
An Institution-independent Generalization

of Tarski’s Elementary Chain Theorem
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Abstract

We prove an institutional version of Tarski’s elementary chain theorem applicable to a whole plethora of ‘first-order-

accessible’ logics, which are, roughly speaking, logics whose sentences can be constructed from atomic formulae by

means of classical first-order connectives and quantifiers. These include the unconditional equational, positive,

ð� [�Þ0n and full first-order logics, as well as less conventional logics, used in computer science, such as hidden or

rewriting logic.
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1 Introduction

The notion of elementary embedding is an important one in classical first-order model
theory [4]. Elementary chains (i.e. chains of elementary embeddings) are known to be a
fundamental proof tool for results regarding preservation of satisfaction, axiomatizability,
Robinson consistency, Craig interpolation [4], saturated models, stability, categoricity in power
[30] and many others. The extension of elementary embeddings to infinitary logics [18, 21, 17]
reveals the need in mathematical logic for accommodating this notion in other logical systems
too. And the monograph [18] actually shows that this is a natural and very fruitful thing to do.

The present paper introduces and studies abstract notions of elementary embedding and
elementary chain, in the framework of institutions [14], and points out many particular cases.
Two aspects motivate and justify our study:

� The mentioned importance of elementary embeddings in model theory; and
� The logic-independent status of our concepts and results.

Besides its intrinsic abstract model-theoretic contribution, our study might be of interest for
the theory of formal specifications, where a logic-independent view is desirable for as long as
possible in the specification process and where structural properties usually approachable by
means of elementary chains, such as Craig interpolation or axiomatizability, are crucial.

Institutions are abstract logical frameworks that provide a category of signatures
(languages) and signature morphisms (language translations), and, for each signature, a set
of sentences, a category of models and a satisfaction relation. Sentences have translations,
and models have reducts, along signature morphisms; the translations and reducts express the
sentence and model modifications under change of notation from one language to another.
Satisfaction is required to be invariant under change of notation. More abstract than the
general logics of [1], institutions were introduced as frameworks for building model theory
for computer science, in a logic-independent way. Thus, general institutional results were
applicable to the diversity of logical systems used in computer science. Besides their
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great generality, another important feature of institutions, not present, or poorly present, in

other abstract frameworks, is the flexible support for language translations. This feature,

particularly useful in formal specification and the semantics of programming languages, is
also interesting from a logical point of view. As shown in [34, 35, 7, 10, 8, 6] and other places,

signature morphisms (language translations) turn out to be a very insightful tool for finding

concrete structure in the core of abstract logic, for example, any institution hides inside a

‘first-order logic’, which can be uncovered by means of basic sentences, logical connectives,

and quantifications over some signature morphisms (see Sections 2 and 3).1

Our institutional notion of elementary embedding (that we call ‘elementary morphism’) also
uses signature morphisms in an essential way, by defining elementarity as preservation of

satisfaction in expansions along certain signature morphisms. Recall that, classically, an

elementary embedding between two models A and B of the same language is a model-

embedding A!
h
B such that for each formula eðx1, . . . , xnÞ and each sequence a1, . . . , an 2 A,

A � eða1, . . . , anÞ iff B � eðhða1Þ, . . . , hðanÞÞ. Because of the existence of negations, the ‘iff’ in
the preceding can be replaced by ‘implies’. In order to abstract away this concept, we follow

an idea originating in [34] that treats (non-closed) �-formulae as sentences in signature

‘extensions’ ’ : �! �0. And we use quasi-representable signature morphisms [6] to capture

the requirement that the ‘extension’ only adds ‘constants’. (’ is quasi-representable if,

for each A0 2 jModð�0Þj, the canonical functor A0=Modð’Þ : A0=Modð�0Þ, ! A0�’=Modð�Þ is
an isomorphism of categories; hence, giving a �0-morphism of source A0 is equivalent to

giving a �-morphism of source A0�’. This situation has the following intuitive explanation: all

the ‘extra items’ of �0 with respect to � being constant symbols, a �-morphism A!
h
B can

have only one �0-expansion of given source A0.) Quasi-representability of signature

morphisms is a weakening of the concept of representability introduced in [10]. By fixing a
class Q of quasi-representable signature morphisms, we call a �-morphism A!

h
B

Q-elementary if for each signature morphism ’ : �! �0 in Q, each ’-expansion A0 !
h0

B0 of

h and each �-sentence e0, A0 � e0 implies B0 � e0. (See Section 4 for a detailed motivation of

this definition.)
One can alternatively define elementary morphisms by elementary diagrams. Classically,

the elementary diagram [4] EDgðAÞ of a model A is the set of all sentences in �(A) (the
language � of A extended with all elements of A as constants) that are true in A. Then a

model inclusion A!
h
B is elementary iff EDgðAÞ � EDgðBÞ. Thanks to a recent concept of

institutional diagram [8], we can also define institutionally elementary morphisms by diagrams

(we abbreviate these as d-elementary morphisms). The diagrams of [8] provide, for each

signature � and �-model A, a parameterized signature extension ��ðAÞ : �! �A and a self-
parameterized ��ðAÞ-expansion of A. In addition, the diagrams are ‘functorial’, i.e. they have

corresponding structure for signature and model morphisms; in particular, any �-morphism

A!
h
B yields a signature morphism ��ðhÞ : �A ! �B such that ��ðAÞ; ��ðhÞ ¼ ��ðBÞ. We call h

d-elementary if, for all �A-sentences e0, AA � e0 implies BB � ��ðhÞðe
0Þ. d-elementarity is

expressible more compactly than Q-elementarity, but requires an amount of rather evolved

extra structure on institutions.
Here is the structure of this article. Section 2 recalls some notions regarding categories,

institutions and diagrams. Section 3 discusses and exemplifies the concepts, central in this

1Compare this natural appearance of a first-order sublogic with the need to explicitly postulate the existence of

such a sublogic in the context of general logics of [1].
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article, of (finitely) representable and (finitely) quasi-representable signature morphism.

Section 4 introduces elementary (model) morphisms with respect to a class of quasi-

representable signature morphisms. Section 5 proves an institutional version of Tarski’s

elementary chain theorem, in the following slightly stronger form: elementary morphisms are

closed under directed colimits. Section 6 introduces an alternative, diagrammatic version of

elementary morphism and shows its equivalence to the previous notion under certain mild

conditions (diagrams being in the considered class of quasi-representable morphisms and

another condition that we call normality). Some concluding remarks end the article.

2 Preliminaries

2.1 Categories

We assume that the reader is familiar with basic categorical notions like functor, natural

transformation, colimit, comma category, etc. A standard textbook on the topic is [19].

We are going to use the terminology from there, with a few exceptions that we point out in

the following text. We use both the terms ‘morphism’ and ‘arrow’ to refer morphisms of

a category. Composition of morphisms and functors is denoted using the symbol ‘;’ and is

considered in diagrammatic order.
Let C and C0 be two categories. Given an object A 2 jCj, the comma category of objects in C

under A is denoted A=C. Recall that the objects of this category are pairs (h,B ), where B 2 jCj

and A!
h
B is a morphism in C. Throughout the article we might let either ðA!

h
B,B Þ or

(h,B) indicate objects in A=C. A morphism in A=C between two objects (h,B) and (g,D)

is just a morphism B!
f
D in C such that h; f ¼ g in C. There exists a canonical forgetful

functor between A=C and C, mapping each (h,B) to B and each f : ðh,BÞ ! ðg,DÞ to

f : B! D. Also, if F : C0 ! C is a functor, A 2 jCj, A0 2 jC0j, and A!
u
FðA0Þ is in C, then there

exists a canonical functor u=F : A0=C0 ! A=C mapping each ðA0 !
h
B,BÞ to ðu;FðhÞ,FðBÞÞ

and each f : ðh,BÞ ! ðg,DÞ to FðfÞ : ðu;FðhÞ,FðBÞÞ ! ðu;FðgÞ,FðDÞÞ. If C ¼ C0 and F is the

identity functor 1C, we write u=C instead of u /F; and if FðA0Þ ¼ A and u ¼ 1A, we write A
0=F

instead of u /F.
Let C and S be two categories such that S is small. A functor D : S ! C is also called a

diagram. We usually identify a diagram D : S ! C with its image in C, DðSÞ. A cocone of D is

a natural transformation � : D¼)V between the functor D and the constant functor mapping

all objects to V and all morphisms to 1V ; V is an object in C, the vertex of the colimit, and the

components of � are the structural morphisms of the colimit. Any partially ordered set ðI, �Þ

can be regarded as a category in the obvious way, with the arrows being pairs i � j. A non-

empty partially ordered set ðI, �Þ is said to be directed if for all i, j 2 I, there exists k 2 I such

that i � k and j � k, and is called a chain if the order � is total. A diagram defined on a

directed set (on a chain) shall be called directed diagram (chain diagram) and a colimit of such

a diagram, directed colimit (chain colimit). A final subset of a directed partially ordered set

ðI, �Þ is a subset K of I such that for all i 2 I, there exists k 2 K such that i � k. For instance,

given i 2 I, Ii ¼ fj 2 I j i � jg is a final subset of ðI, �Þ. A sub-diagram of a directed diagram

D : ðI, �Þ ! C is the restriction of D to ðK, �Þ, where K is a subset of ðI, �Þ; the sub-diagram

is said to be final if K is final. An object A in a category C is called finitely presented if for each

directed diagram D : ðI, �Þ ! C with colimit fDi!
�i

Bgi2I, and for each morphism A!
h
B,

there exists j 2 I and A!
g
Dj such that g;�j ¼ h.
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Let C0 be a subcategory of C. C0 is called a broad subcategory if it contains all the objects
of C. C0 is said to be closed under directed colimits (chain colimits) if for any directed diagram
(chain diagram) D : ðI, �Þ ! C such that Dði � jÞ is in C0 for all i � j, any colimit fDi!

