to eqn (15) relation (17) is obviously equivalent to d(r) ) 0 for any

now that for I: R relation (17) is equivalent to relation(17'). We have

relation (17') implies relation (17) since the converse is obvious. Assume
(17')  holds and choose an e* e R. We denote

E:e* - ' ?

op(s) ds.

If s < €* one has, according to inequality (3)

oo (s ) -oo (e * )  >  E (s - s * ) fo r  any  se  [e ,e* )

which implies

I.,."^,r, d, : f on(s) or*l on(s) o, 
" I

I  oo( t )  ds  >  [op(s* ) -  E t * ] ( t *  -€ - )+ E
/ ^ * t

t ' "
- ) r  o ' * (e * )_ E - ) : - 2 8

and therefore relation (17) holds for e*.
If r > e* the proof follows in the same way. Q.E.D.

Remark 2.It general, when I + R, relations (17) and (17') are no more equivalent. If,

fo r  ins tance,  1 :  [ r r ,e r ]  and o :  on(s )  i s  such tha t  o^ (er )  <  0  and j ' j o^ (s )  ds :0  then

relation (17') holds while relation (17) is obviously violated for e : e z.
In particular, if

I : l t r , t z ] ,  o n ( e r )

then relat ions (17) and (17') are equivalent on

o p ( e ) ) o ( 1 8 )

Corol lory 1.  When I :  R or I  *  R but condi t ion (18) holds then relat ion (17')  is  the

necessary and sufficient condition for the free energy function r/ to be non-negative. When

I + Rrelation ( 17) is a sufficient condition for the free energy function r/ to be non-negative.

Remark -1. In Ref. [a] the free energy on R t - {0} is proved to be positive under the

assumption that the equilibrium curve is always a strictly increasing function on R and

satisfies condition (2'), r.e.

0 < o ' o @ ) < E  f o r a n Y  e e R '

This condition obviously implies relation (17').

< 0 ,

I.



The energy in one-dimensional  rate- type semi l inear v iscoelast ic i ty  1511

It is interesting to note that in Ref. [a] the slope of the equil ibrium curve is required
to be strictly positive while relation (17') requires that only the area defined by the equi-
l ibrium curve be positive for any s € R.

We give now a necessary and sufficient condition for ry' to possess a monotony property
with respect to the equil ibrium curve.

Propos i t ion  3 . I f  we have two func t ions  G, (e ,  o ) .  i :1 .2  and two equ i l ib r ium curves
o n , ( e ) .  i :  1 . 2  s u c h  t h a t  e a c h  p a i r  ( o r , , .  G , ) . i :  1 , 2  s a t i s f i e s c o n d i t i o n s  ( 2 )  a n d  ( 3 )  f o r  I :  R
then

t  ,( t ,6) >- {/  t( t , ,  o) for any (e, o) e R 2

i f  and only i f

where r / ,  is  the f ree energy funct ion (16) corresponding to the pair  (oo,  G,) ,  i :  1,2.
Proof'. Let r be such that

:  h t ( e , )  :  h r ( t . r ) ,  h , ( t )  :  o ^ , ( e )  -  E e ,  i  :  1 , 2 ,  s € R .

Then.  accord ing  to  express ions  (15)  and (21)

By a s imple calcr , r lat ion rve get f rom expressions (22)

A similar calculation leads to

But.  accordins to condi t ion (3) we have

f ' ,  f ,
I  oo t , r )  ds )  |  op.(s)  ds for  any se R

J o  J o

6 , ( c )_ .d . k ) :  
f  

' oo , ( r )  
d r - f  on , ( s )  d r_  *b ' * , ( r , ) - o i , ( r , ) l

o n , ( E r ) - o o , ( e  , ) :  E ( e r  - r : ) .

f ,,. f , '
d 1 ( z )  - Q ' ( t ) :  

I  t " o , ( s ) - o ^ , ( s ) l  d s +  |  l o o , ( s )  _  o R , ( e , ) - E ( r - e  1 ) ]  d s .  ( 2 4 )
J t t  J ' .

