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Rezumat

In aceasta lucrare este tratata analiza ecuatiei Schrödinger pe retele constituind arbori
pentru care muchiile din ultima generatie sunt infinite:

(0.1)


iut(t, v) + ∆u(t, v) = 0, t 6= 0, v ∈ V, deg(v) = 2,

∆u(t, v) = 0, t 6= 0, v ∈ V, deg(v) ≥ 3,

u(0, v) = u0(v), v ∈ V, deg(v) = 2.

Acest model corespunde unui sistem de ecuatii Schrödinger liniare discrete pe fiecare
muchie a arborelui, care sunt cuplate in varfurile retelei printr-o cuplare de tip Kirchhoff.

Aceasta problema a fost ridicata de profesorul si coordonatorul meu, Liviu Ignat. Noi
am abordat acest proiect pe baza rezultatelor obtinute anterior de Liviu Ignat, Valeria
Banica si Diana Stan.

Principalul rezultat obtinut (si pe care ne asteptam sa il publicam in curand) este ur-
matorul, din care rezulta estimari Strichartz:

Theorem 0.1. Pentru orice u0 ∈ l2(Γ), sistemul are o unica solutie u ∈ C(R, l2(Γ)). In
plus, exista C > 0 astfel incat

(0.2) ‖u(t)‖l∞(Γ) ≤
C

(1 + |t|)1/3
‖u0‖l1(Γ) ∀ u0 ∈ l1(Γ).

Lucrarea incepe prin analiza proprietatilor spectrului laplacianul pe graf, in particular
spectrul este σ(∆) = [−4, 0] si rezolvanta Rλ = (∆− λ)−1 este{

uαn = uα0 · rn1 + Sαn , pentru α muchie infinita

uβn = aβ · rn1 + bβ · rn2 + Sβn , pentru β muchie finita,

pentru Rλf = u si

Sαj =
1

r1 − 1
r1

∑
k∈Iα

[
r
|j−k|
1 − rj+k1

]
fαk .

Apoi, putem reprezenta solutia prin calcul functional, folosind teorema lui Stone si Teo-
rema lui Cauchy - pentru a determina masurile spectrale, sub forma:

u(t)n =
(
eit∆ϕ

)
n

=
1

2πi

∫
I

eitλ [Rλ− −Rλ+]ϕn dλ.

unde Rλ− −Rλ+ are o forma explicita.
Pentru a demonstra inegalitatile dispersive trebuie sa demonstram inegalitati de forma:
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∣∣∣∣∫
I

eitλaα−r
n dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
‖ϕ‖l1

Coeficientii aα− = xi = Din
Dn

sunt solutiile unui sistem liniar obtinut din conditiile de
cuplare si putem determina prin recurenta expresiile

Dn = (r1 − 1)n · (r1 + 1)n−1 · h(r1)

unde h este o functie rarionala care nu se anuleaza pe T.

Di
n = (r1 − 1)n−1 · (r1 + 1)n−2 ·

[∑
α∈E

Sα1 · q
α,i
1

(
r1,

1

r1

)
+

∑
α−finite

SαNα · q
α,i
Nα

(
r1,

1

r1

)]
pentru polinoame qα,i1 si qα,iNα . De aici se obtine

xi =
∑
α∈E

Sα1 · q
α,i
1 (r1,

1
r1

)

(r1 − 1)(r1 + 1)h(r1)
+

∑
α−finite

SαNα · q
α,i
Nα

(r1,
1
r1

)

(r1 − 1)(r1 + 1)h(r1)
.

In final, folosind aceaste expresii, se demonstreaza inegalitatile cu lema lui Van der
Corput, folosind o teorema a lui Wiener.

As vrea sa ii multumesc calduros coordonatorului meu, L. Ignat de la IMAR, pentru
tot sprijinul din acesti ani. De asemenea, le multumesc tuturor profesorilor care au tinut
cursuri la SNSB.