�
Bgi2I

of D has all the structural morphisms �i in C
0. C0 is said to be closed under pushouts if for each

pushout ðA2 �
h2

A�!
h1

A1,A2�!
h0
1
A0  �

h0
2
A1Þ in C, h

0
1 is in C

0 whenever h1 is in C
0. Note that the

notion of ‘closed under’ that we adopt is stronger for pushouts than for directed or chain
colimits. The following lemma is proved in [19].

LEMMA 1
Let ðI, �Þ be a directed set, C a category, D : ðI, �Þ ! C a diagram, and fDi�!

�
Agi2I its

colimit. If K is a final subset of ðI, �Þ, then fDi�!
�

Agi2K is a colimit of the corresponding
final sub-diagram of D.

2.2 Institutions

Institutions were introduced in [14] with the original goal of providing an abstract, logic-
independent framework for algebraic specifications of computer science systems. By isolating
the essence of a logical system in the abstract satisfaction relation, these structures achieve
an appropriate level of generality for the development of abstract model theory, as shown
by a whole series of (old and new) papers: [34–36, 31, 32, 7, 8, 10, 9, 13, 27]. See also [26] for
an up-to-date discussion on institutions as abstract logics.

An institution [14] consists of:

(1) A category Sign, whose objects are called signatures;
(2) A functor Sen : Sign! Set, providing for each signature a set whose elements are called

(�-)sentences;
(3) A functor Mod : Sign! Catop, providing for each signature � a category whose objects

are called (�-)models and whose arrows are called (�-)morphisms; and
(4) A relation ��� jModð�Þj � Senð�Þ for each � 2 jSignj, called (�-)satisfaction, such that

for each morphism ’ : �! �0 in Sign, the satisfaction condition

M0 ��0 Senð’Þ ðeÞ iff Modð’ÞðM0Þ � � e

holds for all M0 2 jModð�0Þj and e 2 Senð�Þ. Following the usual notational conventions,
we sometimes let �’ denote the reduct functor Modð’Þ and ’ denote the sentence
translation Senð’Þ. When M ¼M0�’, we say that M0 is a ’-expansion of M and that M is
the ’-reduct of M0, and similarly for model morphisms.

For all the following concepts related to institutions that we recall in the following text,
the reader is referred to [14] unless some other place is explicitly indicated.

Let � be a signature. Then,

� For each E � Senð�Þ, let E� ¼ fM 2 jModð�Þj j M �� e for all e 2 Eg:
� For each classM of �-models, letM � ¼ fe 2 Senð�Þ jM � e for all M 2 Mg.

With no danger of confusion, we let � denote any of the two compositions �� of the two
operators �. Each of the two bullets is a closure operator. When E and E0 are sets of sentences
of the same signature �, we let E � �E0 denote the fact that E� � E0�. The relation ��

between sets of sentences is called the (�-)semantic consequence relation (notice that it is
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written just like the satisfaction relation). If E0 ¼ fe0g , we might write E �� e0. In order to

simplify notation, we usually write � instead of �� for both the satisfaction relation and the

semantic consequence relation. Two sentences e and e0 are called equivalent, denoted e � e0, if

feg� ¼ fe0g�. Dually, two models M and M0 are called elementary equivalent, denoted M �M0,

if fMg� ¼ fM0g�.
An institution is called semi-exact [22] if the model functor Mod : Sign! Catop preserves

pushouts. Semi-exactness implies the following amalgamation property for any pushout

of signature morphisms ð�2 �
’2

��!
’1

�1,�2�!
’0
1
�0  �

’0
2
�1Þ: for any M1 2 jModð�1Þj,

M2 2 jModð�2Þj such that M1�’1 ¼M2�’2 , there exists a unique model M0 2 jModð�0Þj such

thatM0�’0
2
¼M1 andM0�’0

1
¼M2. An analogous property is implied about model morphisms.

An institution is called liberal on signature morphisms if the functor Modð’Þ has a left adjoint

for each signature morphism ’.
A presentation is a pair ð�,EÞ, where E � Senð�Þ. A theory is a presentation ð�,EÞ with E

closed, i.e. with E� ¼ E. One usually calls ‘presentation’ or ‘theory’ only the set E, and not

the whole pair ð�,EÞ. A presentation morphism ’ : ð�,EÞ ! ð�0,E0Þ is a signature morphism

’ : �! �0 such that ’ðEÞ � E0�. A presentation morphism between theories is called

theory morphism. For a presentation ð�,EÞ, we let Modð�,EÞ denote the category of all

�-models A such that A � E.
A sentence � 2 Senð�Þ is called basic [7] if there exists a �-model M� such that, for all

�-models M, M � � iff there exists a morphism M�!M. If, in addition, M� is a finitely

presented object in Modð�Þ, � is called finitary basic [10]. Basic sentences tend to be the

starting building blocks for sentences in concrete institutions. For instance, in the institution

of first-order predicate logic, FOPL (see the following text the examples of institutions),

conjunctions of ground atoms are basic. In this article, we shall be interested in institutions

whose sentences are accessible from basic sentences by means of several first-order constructs;

hence, it suffices to identify enough basic sentences, like the conjunctions of ground atoms

above, in order to ensure accessibility. However, the concept of basic sentence turns out to be

quite comprehensive in concrete cases; for instance, existentially quantified atoms are also

basic in FOPL. The attribute ‘finitary’ is usually equivalent, in concrete cases, to the property

that the sentence has only a finite number of symbols. All basic sentences in FOPL are also

finitary basic, because FOPL is a ‘finitary’ logic; this is not the case of the institution of

infinitary first-order predicate logic, IFOPL, where basic sentences with an infinite number of

symbols can be constructed by means of infinite conjunctions of atoms.
The sentences of an institution I can be naturally extended with first-order-

like constructions [34]: if ’ : �! �0, �, � 2 Senð�Þ, �0 2 Senð�0Þ, and E � Senð�Þ, one

can build the sentences :�, � ^ �, � _ �,
V
E,

W
E, ð8’Þ�0, ð9’Þ�0 by means of negation,

conjunction, disjunction, arbitrary conjunction, arbitrary disjunction, universal and existential

quantification (over signature morphisms), respectively, with the following semantics for

each �-model M:

� M � :� iff M 6� �;
� M � � ^ � iff M � � and M � �;
� M � � _ � iff M � � or M � �;
� M �

V
E iff M � e for each e 2 E;

� M �
W

E iff M � e for some e 2 E;
� M � ð8’Þ�0 iff M0 � �0 for each ’-expansion M0 of M;
� M � ð9’Þ�0 iff M0 � �0 for some ’-expansion M0 of M.
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It might be the case that the newly constructed sentences are equivalent to some existing

sentences in I . The notion of a class of sentences closed under either one of the

aforementioned constructions (e.g. under conjunction, or under universal quantification

over a morphism ’) should be clear. An institution is said to admit negation if the class of

all its sentences is closed under negation.

2.2.1 Examples of institutions

(1) FOPL — the institution of (many-sorted) first-order predicate logic (with equality).

The signatures are triplets ðS,F,PÞ, where S is the set of sorts, F ¼ fFw, sgw2S�, s2S is the

(S��S -indexed) set of operation symbols and P ¼ fPwgw2S� is the (S*-indexed) set of

relation symbols. If w ¼ �, an element of Fw,s is called a constant symbol, or a constant.