f  , ' '

J , .  
[ o ^ . ( s ) - o * , ( e , ) - E ( s - e . ) ]  d s  <  0

f  , , ,

J , , .  
l o o , ( s )  -  o R  ( e ' ) - E ( s - e  ' ) ]  d s  >  0

(1e )

(20)

(2r)

(22)

(23)

for  any t r ,  tz  e  R,  e  r  #  ez.
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and therefore, from relations (23) and (24) we obtain

[ o ^ , ( s ) - o ^ , ( s ) ]  d t  <  d ' ( r ) -  Q r G ) [o^ ,  (s) - op, (s)] ds.

Now.  i f  I :  (a ,b )
that p(t) e /i(1) for
Then

I

I
J 0

I  E t

J o
(2s)

Thus 6 ,G) 2 6 zG) for any r e R if and only if inequality (20) holds, which proves the

equivalence of inequalit ies (19) and (20). Q E.D'

Remark 4.The monotony property of the free energy function rlt for (1)+ (2)+ (2') is

proved in Ref. [4] when

0 < o ' ,1.(e) < o 'o,G) < E for anY eeR.

This case is obviously included in the hypotheses of Proposition 3.

A possible physical interpretation of the monotony property is given in Ref [4] : if a

viscoelastic material charactenzed by a constitutive equation, eqns (l) and (2), is subject to

a certain thermal process (such as annealing or quenching for instance) that leaves the

Young's modulus E unchanged but changes the function G and the equilibrium curve

according to inequality (20) then we are able to compare the free energies for the two

constitutive equations.
The monotony property may also be used when comparing the free energy r! to an

Euclidean norm on R 2 
lsee Section 3).

The constitutitte dontain g. We will now justify the choice of the constitutive domain

9 in (2b). We prove first that any process (e(r), o(t)), re [0, Z) starting rn g, i.e. (e(0),

o(0)) e 9, wlll rernain rn I for r e [0, f). Indeed, let us denote

p(t)  :  o( . t ) -  Ee(r) .

Then

iU) :  G(e(/),  o(r)).

then h(I) : (,r,8); for (e(0),o(0)) e9 there always exists a T > 0 such

re  [0 .  f ) .  Suppose tha t  f  i s  such tha tp(T) :  0 .  pQ)eh( I )  fo r  re  [0 ,  f ) .

p Q ) :  ( 6 - o n ( e ) )  ( Z ) +  h ( e ( T ) ) :  P

thus

and therelore accordins

( o - o o ( e ) ) ( r ) :  F - h ( t ( T ) )  >  0

to (2d) G@(\.  o(rD < 0.  Then

p(T) :  G(t '(T), o(z)) < o

and there results p(T-6) > pQ): f i for d > 0 sufficiently small which contradicts the

hypothesis p(r) < B for r el0. T).
I f  I :  [a,b]  then h(I) : lh(b),h(a) l  and for any r  for  which p(t)> h(a) we have

(o-op(t))  ( / )  :  p( t ) -h(e(r))  2 h(a)-h@(t))  )  0 which,  according to (2d),  impl ies
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p(t ) :  G@(t) ,  o( r ) )  (  0 .

Therefore, p(t) < h(a) for any t > 0 as p(0) { h(a).
In conclusion, if G is defined on a domarn 9* =

I cannot be reached by processes starting at states
point of view there is no need to define G outside I ;
are not able to determine G experimentally outside I
reached by processes startingin g.

Now, it seems quite natural for any state (e, o) reached by a process to possess a free
energy function and, according to expressions (15) and (16) the domain 0 isprecisely the
set of all states (e , o), e e l for which we could prove there exists a lree energy function.