Cristian Gavrus
Iunie 2012
Bucuresti
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Summary

This thesis treats the analysis of the Schrödinger equation on networks consisting of a
tree with infinite edges in the last generation:

(0.3)


iut(t, v) + ∆u(t, v) = 0, t 6= 0, v ∈ V, deg(v) = 2,

∆u(t, v) = 0, t 6= 0, v ∈ V, deg(v) ≥ 3,

u(0, v) = u0(v), v ∈ V, deg(v) = 2.

This model corresponds to a system of discrete linear Schrödinger equations on each edge
of the tree coupled at the vertives of the network by a discrete Kirchhoff’s-type coupling.
This problem was posed by my supervisor, Prof. Liviu Ignat, and we have been working
on this project motivated by earlier results of Liviu Ignat, Valeria Banica and Diana Stan.

The main result of our work (which we expect to publish soon) is one, from which
Strichartz estimates follow:

Theorem 0.2. For every u0 ∈ l2(Γ), this system has a unique solution u ∈ C(R, l2(Γ)).
Additionally, there exists C > 0 for which

(0.4) ‖u(t)‖l∞(Γ) ≤
C

(1 + |t|)1/3
‖u0‖l1(Γ) ∀ u0 ∈ l1(Γ).

I would like to warmly thank my advisor, Liviu Ignat from IMAR, for all his support
during these years.



DISPERSION PROPERTY FOR DISCRETE SCHRÖDINGER
EQUATIONS ON NETWORKS

1. Introduction

Let us consider the linear Schrödinger equation (LSE):

(1.1)

{
iut + uxx = 0, x ∈ R, t 6= 0,
u(0, x) = ϕ(x), x ∈ R.

The linear equation (1.1) is solved by u(t, x) = S(t)ϕ, where S(t) = eit∆ is the free
Schrödinger operator. The linear semigroup has two important properties. First, the
conservation of the L2-norm:

(1.2) ‖S(t)ϕ‖L2(R) = ‖ϕ‖L2(R)

and a dispersive estimate of the form:

(1.3) |(S(t)ϕ)(x)| ≤ 1

(4π|t|)1/2
‖ϕ‖L1(R), x ∈ R, t 6= 0.

More general estimates known as Strichartz’s estimates has been obtained. These esti-
mates have been successfully applied to obtain well-posedness results for the nonlinear
Schrödinger equation (see [3], [12] and the reference therein).

In the case of the Schrödinger equation on trees similar properties have been obtained
in [5] and [2]. In [5] the case of regular tree has been analyzed. The main idea has been
the connexion between the Schrödinger equations on regular trees and the 1-D laminar
Schrödinger equation considered in [1]. The extension of these result to the case of a
general tree has been considered in [2].

The main goal of this article to consider problems similar to those above but in the
discrete case. Let us recall some previous results in the discrete framework.

Let us now consider the following system of difference equations

(1.4)

{
iut + ∆du = 0, j ∈ Z, t 6= 0,

u(0) = ϕ,

where ∆d is the discrete laplacian defined by

(1.5) (∆du)(j) = uj+1 − 2uj + uj−1, j ∈ Z.

Concerning the long time behavior of the solutions of system (1.4) in [11] the authors have
proved that a decay property similar to the one obtained for the continuous Schrödinger
equation holds:

(1.6) ‖u(t)‖l∞(Z) ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀ t 6= 0.
4
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The proof of (1.6) consists in writing the solution u of (1.4) as the convolution between a
kernel Kt and the initial data ϕ and then estimate Kt by using Van der Corput’s lemma.
In [11] the authors apply these estimates on the linear semigroup to prove that in some
cases the semilinear discrete Schrödinger equation decay like the free solution in the cor-
responding lp(Z)-norms.

In a recent paper [9] the authors use some modifications of the stationary phase method
to obtain improved l1− lp decay estimates for the linear discrete Schródinger equation and
better than in [11] results for the nonlinear case.

More general models have been considered in [6] where the authors couple two discrete
Schrödinger equations posed on two infinite strips:

(1.7)



iut(t, j) + b−2
1 (∆du)(t, j) = 0 j ≤ −1, t 6= 0,

ivt(t, j) + b−2
2 (∆dv)(t, j) = 0 j ≥ 1, t 6= 0,

u(t, 0) = v(t, 0), t 6= 0,

b−2
1 (u(t,−1)− u(t, 0)) = b−2

2 (v(t, 0)− v(t, 1)), t 6= 0,

u(0, j) = ϕ(j), j ≤ −1,

v(0, j) = ϕ(j), j ≥ 1.