By a slight notational abuse, we let F and P also denote
S
ðw, sÞ2S��S Fw, s and

S
w2S� Pw,

respectively. A signature morphism between ðS,F,PÞ and ðS0,F0,P0Þ is a triplet

’ ¼ ð’sort, ’op, ’relÞ, where ’sort : S! S0, ’op : F! F0, ’rel : P! P0 such that

’opðFw, sÞ � F0’sortðwÞ, ’sortðsÞ and ’relðPwÞ � P0’sortðwÞ for all ðw, sÞ 2 S� � S. When there is no

danger of confusion, we may let ’ denote each of ’sort, ’rel and ’op. Given a signature

� ¼ ðS,F,PÞ, a �-model A is a triplet A ¼ ðfAsgs2S, fAw, sð�Þgðw, sÞ2S� �S, �2Fw, s
,

fAwðRÞgw2S�,R2Pw
Þ interpreting each sort s as a set As, each operation symbol � 2 Fw, s

as a function Aw, sð�Þ : A
w ! As (where A

w stands for As1 � . . .� Asn if w ¼ s1 . . . sn), and

each relation symbol R 2 Pw as a relation AwðRÞ � Aw. When there is no danger of

confusion we may let A� and AR denote Aw, sð�Þ and Aw(R), respectively. Morphisms

between models are the usual �-homomorphisms, i.e. S-sorted functions that preserve

the structure. The �-sentences are obtained from atoms, i.e. equality atoms t1 ¼ t2,

where t1, t2 2 ðTFÞs,
2 or relational atoms Rðt1, . . . , tnÞ, where R 2 Ps1...sn and ti 2 ðTFÞsi for

each i 2 f1, . . . , ng, by applying for a finite number of times:

� negation, conjunction, and disjunction;
� universal or existential quantification over finite sets of constants (variables).

Satisfaction is the usual first-order satisfaction and is defined using the natural

interpretations of ground terms t as elements At in models A. The definitions of functors

Sen and Mod on morphisms are the natural ones: for any signature morphism

’ : �! �0, Senð’Þ : Senð�Þ ! Senð�0Þ translates sentences symbolwise, and

Modð’Þ : Modð�0Þ !Modð�Þ is the forgetful functor.
(2) ð� [�Þ0n — the fragment of FOPL containing only sentences that are equivalent to

sentences in prenex normal form that have at most n alternated blocks of quantifiers

(universal and existential). Within a given signature, the mentioned set of sentences

actually puts together two well-known types of first-order sentences: �0
n and �0

n [4].
(3) PFOPL [6] — the institution of partial first-order predicate logic, an extension of

FOPL whose signatures � ¼ ðS,F,F 0,PÞ contain, besides relation and (total) operation

symbols (in F and P), partial operation symbols too in F0. Models of course interpret

the symbols in F 0 as partial operations of appropriate ranks. �-model morphisms

h : A! B are S-sorted functions that commute with the total operations and relations

in the usual way, and with the partial operations � 2 F0s1...sn, s in the following way: for

each ða1, . . . , anÞ 2 As1...sn , if A�ða1, . . . , anÞ is defined, then so is B�ðhs1 ða1Þ, . . . , hsnðanÞÞ,

2TF is the ground term algebra over F.
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and in this case the latter is equal to hsðA�ða1, . . . , anÞÞ. A signature morphism
between ðS,F,F 0,PÞ and ðS0,F0,F

0
0,P0Þ is a FOPL-signature morphism

’ : ðS,F [ F 0,P 0Þ ! ðS0,F0 [ F
0
0,P

0
0Þ such that, for each � 2 F, it holds that

’opð�Þ 2 F0. Thus, signature morphisms are allowed to map partial operation symbols

to total operation symbols, but not vice versa. There exist two kinds of atoms:
(existential) equality atoms t ¼ t0 and relational atoms Rðt1, . . . , tnÞ, having syntax just

like at FOPL. An equality atom t ¼ t0 holds in a model A when both terms are defined
and equal (At ¼ At0). A relational atom Rðt1, . . . , tnÞ holds when all terms ti are

defined and their interpretations Ati stay in relation AR. The sentences are obtained from
atoms just like in the case of FOPL (quantification over variables is allowed in the usual

sense, which corresponds to considering the quantified variables as new total constants).
Note that other kinds of sentences usually considered in partial algebraic frameworks

can be expressed here: definedness, t#, as t¼ t; strong equality, t ¼s t
0 (either both t and t0

are undefined, or both are defined and equal), as ð: t# ^ :t0 #Þ _ t ¼ t0; weak equality,

t ¼w t0 (if both t and t0 are defined, then they are equal), as ð: t#Þ _ ð: t0 #Þ _ t ¼ t0. The
functor Mod is defined similarly to the case of FOPL.

(4) PA — the institution of partial algebra, a fragment of PFOPL having signatures

without relation symbols. Partial algebras and their applications were extensively studied
in [28] and [3].

(5) IFOPL — the institution of infinitary first-order logic, an infinitary extension of FOPL,
which allows conjunction on arbitrary sets of sentences. This logical system is known

under the name L1,! [21, 20] and plays an important role in categorical logic.
(6) IFOPL� (where � is an infinite cardinal) — a fragment of IFOPL, admitting only

conjunction on sets of sentences with cardinal smaller than �. This logical system is

usually called L�,! [18]. Note that IFOPL! is FOPL.
(7) PosFOPL — the institution of positive first order predicate logic, a fragment of FOPL,

with sentences constructed by means of ^, _, 8, 9, but not negation :. Here _ and 9 are

no longer reducible to ^ and 8 or vice versa. Positive sentences are defined and studied
for example in [4, 25].

(8) EQL — the institution of equational logic [14], a fragment of FOPL, with no relation
(only operation) symbols, and with sentences constructed from atoms only by means of

universal quantification (no logical connectives).
(9) EQLN — a minimal extension of EQL with negation, allowing sentences obtained

from atoms and negations of atoms through only one round of quantification, either

universal or existential, over a set of variables. More precisely, all sentences have the
form ðQXÞt1 k t2, where Q 2 f8, 9g and k 2 f¼ , 6¼g. Note that this institution admits

negation.
(10) RWL — the institution of (unconditional) rewriting logic. It has the same signatures as

EQL, but models have in addition a preorder relation on each sort carrier, compatible
with the operations, and model morphisms have to be increasing with respect to these

preorders. The sentences are usual equations as in EQL and transitions ð8XÞt! t0, with
! interpreted as the model preorder. This logic cannot be seen as a fragment of FOPL,

due to the built-in nature of the preorder on models. Rewriting logic was introduced in
[23] with models having a categorical structure where arrows express different transitions

between states; a simplified and more amenable version of this logic, which forces this
categorical structure to be a preorder, is used in specification languages such as CafeObj

[11] or Maude [5]; this simplified version was considered here.
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(11) OSL — the institution of order-sorted (equational) logic [29], an extension of
EQL where each signature has a partial order on the set of sorts. Thus a signature

is a triplet ðS, � ,FÞ, where ðS, �Þ is a partially ordered set and (S,F) is an
EQL-signature. A ðS, � ,FÞ-model is an (S,F)-model in EQL subject to two additional

requirements:
� For each s, s0 2 S with s � s0, it holds that As � As0 ;
� For each ðw, sÞ, ðw0, s0Þ 2 S� � S such that w ¼ s1 . . . sn, w0 ¼ s01 . . . s

0
n, si � s0i, and

s � s0, and each � 2 Fw, s \ Fw0, s0 , it holds that Aw, sð�Þ : A
w ! As restricts and

corestricts Aw0, s0 ð�Þ : A
w0 ! As0 .

A ðS, � ,FÞ-morphism between A and B is a (S,F)-morphism in EQL, h : A! B, such
that for all s, s0 2 S with s � s0, it holds that hs restricts and corestricts hs0 . Given

a signature � ¼ ðS, � ,FÞ, one can construct the ground term �-algebra T� similarly
to the case of EQL, just that one needs to consider the subsort relationship � too.
An ðS, � ,FÞ-sentence is an equation ð8XÞt ¼ t0, where X is an S-sorted set of variables

and t, t0 2 TðS,�,F[XÞ:
3 Satisfaction of a sentence by a model is defined in the obvious

way. The functor Mod acts just like in the case of EQL.
(12) ML — the institution of (unconditional) membership equational logic, an extension of

EQL, which calls the usual sorts ‘kinds’, and allows on each kind a set of sorts that are to

be interpreted, on models, as subsets of the kind carrier. Thus a signature is a triplet
ðK, fSkgk2K,FÞ, where (K,F) is an EQL-signature and for each kind k 2 K, Sk is the set of

sorts for this kind. Besides equations, this logic also has membership assertions: ð8XÞt : s,
where t 2 ðT�ðXÞÞk and s 2 Sk, meaning that ‘t is of sort s’. This logic, introduced in [24],
can be seen as a fragment of FOPL, which only uses unary relation symbols and has

only universally quantified atoms as sentences. As shown in [24], ML naturally embeds
(a variation of) OSL.