3. SOME ENERGY ESTIMATES IN ONE-DIMENSIONAL VISCOELASTICITY

Let us consider the system of partial differential equations describing the motion of a
rate-type semilinear viscoelastic material

9 the states in g* which are not rn
in 9. Thus, from the mathematical
lrom the practical point of view we
since the states outside I cannot be

0u
0 6 ,

0e
At

Ao
- a -  -

o t

where the init ial data are such as not to
In the fo l lowing by (e,  o,u)(x,  r )  we

(26) and (27). _
Now let t! be any smooth solution

energy d6 of the solution (e. o. r ) (.r. r) of

EX:  G@,o) .

generate acceleration or shock waves at r : 0 * .
will always denote a smooth solution of problem

of the energy equation, eqn (4a). We define, the
problem (26) and (27) by

pb
0o
0x

0u
0x

(26)

Here e(x, /), o(x, t), u(x, t) are the strain, stress and particle velocity, respectively, p > 0
is the initial mass density, b(x, t) is the body force and to the constitutive equation, eqn
(,26)t, we add the constitutive assumptions (2), (3) and (17) (or (17') if 1 : R) such that eqn
(26), admits a unique positive free energy function r/ with /(0,0) : 0.

We consider the following problem for system (26)

(t,, o, ,^) (-r, 0) : (€0, os, ue) (x), .x e (0, /)

(ou) (0, t) : (ou) (l,t) : 0, / > 0
(27)

d,t,(t) : d,t,@(, t), o(., t),u(., t))

Then the following energy identity holds

d

atai( t )  
:

,^, ,,tl:..d, 

from eqns (26) and (4a) we have

r ) d x ,  t > 0 . (28): l,l iu'+ p'[1e'")]t"'

l,lo,u.,Z*o] o" t >,- 0. (2e)
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( o r ' ) - o ; l p L ' b

C T

Relation (29) follows now immediately if we integrate with respect to r and take condition
(27), into account.

Function (28) corresponding to the free energy function r/ given by expression (16)
wil l be denoted by c(r) and wil l be called Lhe total ener(J.r: of the solution (t,,o,u) (r,r). We
recall here that the free energy r/ is that solution of eqn (4a) which also verif ies (4b) and

/ ( 0 . 0 )  :  0 .
The energies e;(r) defined by expression (28) have been introduced in Ref. [4] where

the total energy e(l). under assumptions (2') and o'o(e) > 0 for any r e R, is used to establish
several important properties of the smooth solutions of problem (26) and (27). In the
following we prove that some of these properties are sti l l  valid when the assumptions of
Ref.  [a]  are weakened in the sense that they are replaced by relat ions (3) and (17) (or (17')
i f  1 :  R ) .

3.1. Bounds in energv and stabil ity
We start with a result which shows how the total energy e(t) may be used to obtain a

bound in L? for the solution (e, o, tt) (x, r) of problem (26) and (27).

Proposi t ion4.I f  e(0) < cc and i f  there exists Er:  const. ,0 < Et < E, such that

t / \ r? l p , \  ? o  a
a r f j " ) :  ' ' e , *P ' ' b :  ? . ,

d ae / afr dui': 
!,(or )* pr h -:: (, 

' !  
+ ,,u' lo )

:  j  (o , ' )  *p rh - ' r? !  * ra^ i l  o .
cx ot  co

then

I t  E , t 2  r

Jn  
oo t ' t '  d t  > ;  *  

z1n_ g , . ,  [oo(e)  -  E  td2  fo r  anv  te  I

(1, )rr(x'') o')"" (l(.l,

; i( i

:f ["^,, -#fit] o, -(^.+)["^,,, -,T:;'f

(30)

(32)

utrtrr.r) 
ar) '  

' -  \ l  2

1, , ' ( . t . r )  dx  )
/ t/

< rfvt"(o))+ \ r  :  I
p b : t . r . i )  d x ]  d s l f o r a n y  r > 0  ( 3 1 )

where K:  l (2ElE) .
Proo/. Consider the function

r f  Q) )  Ar2

@ given by expression (  l5) .  We prove f i rst  that

I  :  conSt.  > 0 for  any "c e h(I)

if and only if there exists Er: const. with 0 l Et < E such that inequality (30) holds and
then

2 A E 2
Dt ' t  -  

r1z/n'