In the above system u(t, 0) and v(t, 0) have been artificially introduced to couple the two
equations on positive and negative integers. The third condition in the above system
requires continuity along the interface j = 0 and the fourth one can be interpreted as
the continuity of the flux along the interface. We will make evidence in the paper the
connection between this result and the models considered here.

In this paper we prove dispersion inequality similar to (1.6) for the linear discrete
Schrödinger equation defined on a network formed by a tree Γ = (V,E) (connected graph
without closed paths), V being the set of vertices and E of edges, with all the edges having
length an integer number greater than two and with the external edges infinite. Once we
fixed the tree Γ as in Fig. 1 we discretize all its edges as in Fig. 2 obtaining a new graph
Γd = (V d, Ed). Now we consider a discrete Laplace operator on each of the edges. The
presentation of the discrete Laplace operator ∆d will be given in the next section. Let us
just say here that ∆d acts as the usual discrete Laplacian (1.5) at each internal node of
each edge, and at the vertices of the tree we consider a coupling condition.

We now discretize all the edges of the tree choosing the mesh size to be one. Since the
lengths of the edges has been chosen to be integer numbers greater than two this is always
possible and moreover there is at least one internal vertex on each edge of the considered
tree. In this way we have vertices with degree at least three that come form the way that
we have considered the tree and vertices with their degree of order two that come from the
discretization. In Fig. 1 we have a such structure. The discrete Laplacian of a function u
on such structure Γd is given as follows:
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Figure 1. A tree consisting in two vertices, one finite edge and four infinite edges.

(1.8) (∆du)(v) =
∑
w∈Ev

(u(w)− u(v)),

where the sum is taken over all the neighbors w ∈ Γd of the vertex v.
We now can state the main results of this paper. Let us consider the equation

(1.9)


iut(t, v) + ∆u(t, v) = 0, t 6= 0, v ∈ V, deg(v) = 2,

∆u(t, v) = 0, t 6= 0, v ∈ V, deg(v) ≥ 3,

u(0, v) = u0(v), v ∈ V, deg(v) = 2.

This model corresponds to a system of discrete linear Schrödinger equations on each edge
of the tree coupled at the vertives of the network by a discrete Kirchhoff’s-type coupling.
We will later explain this type of coupling. We point out that the function u should be
considered only at the internal nodes V d \ V .

Another model of interest is the case of the ”combinatorial Laplacian”. Here we have
no coupling condition and the Schrödinger equation should be satisfies even at the vertices
with degree greater than three.
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Figure 2. The discrete graph obtained from the previous one in Fig.1. At
the blue points we have coupling conditions, at the rest classical discrete
Laplacian

(1.10)

{
iut(t, v) + ∆u(t, v) = 0, t 6= 0, v ∈ V,

u(0, v) = u0(v), v ∈ V.
In some sense this model consider a dynamic coupling at the original vertices of the tree
Γ.

This two type of models has been already observed in the simpler case of a system formed
by two discrete Schrödinger equations on two infinite half-lines coupled at the origin [6].

The main result of this paper is the following one:

Theorem 1.1. For every u0 ∈ l2(Γ), system (1.9) has a unique solution u ∈ C(R, l2(Γ)).
Additionally, there exists C > 0 for which

(1.11) ‖u(t)‖l∞(Γ) ≤
C

(1 + |t|)1/3
‖u0‖l1(Γ) ∀ u0 ∈ l1(Γ).

An immediate consequence (see [7] for an abstract result) are the following space-time
estimates for the solutions of the linear problem.

Theorem 1.2. For every u0 ∈ l2(Γ), the solution u of system (1.9) satisfies

(1.12) ‖u‖Lq(R,lr(Γ)) ≤ Cq,r‖u0‖l2(Γ)
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for any pair (q, r) satisfying
1

q
≤ 1

3
(
1

2
− r).