(13) EHL — the institution of extended hidden logic. The signatures are triplets ðH,V,FÞ,
where:
� H is the set of hidden sorts;
� V is the set of visible sorts, V \H ¼ 6 0;
� ðH [ V,FÞ is an EQL-signature (i.e. F is an ðH [ VÞ� � ðH [ VÞ-indexed set of

operation symbols).
The ðH,V,FÞ-models are the usual ðH [ V,FÞ-models from EQL. For a model A, one

defines its behavioral equivalence �A to be the least congruence on A, which is an
identity on visible sorts. The ðH,V,FÞ-morphsism are the ðH [ V,FÞ-morphisms from
EQL that preserve behavioral equivalence. There are two kinds of atoms: (usual) equality

atoms t ¼ t0 and behavioral equality atoms t � t0. Satisfaction of equality atoms is the
usual first-order satisfaction. For a ðH,V,FÞ-model A, A � t � t0 iff

Ac½x1 a1,...,xn an, z t	 ¼ Ac½x1 a1,..., xn an, z t0	 for each sort v 2 V, each sequence
x1, . . . , xn of variables of various sorts, each context c in TFðfx1, . . . , xn, zgÞ of sort v,
and each sequence a1, . . . , an of elements in A of appropriate sorts. (Here a context is a

term with only one occurrence of the variable z; z is assumed to have the same sort as t
and t0. Also, for instance c½x1 a1, . . . , xn an, z t	 is a ground ðH [ V,FÞ-term

parameterized by elements in A, and Ac½x1 a1,...,xn an, z t	 is its natural interpretation as
an element in A.) All sentences are constructed from atoms by means of first-order

3The variables in X are interpreted as new constants.
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connectives and quantifiers just like in the case of FOPL (quantification is allowed over

variables of both hidden and visible sorts). A signature morphism between ðH,V,FÞ and

ðH0,V0,F0Þ is an EQL-signature morphism ’ : ðH [ V,FÞ ! ðH0 [ V0,F0Þ such that:
� ’ðVÞ � V0, ’ðHÞ � H0;
� For each ðw0, s0Þ 2 ðH0 [ V0Þ� � ðH0 [ V0Þ such that w0 contains a sort in ’sortðHÞ,

and �0 2 F0w0, s0 , there exists � 2 F such that ’opð�Þ ¼ �0.
On signature morphisms, the functors Mod and Sen act as in the case of EQL. The

preceding description of EHL was adapted from [8]. See [15] for details about hidden

logic, and [2] for the description of (a variation of) full first-order hidden logic.
(14) HL — [16, 12] the institution of hidden logic, a fragment of EHL, with sentences

constructed from atoms only by means of universal quantification (no logical

connectives).

3 Representable and quasi-representable signature morphisms

The institutional notions of representable and quasi-representable signature morphisms are

abstract concepts meant to capture the phenomena of quantification over (sets of) first-order

variables. Both notions start from the fact that semantics of quantification in first-order-like

logics can be given in terms of signature extensions: M �ðS,F,PÞ ð8XÞe (M �ðS,F,PÞ ð9XÞe ) iff

M0 �ðS,F[X,PÞ e for each (for some) ðS,F [ X,PÞ-expansion M0 of M. Thus, in order to reach

first-order quantification institutionally, one needs to define somehow what ‘injective

signature morphism that only adds constant symbols’ (such as � : ðS,F,PÞ ! ðS,F [ X,PÞ)
means.

DEFINITION 2
A signature morphism ’ :�!�0 is called:

� Representable [7], if there exists a �-model M’ (called the representation of ’) and

an isomorphism of categories I’ : Modð�0Þ !M’=Modð�Þ such that I’;U ¼Modð’Þ,
where U : M’=Modð�Þ !Modð�Þ is the usual forgetful functor;
� Finitely representable [7], if it is representable and M’ is a finitely presented object

in Modð�Þ;
� Quasi-representable [6], if for each A0 2 jModð�0Þj, the canonical functor

A0=Modð’Þ : A0=Modð�0Þ ! A0�’=Modð�Þ is an isomorphism of categories; and
� Finitely quasi-representable [6], if it is quasi-representable and for each colimit

ðAi!
�i

AÞi2I of a directed diagram of �-models ðAi!
hi;j

AjÞi, j2I, i�j and each ’-expansion
A0 of A, there exists an index i 2 I and a ’-expansion �0i of �i.

The notion of representability is built on the intuition that, in FOPL, an expansion of

a � ¼ ðS,F,PÞ-model A over a signature inclusion � : �! �0 ¼ ðS,F [ X,PÞ that only adds

constants can be viewed as a pair (M, v), where v : X!M is a function interpreting the new

constants in X, and furthermore as a pair ðM, vÞ, where v : T�ðXÞ !M is a model-morphism.4

Hence � is represented by T�ðXÞ. And � is finitely representable, i.e. T�ðXÞ is finitely presented

in Modð�Þ, if X is finite.

4T�(X) is the term algebra over variables X and operations in F, with all relations in P empty.
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On the other hand, quasi-representability follows the intuition that the aforementioned
signature inclusion � does not allow multiple expansions of �-morphisms A!

h
B having

a fixed source A0 (where A0 is a �-expansion of A). This is because A0 already ‘indicates’, via h,
how the constants in X should be interpreted in the target model B0 of a presumptive
�-expansion h0 of h; and of course h0 has to be identical, as a function, to h. Thus, � is also
quasi-representable. And again, � is finitely quasi-represented if X is finite. Intuitively, if we
regard directed colimits of �-models as ‘unions’, all the interpretations in the ‘union model’
A of the finite number of constants in X will eventually be reached by one of the members Ai

of the union; hence the ‘inclusion’ of Ai into A has a �-expansion.
For most concrete institutions (at least for those admitting initial objects in the categories

of models, like our examples 1–14), the notions of representability and quasi-representability
coincide, as shown by the following lemma.

LEMMA 3 [6]
Let ’ :�!�0 be a signature morphism. Then [’ is (finitely) quasi-representable and Modð�Þ
has an initial object] iff ’ is (finitely) representable.

It is shown in [6] that quasi-representable signature morphisms create directed colimits.
Throughout the article, we are going to use intensively a similar property:

LEMMA 4
Let ’ : �! �0 be a quasi-representable signature morphism and let ðAi!

fi;j
AjÞi, j2I, i�j be a

directed diagram inModð�Þ with colimit ðAi!
�i

AÞi2I. Also, let k 2 I, Ik ¼ fi 2 I j k � ig, and B
a ’-expansion of Ak. Then there exists a directed diagram ðA0i!

f0i;j
A0jÞi, j2Ik, i�j in Modð�0Þ, with

colimit ðA0i!
�0i

A0Þi2Ik , such that:

� A0k ¼ B;
� For each i, j 2 Ik with i � j, f0i, j is a ’-expansion of fi,j;
� For each i 2 Ik, �

0
i is a ’-expansion of �i.

PROOF. For each i 2 Ik, we define ðf0k, i : B! A0i,A
0
iÞ to be ðAk=Modð’ÞÞ�1ðfk, i : Ak ! Ai,AiÞ.

In particular, for i¼ k, we have A0k ¼ B and f0k, k ¼ 1B. Also, for each i, j 2 Ik with k < i � j, we

define f0i, j to be ðAk=Modð’ÞÞ�1ðfi, j : ðfk, i,AiÞ ! ðfk, j,AjÞÞ. Then Dg0 ¼ ðA0i!
f0i;j

A0jÞi, j2Ik, i�j is a
directed diagram in Modð�0Þ and its ’-reduct is Dg ¼ ðAi!

fi;j
AjÞi, j2Ik, i�j. Now we

define ð�0k : B! A0,A0Þ to be ðAk=Modð’ÞÞ�1ð�k : Ak ! A,AÞ and for each i 2 Ik, �
0
i to be

ðAk=Modð’ÞÞ�1ð�i : ðfk, i,AiÞ ! ð�k,AÞÞ. Then CC0 ¼ ðA0i!
�0i

A0Þi2Ik is a cocone of Dg0, and the
’-reduct of CC0 is CC ¼ ðAi!

�i
AÞi2Ik . The fact that CC

0 is an actual colimit for Dg0 follows at
once by the quasi-representability of ’: for any cocone ðA0i!

�0i
A00Þi2Ik of Dg0, we get that

its reduct ðA0i�’�
0
i �’!A00�’Þi2Ik is a cocone of Dg; thus if one takes u to be the universal

arrow from CC to ðA0i�’�
0
i �’!A00�’Þi2Ik (according to Lemma 2), then

ðAk=Modð’ÞÞ�1ðu : ð�k,AÞ ! ð�
0
k�’,A

00
�’ÞÞ is the desired universal arrow from CC0 to

ðA0i�
0
i!A00Þi2Ik . g

The next lemma shows that (quasi-)representable signature morphisms behave well under
composition and pushouts.

LEMMA 5 [6]

(1) (Finitely) quasi-representable signature morphisms form a subcategory of Sign.
(2) (Finitely) representable signature morphisms form a subcategory of Sign.
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(3) If the institution is semi-exact, then the class of (finitely) quasi-representable signature

morphisms is closed under pushouts.
(4) If the institution is semi-exact and liberal on signature morphisms, then the class of

(finitely) representable signature morphisms is closed under pushouts.

Of course, representability and quasi-representability are only abstract approximations

for ‘injective morphisms that only add constants’. What will be relevant for the results of

this paper is that in all our examples 1–14 of institutions, (quasi-)representable signature

morphism include the desired types of morphisms. Formally, let ’ : �! �0 be a

signature morphism in any of the examples 1–14 of institutions. We say that ’ is an

injective signature morphism that only adds constants if the following conditions hold: ’sort is
bijective, ’rel is bijective, ’op is injective and F0 � ’opðFÞ contains only (total) operation

symbols. (Here, F and F0 stand for the sets of all (partial and total) operation symbols of �

and �0, respectively.) If in addition F0 � ’opðFÞ is finite, we say that ’ is an injective signature

morphism that only adds finitely many constants.