Indeed. this statement follows immediately from expression ( l5) since

6(h( i l  -  Ahz ( t )

Now, as @r!lAo)G < 0, there results from eqn (29) (written for the total energy e(t))
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(1, tr,' o*)'' (l,ror'o")"' < .,/("(,)) (l,rru'o")"'e(r)  (

Thus

But, according to the above remark,

Itntr)) < .,/(.(o)) . 
i i( i 

pb'(*,r) a")"'o, for anv t > 0. (33)

Therefore, the square root of the total energy at any time t )- 0 is bounded from above
by the square root of the total energy of the initial data plus the energy supplied to the
body by the external world during the whole time interval [0, r].

Now. from relations (33) and (28) there results

f  f ' o '  l ' '  f  f ' p ,  l '  '

L), * (x. t) dxl . L J., ir '(*, t) dxl

[ | 
t, @ - Et)(x, r)) o"]"' < .,/(u(o)) +

t  f ,  /  fr' ,n  
I  (  |  pb ' (x ,s)

l L  J u  \ J U

) and (32) are equiv

\ t l z
d " l  d s : M ( t ) .

alent andinequalit ies (30

E ,
/ l -

"  -  
zE (E-E) '

l , :*(x' t)

Thus we have

d x (

and (31) fo l lows.

Remark 5. If 1 :

f , ;o2(x , r )  
dx . f  ;  @-Ee) ' ( * , t )dx  (  ( r .  * )M2g1 

: 2E
n r M ' ( ' )

Q.E.D.

R condition (30)

I o.t') a'

is equivalent to

E , E 2
> ;  f b r a n y  c e R .

The proof is immediate if we use relation (17').
This equivalence is also a direct consequence of the monotony property given by

P r o p o s i t i o n  3  w h e n  o o , ( e ) :  o n ! ) ,  o ^ , ( e )  -  E t e  f o r  a n y  s e R  a n d  6 t G ) : 4 k ) , f r | ) :
E, 'c)  72E1E - E , ) l  for  any z e R.

The upper bound in L2 given by (31), but stated in slightly different terms is obtained
in Ref. [4] under the assumption that there exists an Er: eorst., 0 < Et < Ewith

0 < E, (  o 'n(e) for  any eeR. (30')

Condition (30') obviously implies inequality (30) for a smooth op but inequality (30) is less
restrictive than condition (30') even in the case when o^ is smooth (for instance oR is no
longer required to be an increasing function on R).
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We end this subsection by some remarks concerning the continuous dependence of the
solutions of problem (26) and (27) upon the input data. By input data we understand the
init ial data (e 6, o6, rro) (x) and the body force b(x, t).

Le t  (e '6 ,  o 'o ,u 'o ) ( r ) ,  b i (x ,  t ) ,  i :1 ,2  be  two se ts  o f  inpu t  da ta  and le t  (e r .  o ' , t , ' ) (x , r ) ,
i : 1,2 be the corresponding solutions of problem (26) and (27). We denote

( t , o , u )  ( x ,  r )  :  ( t ' -  E z , o t  - 6 2 , u ' - - u ' )  ( x ,  / )

( to,  o o,  uo) (x)  :  (e l ,  -  d,  o l ,  -  o l , ,uJ -  u3) (r)

b(x, t) : (b' - b') (r, t)

and require that (oL') (0, t) : (or,) (1, t) :0, r > 0.
Let us also denote

We give the following known result from the theory of stability for partial differential
equations (see Chap. II, Section I I in Ref. [10] for instance).

There exists a constant K > 0 independent of the input data such that

(34)

Relation (3a) implies that the solution of problem (26) and (21) is unique and is
continuously dependent on the input data, with respect to the norm

l l  (s, o, z,) (. , .) l l  : sup J(N( r)).
t > 0

Now suppose the total energy e(r) is "equivalent" to 1/(r) in the following sense: there
exist two positive constants A ,, A z, A r 1l r, such that

A tl{(t) ( e(r) g I.n/(r) for any t > 0 (3s)

for any given function (g,, o,u) (-r, l) for which e(t) and t/(r) make sense. Then obviously any
smooth solution of problem (26) and (27) will be continuously dependent on the input data,
with respect to the total energy.