2. Notations and Preliminaries

In this section we present some generalities about graphs and introduce the discrete
Laplace operator on such structure. Let Γ = (V,E) be a graph where V is a set of vertices
and E the set of edges. For each v ∈ V we denote Ev = {e ∈ E : v ∈ e}. We assume
that Γ is a connected locally finite graph, i.e. the degree of each vertex v of Γ is finite:
d(v) = |Ev| < ∞. The edges could be of finite length and then their ends are vertices of
V or they have infinite length and then we assume that each infinite edge is a ray with a
single vertex belonging to V (see [8] for more details on graphs with infinite edges).

We fix an orientation of Γ and for each oriented edge e, we denote by I(e) the initial
vertex and by T (e) the terminal one. Of course in the case of infinite edges we have only
initial vertices. We assume that the considered tree has all the vertices, except the origin,
with degree at least three.

We identify every edge e of Γ with an interval Ie, where Ie = [0, Ne + 1], Ne an integer,
if the edge is finite and Ie = [0,∞) if the edge is infinite.

Let v be a vertex of V and e be an edge in Ev. We set for finite edges e

j(v, e) =

{
0 if v = I(e),

le if v = T (e)

and
j(v, e) = 0, if v = I(e)

for infinite edges.
We now discretize all the edges of the tree choosing the mesh size to be one. Since the

lengths of the edges has been chosen to be integer numbers greater than two this is always
possible and moreover there is at least one internal vertex on each edge of the considered
tree. In this way we have vertices with degree at least three that come form the way that
we have considered the tree and vertices with their degree of order two that come from the
discretization.

We identify any function u on Γ with a collection {ue}e∈E of functions ue defined on the
vertices of the edges e of Γ. Each ue can be considered as a function on the set Ie ∩ Z. In
fact, we use the same notation ue for both the function on the edge e and the function on
the interval Ie identified with e. For a function u : Γ → C, u = {ue}e∈E, we denote by
f(u) : Γ→ C the family {f(ue)}e∈E, where f(ue) : e→ C.

Each edge α ∈ E is parametrized by Iα, which is {1, 2, . . . Nα} or {1, 2, . . . }.
Each vertex v ∈ V is the initial point for mv edges: αvi (1 ≤ i ≤ mv) and (except for the

origin) the final point for a single edge, αv0.
We indentify the funtions defined on the graph by the families (uα)α∈E such that uα :

Iα → C with the convention that

ue(j(v, e)) = ue
′
(j(v, e′)), ∀ e, e′ ∈ E.v
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If the v vertex is: the final point of the α edge and the origin of the α1, . . . , αm vertices,
then we extend these functions by setting

(2.1) uα (Nα + 1) = uαi(0) =
uα(Nα) + uα1(1) + . . . uαm(1)

m+ 1
, ∀ 1 ≤ i ≤ m.

In the origin of the graph we extend the functions by the same formula, but without the
α term, and divide by m instead.

We denote l2 the space of functions (uα)α∈E for which

‖u‖2
2 =

∑
α∈E

∑
j∈Iα

|uα(j)|2 <∞.

Then l2 is a Hilbert space with the inner product

〈u, v〉 =
∑
α∈E

∑
j∈Iα

uα(j)vα(j).

In the usual way, and by analogy with l2 , we also consider the lp spaces for 1 ≤ p ≤ ∞.
We will use both of the following notations: uα(j) = uαj .
Of course, the functions uα obey the continuity and coupling conditions defined in (2.1).

3. The spectrum and the resolvent of the discrete laplacian

In this section we determine the spectrum and the resolvent of the considered discrete
laplacian on the graph Γ.

Theorem 3.1. The spectrum of the discrete laplacian on Γ is σ(∆) = [−4, 0].

Proof. By the triangle inequality, we immediately get ‖∆u‖2 ≤ 4‖u‖2 ∀u ∈ l2, so ‖∆‖B(l2) ≤
4. We see that ∆ is self-adjoint and −∆ ≥ 0 because −〈∆u, u〉 is a sum of squares and
these show that σ(∆) ⊂ [−4, 0].