PROPOSITION 6
In any of the examples 1–14 of institutions, all injective signature morphisms that only add

(finitely many) constants are (finitely) representable, hence also (finitely) quasi-representable.

Moreover, in each case, the (broad) subcategory of Sign of such morphisms is closed under

pushouts.

PROOF. The fact that such morphisms are (finitely) representable can be shown using

arguments very similar to the ones for FOPL. The only slightly more exotic cases are PFOPL,

PA, OSL, RL, HL, and EHL; however, in each case the algebra freely generated by a

set of (total) variables exists in any signature. The cases of HL and EHL actually require

a small separate discussion. Let ðH,V,FÞ be a signature in either of the two institutions.

Since each free algebra TFðXÞ has its behavioral equivalence equal to the identity, every

EQL-morphism with source TFðXÞ is also an EHL- and HL-morphism, thus an EHL- or

HL-signature morphism that only adds (finitely many) constants X is indeed (finitely)

represented by TFðXÞ.
As for closure under pushouts, this follows easily from the fact that, in the category of

sets and functions, the subcategory of injective functions is closed under pushouts. g

Although not strictly needed in this article, but helpful for getting an idea on how close the

aforementioned approximation is, we recall a concrete characterization of representable

(and quasi-representable) signature morphisms in FOPL.

PROPOSITION 7
[33] Let ’ : � ¼ ðS,F,PÞ ! �0 ¼ ðS0,F0,P0Þ be a signature morphism in FOPL. Then the

following are equivalent:

(1) ’ is representable;
(2) ’ is quasi-representable and
(3) ’sort and ’rel are bijective, and for all ðw0, s0Þ 2 S0� � S0 with w0 6¼ �, for all �0 2 F0w0, s0 , there

exists a unique � 2 F such that ’opð�Þ ¼ �0 (in other words, ’ is bijective with respect

to all items except constant symbols).

Moreover, the preceding three conditions stay equivalent if we add the word ‘finitely’ to the

first two and add the requirement that F0 � ’opðFÞ be finite to the third.
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4 Elementary morphisms

In classical first-order logic [4], an injective model morphism A!
h
B is called an elementary

embedding if one of the following equivalent conditions holds:

(1) For each formula eðx1, . . . , xnÞ and each sequence a1, . . . , an 2 A, A � eða1, . . . , anÞ iff

B � eðhða1Þ, . . . , hðanÞÞ;
(2) For each formula eðx1, . . . , xnÞ and each sequence a1, . . . , an 2 A, A � eða1, . . . , anÞ implies

B � eðhða1Þ, . . . , hðanÞÞ.

The notion of elementary embedding has an immediate generalization to the many-

sorted case FOPL; and it was extended to cope with infinitary first-order logics too [18, 17].

Our next institutional generalization reads the concept of elementary embedding in the

following way: the morphism h preserves sentences in any language extending with constants

the original language, regardless of the actual interpretation of these constants. Notice

that the two alternative definitions of elementary embeddings listed here are equivalent

thanks to the existence of negations in full first-order logic; however, this is not the case in less

expressive logics, such as PosFOPL or EQL. We prefer to consider the second variant

and interpret elementarity as a sentence preservation property rather than a refinement of

elementary equivalence. This subjective choice is motivated by our belief that taking

into consideration the direction of the arrow h in the definition is a more fruitful approach.

In an institution, the ‘languages extended with constants’ are captured by quasi-representable

signature morphisms ’ having as source the given language/signature, and satisfaction

inside such an extended language is captured by usual satisfaction by ’-expansions. To

keep the discussion general and to avoid certain intricacies in the particular cases resulting

from considering all quasi-representable, or representable, signature morphisms, we

parameterize our definition by a class Q of quasi-representable signature morphisms.

Thus let A!
h
B be a �-morphism. Formulae eðx1, . . . , xnÞ are expressed by usual sentences e0

in signatures �0, where ’ : �! �0 is a signature morphism in Q. Satisfaction of

such sentences e0 2 Senð�0Þ makes sense in ’-expansions of A and B, expansions which

are to be seen as models together with some designated constants.5 However, asking

that ‘A0 � e0 implies B0 � e0’ for all ’-expansions A0 and B0 of A and B and for all e0 2 Senð�0Þ

is not appropriate, since the quoted implication should be required only about

constants in A and B connected through h; the connection is realised by first considering

’-expansions h0 of h.
The injectivity assumption in the definition of elementary embedding for classical first-

order logic is superfluous. We did not consider it in the preceding discussion; this could be

seen as yet another subjective choice, meant to emphasize once more the idea of sentence

preservation, this time to the prejudice of the algebraic property of model embedding.

This choice has an important terminological consequence: we define and study ‘elementary

morphisms’, and not ‘elementary embeddings’, although the elementary morphisms yield

in particular the FOPL-elementary embeddings.
For the whole section, we fix an institution I and a broad subcategoryQ of Sign (i.e. a class

of signature morphisms containing all identity morphisms and closed under composition),

consisting of quasi-representable signature morphisms. In particular, by taking further

5Recall from Section 3 the connection between quasi-representable signature morphisms and first-order variables/

constants.
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mild assumptions on I such as semi-exactness or liberality on signature morphisms,

according to Lemma 5, possible choices for Q are given by either of the following four

types of signature morphisms: quasi-representable, finitely quasi-representable, representable,

finitely representable.

DEFINITION 8
Let � be a signature. A �-morphism A!

h
B is called Q-elementary if for all signature

morphisms ’ : �! �0 in Q, ’-expansions A0 !
h
B0 of h, and sentences e0 2 Senð�0Þ, it holds

that A0 � e0 implies B0 � e0.

REMARK 9

(1) Because each morphism inQ is quasi-representable, in Definition 8 the ’-expansion h0 of h

is uniquely determined by the ’-expansion A0 of A.
(2) If the institution admits negations, then the condition in Definition 8 can be equivalently

stated by replacing ‘A0 � e0 implies B0 � e0’ with ‘A0 � e0 iff B0 � e0’.

Let us see what our general concept of Q-elementary morphism becomes for our

examples 1–14 of institutions. In what follows, for all these institutions, we shall simply

call elementary morphisms the Q-elementary morphisms with Q being the category of injective

signature morphisms that only add constants. (Note that in logics with finite sentences, such

as FOPL and all its fragments, elementarity with respect to arbitrary signature morphisms

that only add constants is equivalent to elementarity with respect to morphisms that only add

finitely many constants; this is because just a finite set of the newly added constants are

contained in a given sentence.) Known and relatively well-studied cases are the following:

� For FOPL, the elementary embeddings from (the many-sorted version of) classical model

theory [4];
� For PA, the elementary embeddings of partial algebras [3];
� For IFOPL and IFOPL�, the L1,w� and L�,w� elementary embeddings from infinitary

model theory [18, 21, 17];
� For ð� [�Þ01, the existentially closed embeddings [17] and
� For ð� [�Þ0n, the �0

n-extensions [4].

Up to our knowledge, elementary embeddings for the other examples of institutions were

not considered so far in the literature. However, such notions are meaningful instances of

the logic-independent concept of elementary morphism that we propose here. In each case,

an elementary morphism is one that preserves satisfaction of all sentences with elements

of the source model as parameters. The next proposition gives some expected properties of

Q-elementary morphisms.

PROPOSITION 10
Let 	 : �! �0 be a signature morphism. Then the following hold;

� The Q-elementary morphisms in Mod(�) form a subcategory of Mod(�);
� Assume that the institution has pushouts of signatures and is semi-exact and that Q

is closed under pushouts. If A0 !
h0

B0 is a Q-elementary morphism in Modð�0Þ, then h0�	 is

also Q-elementary;
� If 	 is in Q, A!

h
B is a Q-elementary morphism in Modð�Þ, and A0 !

h0

B0 is a 	-expansion
of h, then h0 is also Q-elementary.
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PROOF.

(1) If A 2 jModð�Þj, then 1A is Q-elementary because any expansion of 1A along a quasi-
representable signature morphism is an identity model-morphism itself. Let now A!

h
B

and BC be two Q-elementary morphisms in Mod(�) and let f ¼ h; g. In order to show
that f is Q-elementary, let ’ : �! �0 be a signature morphism in Q and A0f0!C0

a ’-expansion of f. Let h0 : A0! B0 such that ðA0, h0Þ ¼ ðA0=Modð’ÞÞ�1ðA, hÞ. Let
g0 ¼ ðA0=Modð’ÞÞ�1ðg : ðA, hÞ ! ðA, fÞÞ. Then h0; g0 ¼ f0. Since h and g are Q-elementary,
it follows that fA0g

� � fB0g
� � fC0g

�.
(2) Let A!

h
B denote the 	-reduct of h0. In order to prove h elementary, let ’ : �! �0 be

a signature morphism in Q and A0!
h0
B0 a ’-expansion of h. Consider the pushout

�0’0!�1	
0�0 of the signature morphism span ð�0	�’!�0Þ. Then ’0 is also in Q. By semi-

exactness, since h0 and h0 have a common reduct (that is, h), they also have a common
expansion A1!

h1
B1 in Modð�1Þ. Because h

0 is elementary, fA1g
� � fB1g

�. Finally, using the
satisfaction condition, we get fA0g

� � fB0g
�.