Proposition 5. Relation (35) holds if and only.if there exist two positive constants .E1,
Er, E, 1 Ez. < E such that, for any ee I

Then Ar :  E t l l 2E(E-E ' )1 ,  Az :  E r l l 2E(E-Er )1 .
If / : R condition (36) is equivalent to

1rl(/) : N(e (., t), o(., t),u(.,r' : 
f (i- . #. Iu) (x, r) clx for any r > 0

J(ii(/)) * 
{V,t,'))+f (f 

'ru' o.)' ' ' .*o (-Ks) ds} exp (rr) ror anv t > 0

+. *#[oo(e) 
-E,tf ' - ,[ 'on(s) 

or*+. -]rrr-r;[oo(e) -E,t] '. (36)
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f e

jE, r t  <  I  o^(r )  ds g iEre 
'  for  any €e R.

J 0

f ,  l t

J, J.,

t5t7

(37)

The proof is simple if we take into account the equivalence of inequalities (30) and (32)

proved in Proposition 4.

3.2. Approach to equilibrium
Let us consider now the case when

For this particular

I : R ,

G G , o ) :  - k o ( o - o ^ ( e ) )  f o r  a n Y  ( e , o ) e  I

k o : c o n s t . > 0 '

form of the function G it is proved in Ref. [4] that, if

o o e C ' ( R )  a n d  0 < o ' p ( e ) < E  f o r a n y  e e R

(38)

(3e)

(40)

(41)

(a2)

then

then

[o(x, s) - o^(e (x, r))]' d" O, * 1!:'
l > 0

f o r a n y  / > 0 .

for the solution (e, o, r ') (x, t) of an isolated body problem, i.e. problem (26) and (27) with

b:0. Therefore. when ko- cc, relation (39) implies an L2-approach to equil ibrium for

the solution of an isolated body problem.
We show here that a similar result may be obtained even when o^ is no longer an

increasing function. Such a result may be useful because system (26) is always hyperbolic

while the "equil ibrium system" given by eqns (26)t,rand the constitutive equation o : on(e)

(i.e. the non-linear elastic system) may loose its hyperbolic character in this case. However,

rve still obtain an L2-approach of the solutions of a hyperbolic system to the solution of a

non-hyperbolic system.

Propo.; i t ion 6.Let G be given by expression (38) and let  b :0. I f  there exists a constant

B > 0 s u c h t h a t

I  o  * ( t , )  -  o o ( c z )  ^
E -  ^ < - ^ \ - ' l  f , o r a n y  t 1 , e 2 e I  e 1  * t 2

6  t r  - c :

ProoJ'. We prove first that inequality (a0) is equivalent to

cu/
p \ !@-on(e ) )  2  B \o -oo(e ) )2  fo r  any  (c ,o )e9 .

oo

Indeed. there exists andelsuch thato-Et:  h(E);  then (see the proof to Proposi t ion l )
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atL
P ; - :  t - e

oo

o  -  o  p ( t )  :  h (E ) -  h ( t )  :  E ( t - s ) -  [ o ^ (e ) -o^ (d ) ]

l 5 l 8

and therefore

Let us denote

AtL
p E  

"  
-  o - o n ( e ) + f o p ( e ) - o o ( d ) ] .

oo

oa
A =  p^r  ( "  -  o^ (e) )  -  B(o  -  o  o@)) ' .oo

^Qt*l : p$(o- oo(e), [(r'*l 
-'oa*(o -o.(e))]

We have

thus

and therefore

G ( e , o ) :  - k ( t , o ) ( o - o ^ ( e ) )  f o r  a n y  ( t , , o ) e Q

with

k(e ,o)  >  k0  -  cons t .  >  0  fo r  any  ( t , ,o )e9

Proposition 6 still holds. The proof is essentially the same.