(3) Immediate from the definition of Q-elementary morphisms and the fact that Q is closed
under composition. g

5 Elementary chain property

Throughout this section, we again fix an institution I and a broad subcategory Q of Sign
consisting of quasi-representable signature morphisms.

A Q-elementary chain is a chain diagram in Modð�Þ for some signature �, such that all
its morphisms are Q-elementary. The elementary chain property (parameterized by Q and
abbreviated Q-ECP) asks that, for each colimit of each Q-elementary chain, all the structural
morphisms be Q-elementary. In other words, it asks that for each signature �, the
subcategory of Modð�Þ of Q-elementary morphisms be closed under chain colimits. We are
going to prove that, under appropriate accessibility assumptions on sentences, Q-ECP holds
in an arbitrary institution. But first we need to consider some technical concepts and results.

We say that a sentence e 2 Senð�Þ for some signature � is preserved (reflected) by
directed colimits of Q-elementary morphisms, abbreviated Q-preserved (reflected), if for each

directed diagram of Q-elementary �-morphisms ðAi!
fi;j

AjÞi, j2I, i�j with colimit ðAi!
�i

AÞi2I and
each k 2 I, Ak � e implies A � e (A � e implies Ak � e respectively).

PROPOSITION 11
The class of sentences preserved by directed colimits of Q-elementary morphisms

(1) Contains all basic sentences,
(2) Is closed under arbitrary conjunction and disjunction,
(3) Is closed under existential quantification over morphisms in Q and
(4) Is closed under universal quantification over finitely quasi-representable morphisms in Q.

PROOF. Let e 2 Senð�Þ, ðAi!
fi;j

AjÞi, j2I, i�j a directed diagram of Q-elementary �-morphisms,
with colimit ðAi!

�i
AÞi2I, and let k 2 I. Assume that Ak � e. We need to prove that A � e.

(1) Assume e is a basic sentence. Since Ak � e, there exists a �-morphism Me ! Ak, hence,
by composition with �k, we find a morphism Me! A, implying A � e.

(2) Assume e is equivalent to
V
E, where E � Senð�Þ such that for all e0 2 E, e0 is

Q-preserved. Since Ak � e, it holds that Ak � e0 for all e0 2 E, hence A � e0 for all e0 2 E,
hence A � e. The proof for disjunction goes similarly.
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(3) Assume e is equivalent to ð9’Þe0, where ’ : �! �0 is in Q and e0 is Q-preserved.
Then there exists a ’-expansion A0k of Ak such that A0k � e0. By Lemma 4, there

exists a directed diagram ðA0i!
f0i;j

A0jÞi, j2Ik, i�j inModð�0Þ, with colimit ðA0i!
�0i

A0Þi2Ik such that,
for each i, j 2 Ik with i � j, f0i, j is a ’-expansion of fi,j and �0i is a ’-expansion of �i. In
particular, A0�’ ¼ A. According to Proposition 10.(3), each f0i, j is Q-elementary. Applying
the fact that e0 is Q-preserved, we obtain that A0 � e0, hence A � ð9’Þe0, i.e. A � e.

(4) Assume e is equivalent to ð8’Þe0, where ’ : �! �0 is a finitely quasi-representable
signature morphism in Q and e0 is Q-preserved. Let A0 be a ’-expansion of A. We need
to show that A0 � e0. Because ’ is finitely quasi-representable, there exists q 2 I and a
’-expansion 
0 : A0q! A0 of �q. Since ðI, �Þ is directed, there exists p 2 I such that q � p
and k � p. Thus, because fk,p is Q-elementary, we get Ap � e. Define ðA0q!

f0

A0p,A
0
pÞ to be

ðAq=Modð’ÞÞ�1ðAq!
fq, p

Ap,ApÞ and �0 to be ðAq=Modð’ÞÞ�1ð�p : ðAq, fq, pÞ ! ðAq,�qÞÞ. Note
that �0 : A0p ! A0. By Lemma 4 applied to the index p, there exists a directed diagram
ðA0i!

f0i;j
A0jÞi, j2Ip, i�j in Modð�0Þ, with colimit ðA0i!

�0i
B0Þi2Ip , such that, for each i, j 2 Ip with

i � j, f0i, j is a ’-expansion of fi,j and �0i is a ’-expansion of �i. Again, Proposition 10.(3)
assures us that each f0i, j is Q-elementary. Since both ð�0,A0Þ and ð�0p,B

0Þ are equal to
ðAp=Modð’ÞÞ�1ð�p,AÞ, it follows that A

0 ¼ B0 and �0 ¼ �0p. Finally, since e
0 is Q-preserved

and A0p � e0 (A0p being a ’-expansion of Ap), we obtain that A0 � e0.

PROPOSITION 12
Assume that the institution admits negation. Then the class of sentences preserved and
reflected by directed colimits of Q-elementary morphisms

(1) Contains all finitary basic sentences,
(2) Is closed under arbitrary conjunction and disjunction, and under negation and
(3) Is closed under universal and existential quantification over finitely quasi-representable

morphisms in Q.

PROOF. Let e 2 Senð�Þ, ðAi!
fi;j

AjÞi, j2I, i�j a directed diagram of Q-elementary �-morphisms,
with colimit ðAi!

�i
AÞi2I, and let k 2 I. We need to prove [Ak � e iff A � e].

� Assume e is a finitary basic sentence. That Ak � e implies A � e follows from Proposition
11(1). Therefore let us suppose A � e, i.e. there exists a �-morphism g : Me ! A, and let
us show that Ak � e. BecauseMe is finitely presentable, there exists j 2 I and �-morphism
h : Me! Aj such that h;�j ¼ g. Because ðI, �Þ is directed, there exists i 2 I such that
k � i and j � i. Then, by the existence of the morphism Me !

h; fj, i
Ai, it follows that Ai � e.

Moreover, since fk, i : Ak ! Ai is Q-elementary and the institution admits negation,
we obtain Ak � e.
� Similar to the proof of Proposition 11(2) for conjunction and disjunction. For negation,

the property is obvious thanks to its symmetry.
� Because the institution admits negation, universal and existential quantifications are

mutually definable. Therefore, let us focus on existential quantification. Assume e is
equivalent to ð8’Þe0, where ’ : �! �0 is a finitely quasi-representable morphism in Q
and e0 is a �0-sentence Q-[preserved and reflected]. That Ak � e implies A � e follows
from Proposition 11(3). Let us now suppose A � ð9’Þe0 and let us show that Ak � ð9’Þe

0.
We have that A � :ð8’Þ:e0, which means A 6� ð8’Þ:e0. By point (2), :e0 is Q-[preserved
and reflected]. Thus, by Proposition 11.(4), ð8’Þ:e0 is Q-preserved, hence Ak � ð8’Þ:e

0

would imply A � ð8’Þ:e0, which is a contradiction. Thus Ak � :ð8’Þ:e
0,

i.e. Ak � ð9’Þe
0. g
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PROPOSITION 13
Assume that all sentences of the institution are preserved by directed colimits of Q-elementary
morphisms. Then for each signature �, the subcategory of Mod(�) of Q-elementary
morphisms is closed under directed colimits.

PROOF. Let ðAi!
fi;j

AjÞi, j2I, i�j be a directed diagram in Modð�Þ such that each fi,j is
Q-elementary, and let ðAi!

�i
AÞi2I be its colimit. Let k 2 I. In order to prove that �k is

Q-elementary, let �0 : A0k ! A0 be a ’-expansion of �k and let e0 2 Senð�0Þ such that A0k � e0.
By Lemma 4, there exists a directed diagram ðA0i!

f0i;j
A0jÞi, j2Ik, i�j in Modð�0Þ, with

colimit ðA0i!
�0i

B0Þi2Ik , such that, for each i, j 2 Ik with i � j, f0i, j is a ’-expansion of fi,j
and �0i is a ’-expansion of �i. Just like in the proof of Proposition 11(4), one obtains
that each f0i, j is Q-elementary and that A0 ¼ B0 and �0 ¼ �0k. Thus, according to our
hypothesis, A0 � e0.

DEFINITION 14
An institution I is called Q-first-order-accessible if one of the two following properties holds:

(1) All sentences of I are (equivalent to ones) obtained from basic sentences by applying
a finite number of times the following rules:
� Arbitrary conjunction;
� Arbitrary disjunction;
� Existential quantification over morphisms in Q and
� Universal quantification over finitely quasi-representable morphisms in Q.

(2) I admits negation and all sentences of I are (equivalent to ones) obtained from finitary
basic sentences by applying a finite number of times the following rules:
� Arbitrary conjunction;
� Arbitrary disjunction;
� Negation;
� Existential quantification over finitely quasi-representable morphisms in Q and
� Universal quantification over finitely quasi-representable morphisms in Q.

PROPOSITION 15
All the examples 1–14 of institutions are Q-first-order-accessible, where Q is each time the
category of injective signature morphisms that only add constants.

PROOF. Let us first see that IFOPL and all its fragments are Q-first-order accessible. Indeed,
for each signature � ¼ ðS,F,PÞ, an equality atom t ¼ t0 is finitary basic thanks to the model
T�=t ¼ t0, that is, the (S,F)-algebra TF=t ¼ t0 (a quotient of the ground term algebra over F)
with all the relations in P empty, while a relational atom Rðt1, . . . , tnÞ is basic, thanks to the
model consisting of TF together with all relations in P empty, except R, which is the singleton
fðt1, . . . , tnÞg. Moreover, quantification over finite or infinite sets of variables are particular
cases of quantification over signature morphisms in Q. Thus, PosFOPL, EQL and ML fall
into case 1 of Definition 14, and FOPL, ð� [�Þ0n, IFOPL, IFOPL� and EQLN into case 2.

A similar argument as the preceding holds for PFOPL and PA too, since, for instance given
a PA-signature and a set of equality atoms, there exists the initial algebra in the category of
algebras satisfying these atoms [3]. And similarly for RWL and OSL.

As for EHL and HL, one has to notice mainly two things. First, all usual equality atoms are
basic; indeed, the algebra TF=t ¼ t0 has the property that, for each ðH,V,FÞ-model A
satisfying the usual equality atom t ¼ t0, the unique EQL-morphism between TF=t ¼ t0 and
A preserves behavioral equivalence; hence, it is also an EHL- and HL-morphism.
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Second, the behavioural equality atoms are equivalent to (infinite) conjunctions of universally
quantified usual equality atoms; indeed, it holds that A � t � t0 iff A �

V
fð8fx1, . . . , xngÞ

c½z t	 ¼ c½z t0	 j v 2 V, x1, . . . ,xn variables, c 2 TFðfx1, . . . , xn, zgÞvcontextg. Thus HL
falls into case 1 of Definition 14. Moreover, EHL falls into case 2, since although behavioural
equality atoms are not finitary, they are nevertheless obtainable from finitary basic sentences
by means of the rules of universal quantification over finitely quasi-representable morphisms
in Q (i.e. over finite sets of variables) and arbitrary conjunction.

THEOREM 16
(Elementary Chain Theorem) Assume that the institution is Q-first-order-accessible. Then for
each signature �, the subcategory of Mod(�) of Q-elementary morphisms is closed under
directed colimits. In particular, the institution enjoys the Q-ECP.

PROOF. Follows immediately: for case 1 of Definition 14 from Propositions 11 and 13, and for
case 2 from Propositions 12 and 13.

The separation on two cases in Definition 14 covers mainly the following situations: the
institution I either admits negation, or has no negation—intermediate cases are not covered.
Some important examples of institutions to which our Theorem 16 does not apply are all
variations of Horn logic—in fact, for those institutions, we conjecture that the elementary
chain property does not hold.

COROLLARY 17
All the examples 1–14 of institutions enjoy the Q-ECP.

Note that Theorem 16 is applicable to a whole variety of other logics resulted from other
different combinations of connectives and quantifiers. An interesting example which takes full
advantage of Proposition 11 is a version of positive infinitary first-order logic admitting
arbitrary conjunction and disjunction, existential quantification over arbitrary sets of
variables, and universal quantification over finite sets of variables. Moreover, the case of
fragments of languages (over transitive sets) in infinitary first-order logic [18] also seems to
fall into our framework, provided that one takes the trouble of formalizing this as an
institution.

6 Elementary morphisms by diagrams

An alternative definition of elementary embeddings in classical model theory is given in terms
of elementary diagrams [4, 25]. There, the elementary diagram EDgðAÞ of a model A is the set
of all sentences in �(A) (the language � of A extended with all elements of A as constants)
that are true in A. Then, an embedding A!

h
B is elementary iff hðEDgðAÞÞ � EDgðBÞ, where

hðEDgðAÞÞ is the obvious translation through h of the sentences in EDgðAÞ. The main
difference to the original definition (discussed at the beginning of Section 4) is that a language
which includes parameter symbols for the source model, �(A), is a priori given and the desired
property is stated locally, in that fixed language. By adapting an existing institutional concept
of diagram, we can discuss this alternative definition in a logic-independent framework.

6.1 Institutional diagrams

Diagrams are a basic concept in classical model theory [4]. They were first generalized to the
institutional framework in [35, 36]; there, it is defined the concept of abstract
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algebraic institution, which is an institution subject to some additional natural requirements
(like finite-exactness, existence of direct products of models, etc.) and enriched with a system
of diagrams. The reason for introducing diagrams there was making all algebras accessible,
for specification purposes. In this article, we need a more elaborated notion of institutional
diagram, defined in [8], which takes into consideration not only models, but also
model morphisms. The concept was introduced under the name ‘elementary diagram’.
For reasons that will be pointed out soon, here we prefer to use, like in [35], the name ‘positive
diagram’ instead.

An institution I ¼ ðSign,Sen,Mod, �Þ is said to have positive diagrams [8] if

(1) For each signature � and �-model A there exists a signature morphism ��ðAÞ : �! �A

and a set EA of �A-sentences (called the positive diagram of A) such thatModð�A,EAÞ and
A=Modð�Þ are isomorphic by an isomorphism i�,A making the following diagram
commutative:

(2) � is ‘functorial’, i.e. for each signature morphism ’ : �! �0, each A 2 jModð�Þj,
A0 2 jModð�0Þj and h : A! A0�’ in Modð�Þ, there exists a presentation morphism
�’ðhÞ : ð�A,EAÞ ! ð�

0
A0 ,EA0 Þ making the following diagram commutative:

(3) i is natural, i.e. for each signature morphism ’ : �! �0, each A 2 jModð�Þj,
A0 2 jModð�0Þj and h : A! A0�’ in Modð�Þ, the following diagram is commutative:

Here are some notational conventions that we hope will make the reader’s life easier. Let

’ : �! �0 be a signature morphism, A0 2 jModð�0Þj and h : A! B in Modð�Þ. We write

��ðhÞ instead of �1� ðhÞ and �’ðA
0
�’Þ instead of �’ð1ðA0 �’ÞÞ. Let A be a fixed object in Mod(�) and

let B,C 2 jModð�Þj and f : A! B, g : A! C, u : B! C morphisms in Modð�Þ such that

f; u ¼ g. Then (f,B) and (g,C) are objects in A=Modð�Þ and u is also a morphism in A=Modð�Þ

between (f,B) and (g,C). We establish the following notations: Bf ¼ i�1�,Aðf,BÞ (and, similarly,

Cg ¼ i�1�,Aðg,CÞ ), uf, g ¼ i�1�,Aððf,BÞ!
u
ðg,CÞÞ. Thus, for instance, let f : A! B be a �-model

morphism. Then f1A, f is the image through i�1�,A of the morphism f : ð1A,AÞ ! ðf,BÞ in

A=Modð�Þ, and has source Að1AÞ and target Bf. We shall write AA instead of Að1AÞ and fA,f
instead of f1A, f.
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In classical model theory, �A is the signature � enriched with all the elements of A as
constants, ��ðAÞ : �! �A is the inclusion of signatures, and EA is a set of parameterized
sentences which hold in A, depending on the considered type of morphism between models.
If arbitrary model homomorphisms are allowed as morphisms, like in FOPL, one gets the
‘positive diagram’; if just model embeddings are considered, one gets the ‘diagram’; and only
if just elementary embeddings are allowed, one gets what is classically called ‘elementary
diagram’ (see [4] for the pointed standard terminology in classical model theory). Thus, the
preceding institutional definition of diagrams particularises to elementary diagrams for
classical first-order logic only if a notion of elementary morphism is assumed as previously
defined. However, it is precisely the latter notion that we want to capture using diagrams.
Therefore, we prefer to use the term ‘positive diagram’, in accordance to the particularization
of the concept to the concrete institution FOPL, widely accepted as the institution of
first-order logic. Thus we view the set of sentences EA as the positive, rather than
elementary, diagram of A, but of course keeping for it the same understanding as in [8]: that
EA axiomatizes the class of �-morphisms with source A. And we use the term elementary
diagram of A for the set fAAg

�, of all sentences satisfied by the self-parameterized extension
AA of A.