I 0w \- 0u/
el p* |  :  p| lo - oo(e)l  t( l  -  BE) (e- E)'  I  B(o ̂(e) - op(d)) (e -, t)1. (44)

\  oo/  oo

But, by using relations (43)

/  ^ , \ )
I 0V/ Y OUl

\ ,  U )  
- B p ; ( ' - o o ( e ) )  :  ( 1 -  B E ) ( e - d ) ' * B [ o a ( e ) - o n ( d ) ]  ( e - e )

Relation (44) proves the equivalence of inequalities (40) and (42) since Ar!lAo and o -on(e)

have always the same sign and vanish simultaneously (see relation (6)).
Now, by using (42) we may write (29) (for di : e)

l t
e ( r ) :  - o r f '  p * O - o ^ ( e ) )  ( x , t )  d x (  - k o B  I  t o - o o ( e ) l  

2 1 x , t ;  d , x
Jo  oo  Jo

,[ ' i [o(x,s) 
-o^(t(x,s))]2 dx ds ( - 

f i frf, l-e(o)l - # a.E.D.

Remark 6. If we consider
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3.3. Additional comments antl concluding remarks
Let us introduce the equil ibrium energy function of the viscoelastic model, eqns (l)

and (2),  def ined by (see expression (16) where F' :  i i (on(e)-Et) :  i l1h1ey1 :  t ;

{  ^ ( t )  =  V@,  o* (e) ) op(s)  ds for  any te  If'-  
Jo

(4s)

and the instantaneous energy function defined by

$,(e) :  jEe2 for any t .e I . (46)

We note that r/^(e) is exactly the strain-energy function corresponding to the non-linear

elastic constitutive equation o : o nk) while {t,(e) is the strain-energy function cor-

responding to the l inear elastic constitutive equatiorl o : Et.

In terms of the free energy function tlt(t:,o) (given by expression (16)), the equil ibrium

energy function t o@) and of the instantaneous energy function t,G.), most of the results

obtained in Sections 2 and 3 can also be described as follows.

(a) For a continuous equilibrium curve o : o n(t) there is a unique free energy function

$(e,o) of the constitutive equation, eqns (l) and (2), if and only if the slope of the

straight line connecting any two points on the equilibrium curve is bounded from above by

instantaneous Young's modulus E (Proposition 1, condition (3)). If the slope of the straight

line connecting any two points on the equilibrium curve is also bounded from below by a

(not necessarily positive) constant we obtain a viscoelastic approach (in I2 sense) to non-

linear elasticity (in case of an isolated body problem) (Proposition 6, condition (40)).

(b) The free energy function is non-negative at any point P : (s, o) e I if the instan-

taneous energy function at the strain o p()lE (the area 0P rP r0 in Fig. 1) does not exceed the

equil ibrium energy function at the strain e (the area 0PoP*o in Fig. l) (Proposition 2,

condition (17)).When the equil ibrium curve is defined on the whole real l ine we have

It(e,o) ) 0 on g if and only if t oG) ) 0 on R (Proposition 2, condition (17')).

(c) The monotony property (Proposition 3) states that the free energy functions for

two viscoelastic models of type ( I ) and (2) with the same dynamic Young's modulus E are

ordered il and only if the corresponding equil ibrium energy functions are ordered in the

same way.
(d) In the case when the equil ibrium curve is defined on the whole real l ine, the solutions

of the initial boundary value problem (26) and (27') are bounded (in L'z) if there exists a

positive constant E , 1E such that the equil ibrium energy function is bounded from below

by the strain-energy function of the l inear constitutive equation o : E'e (Proposition 4 and

Remark 5). I i the equil ibrium energy function is also bounded from above by the strain-

energy function of a l inear constitutive equation o : Ezt where 0 < E' I Ez<,8 then

the solutions of problem (26) and (27) are continuously dependent on the input data

(Proposi t ion 5).
(e) All the above conditions do not require the equilibrium function oo(e) to be an

increasing function and therefore the free energy function ,lt@,o) may be nonconvex.
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