In [8], there are presented positive diagrams for FOPL, RWL, PA, and HL. Most
institutions that were built starting from ‘working’ logical systems tend to have elementary
diagrams. We next recall the system of positive diagrams for FOPL. Let � ¼ ðS,F,PÞ be
a FOPL-signature and A 2 jModð�Þj. Define �A ¼ ðS,FA,PÞ, where FA extends F by adding,
for each s 2 S, all elements of As as constants of sort s. Further, we define:

(1) AA 2 jModð�AÞj, as the �A-expansion of A which interprets each constant a 2 A by a;
(2) EA, as the set of all atoms in Senð�AÞ satisfied by AA;
(3) ��ðAÞ, as the signature inclusion of � into �A;
(4) The functor i�,A : Modð�A,EAÞ ! A=Modð�Þ, as:

� i�,AðB
0Þ ¼ ðA!

h
B,BÞ, where B ¼ B0���ðAÞ and, for each s 2 S and a 2 As, hsðaÞ ¼ B0a.

� i�,Að f Þ ¼ f.

Let ’ : � ¼ ðS,F,PÞ ! �0 ¼ ðS0,F0,P0Þ be a signature morphism, A 2 jModð�Þj,
B 2 jModð�0Þj and h : A! B�’ in Modð�Þ. Then the natural presentation morphism
�’ðhÞ : ð�A,EAÞ ! ð�

0
B,EBÞ from the definition of positive diagrams is the following: if

e 2 Senð�AÞ, then �’ðhÞðeÞ is obtained from e by symbolwise translation, mapping:

� Each � 2 F into ’opð�Þ,
� Each R 2 P into ’relðRÞ,
� For all s 2 S, each a 2 As into hs(a),
� For all s 2 S, each variable x :s of sort s into a variable x :’sortðsÞ and
� Each other symbol u that appears in e (e.g. logical connectives and quantifiers) into u.

As a general rule easily seen to hold about positive diagrams, one has that:

� If an institution I 0 extends an institution I and has the same category Sign and
functor Mod (thus only adds new sentences), then positive diagrams are inherited by I 0

from I ;
� If an institution I 0 restricts an institution I , has the same category Sign and functor Mod

(thus only restricts the sets of sentences), but I 0 still has all the sentences in the positive
diagrams EA of I , then positive diagrams are inherited by I 0 from I .
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Thus, the earlier described positive diagrams of FOPL are inherited by IFOPL, IFOLPL�,
PosFOPL, EQL, EQLN, ML. The positive diagrams for the other mentioned institutions can

be constructed with a similar pattern as those of FOPL; as remarked in [8], the sentences EA

are always the basic sentences satisfied by the model A expanded to �A with constants in A

pointing to themselves.
For what follows, we fix an institution with positive diagrams, I .

DEFINITION 18
Let � be a signature.

� Given a �-model A, the elementary diagram of A is the set fAAg
� (of �A-sentences

satisfied by AA).
6

� A �-morphism A!
h
B is called elementary by diagrams (d-elementary) if one of the

following two equivalent conditions holds:

� A�A � B�h;
� ��ðhÞðA

�
AÞ � B�B.

That the two conditions in point (2) of the preceding definition are equivalent follows from

the satisfaction condition together with the fact that, by the naturality of i, BB���ðhÞ ¼ Bh.
Thus, we defined elementary morphisms by means of elementary diagrams. We can spell

out this definition as follows: A!
h
B is d-elementary if the elementary diagram of A is

embedded, via h, into the elementary diagram of B.

6.2 The relationship between Q-elementary and d-elementary

The notion of d-elementary morphism is more compact than that of Q-elementary morphism,

but the former needs a lot of further structure on top of the plain institutional structure.

We next provide conditions under which the two concepts are equivalent. For all this section,

we fix a broad subcategory Q of Sign consisting of representable signature morphisms.7

PROPOSITON 19
The positive diagrams of I are said to be Q-normal if for each representable signature

morphism ’ : �! �0 (represented by M’) there exists a signature morphism 	 : �0 ! �M’

such that ’;	 ¼ ��ðM’Þ and Modð	Þ; I’ ¼ i�,M’
.8

In examples 1–14 of institutions, for the usual choice of Q, i.e. to consist of all injective

signature morphisms that only add constants, the signature morphisms ��ðAÞ of the positive

diagrams are all in Q. Moreover, in each case, the positive diagrams are also Q-normal.

Indeed, for example, in FOPL, given an injective signature morphism ’ that only adds

constants, which we can assume without loss of generality to be an inclusion

� ¼ ðS,F,PÞ ! �0 ¼ ðS,F [ X,PÞ, represented by the �-model T�ðXÞ, the desired morphism

	 such that ’;	 ¼ ��ðT�ðXÞÞ is the signature inclusion ðS,F [ X,PÞ ! ðS,F [ T�ðXÞ,PÞ given

by the set inclusion X! T�ðXÞ. In order to see that the corresponding condition on model

6 Since AA� EA, the positive diagram of A is included in the elementary diagram of A.
7Note that we require more than usual for the subcategory Q, namely representability instead of quasi-

representability.
8Here, we made the slight notational abuse of letting Mod(	) denote the restriction of

Modð	Þ : Modð�M�
Þ !Modð�0Þ to Modð�M’

;EM’Þ.
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categories holds, let N be a �T�ðXÞ-model that satisfies ET�ðXÞ. Then

i�,T�ðXÞðNÞ ¼ ðh : T�ðXÞ ! N���ðT�ðXÞÞ,N���ðT�ðXÞÞÞ, where hðtÞ ¼ Nt for all t 2 T�ðXÞ. On the

other hand, I’ðN�	Þ ¼ ðg : T�ðXÞ ! N�’;	,N�’;	Þ ¼ ðg : T�ðXÞ ! N���ðT�ðXÞÞ,N���ðT�ðXÞÞÞ,

where g is the unique �-morphism extending the mapping v : X! N defined by vðxÞ ¼ Nx

for all x 2 X. Thus, by the freeness of T�ðXÞ, g¼ h. Hence, the functors Modð	Þ; I’ and i�,M’

coincide on objects. That they coincide on morphisms too follows at once from

’;	 ¼ ��ðT�ðXÞÞ. Normality of the positive diagrams for the other examples of institutions

can be shown similarly to the case of FOPL.

PROPOSITION 20
If the positive diagrams are normal and have each signature morphism ��ðAÞ in Q, then any

model morphism is Q-elementary iff it is d-elementary.

PROOF. Let � be a signature and A!
h
B a �-morphism.

Assume first that h is Q-elementary. Then, since ��ðAÞ is in Q and AA!
hA
Bh is a

��ðAÞ-expansion of h, we get fAAg
� � fBhg

�. Thus, h is d-elementary.
Conversely, assume that h is d-elementary. Let ’ : �! �0 be a signature morphism in Q

and A0 !
h
B0 a ’-expansion of h. Let ðM’a!A,AÞ ¼ I’ðA

0Þ and ðM’!
b
B,BÞ ¼ I’ðB

0Þ. By the

naturality of i we have hA, h���ðaÞ ¼ ha, b.
9 Since fAAg

� � fBhg
�, by the satisfaction condition,

it follows that fAag
� � fBbg

�. Now, by the normality of diagrams, there exists 	 : �0 ! �M’

such that ’;	 ¼ ��ðM’Þ and Modð	Þ; I’ ¼ i�,M’. Then Modð	Þ ¼ i�,M’; I
�1
’ , thus

ha, b�	 ¼ I�1’ ði�,M’
ðha, bÞÞ ¼ I�1’ ðhÞ ¼ h0. Hence, Aa�	 ¼ A0 and Bb�	 ¼ B0. Finally, by the

satisfaction condition, we get fA0g� � fB0g�.

COROLLARY 21
In all the examples 1–14 of institutions (with their mentioned diagrams), a model morphism is

elementary iff it is d-elementary.

7 Concluding remarks

We outline the contributions of the present article:

� Introduced an abstract notion of elementary morphism, parameterized by a class of

signature morphisms;
� Studied the connection between elementary morphisms and positive diagrams in an

arbitrary institution, by giving an alternative diagrammatic definition of elementarity and
� Showed how the general results particularize to many concrete cases of logical systems,

yielding different known results in a unitary fashion but also some new results; in

particular, the less conventional cases of partial algebra, hidden logic and rewriting logic

fall into our framework.

An open problem that we consider worthwhile is the institutional relationship between

elementary morphisms and model embeddings. Given the fact that classically elementary

morphisms are also embeddings, a result stating that, under certain assumptions on the

expressive power of sentences, all elementary morphisms are embeddings (where ‘embeddings’

9 hA;h : AA ! Bh is a morphism in �A and ha;b : Aa  Bb is a morphism in �M’
—recall the notational

conventions about elementary diagrams.
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can be defined either strictly categorically, as subobjects, or by means of inclusion or

factorization systems), would be very desirable.
A more in depth study of elementary morphisms in some particular cases might also

prove to be interesting. Take for instance the equational framework. In EQL and EQLN,

the elementary morphisms do not seem very amenable. It is not clear to us how they look like.

Note that a surjective morphism is always elementary in EQL, and an elementary morphism

has to be injective in EQLN. The case of HL is even more intricate, and the notion of

‘elementary behavioral morphism’, complementing that of bisimulation, is potentially fruitful

in the algebraic study of systems and behaviour.
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