It is known that the discrete laplacian on l2(N∗) has the spectrum [−4, 0]. This means
that for every λ ∈ [−4, 0] there is a sequence (um)m≥0 such that for every m we have
um(·) ∈ l2(N∗) and ‖um‖2 = 1, ‖(∆− λ)um‖2 → 0.

We now use it to construct a sequence vαm(·) ∈ l2(Γ), for λ ∈ [−4, 0], in the following
way: we chose an infinite edge α0 and define vα0

m (j) = um(j) for j ≥ 1, and vαm(k) = 0

otherwise, except for vα0
m (0) = v

α0
m (1)
t+1

so that (1.1) is verified ( t is the number of edges that
start from the same vertex as α0).

It is clear then that ‖vαm‖2 = 1 and ‖(∆ − λ)vαm‖2 → 0, which proves that σ(∆) =
[−4, 0]. �

We now consider the resolvent Rλ = (∆− λ)−1 ∈ B(l2) for λ ∈ C \ [−4, 0].

Theorem 3.2. For any λ ∈ C \ [−4, 0] and f ∈ l2(Γd), the resolvent Rλf is given by

(3.1) (Rλf)αn = aα · rn1 + bα · rn2 + Sαn , α ∈ E, n ∈ Iα
where |r1| < 1 < |r2| are the roots of the second order equation

r2 − (2 + λ)r + 1 = 0
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and

(3.2) Sαj =
1

r1 − r−1
1

∑
k∈Iα

[
r
|j−k|
1 − rj+k1

]
fαk .

Remark 1. We emphasize that on infinite edges aα = uα0 and bα = 0.

Proof. Denoting u = Rλf we have

uαj+1 − (2 + λ)uαj + uαj−1 = fαj , j ∈ Iα.

This is a second order recurrence relation for which Sαj is a particular solution. The
general solution is uαj = Tαj + Sαj , where Tα is the general solution of the homogenous
equation

(3.3) vαj+1 − (2 + λ)vαj + vαj−1 = 0.

The set of solutions of (3.3) forms a two-dimensional vector space, so for any α,

Tαj = aαrj1 + bαrj2

where r1, r2 are the solutions of r2 − (2 + λ)r + 1 = 0 with |r1| < 1.
On the infinite edges we must have Tα ∈ l2(Iα), so in that case bα = 0. �

In the following proposition we prove a limiting absorption principle. In particular, it
shows that Rx− −Rx+ is well-defined as an operator in B(l1, l∞).

Proposition 3.1. Let x ∈ [−4, 0] and ε > 0. For any f ∈ l2 and any α ∈ E we have
(3.4)

[Rx−iε −Rx+iε] f
α
n =

1

2i
Im[aαrn1 +bαrn2 ]+

1

2i

∑
k∈Iα

fαk Im

[
1

r1 − r−1
1

(
r
|n−k|
1 − rn+k

1

)]
, n ∈ Iα

where |r1| < 1 < |r2| are the roots of the equation r2 − (2 + λ)r + 1 = 0 for λ = x− iε.
For any ϕ ∈ l1 and a, b ∈ R we have

(3.5) lim
ε→0+

∫ b

a

[Rx−iε −Rx+iε]ϕ
α
n dx =

∫ b

a

[Rx− −Rx+]ϕαn dx, n ∈ Iα

where the last term in the RHS is given by

(3.6) 2i [Rx− −Rx+]ϕαn = Im[aα−r
n + bα−r

n] +
∑
k∈Iα

ϕαk Im

[
1

r − r−1

(
r|n−k| − rn+k

)]
such that r is the solution with Im r ≥ 0 of the equation r2 − (2 + x)r + 1 = 0
(Remark: aα−, b

α
− means lim(x−iε→x−0) of these functions.)

Proof. The formulas (3.4) and (3.5) are only computation and then we use the dominated
convergence theorem. Checking the necessary conditions to apply it is done identically as
Step 1 from the Lemma 4.4 of [6]. �
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4. The main result

We return to the equation

(4.1)

{
i∂tu

α(t, j) + ∆uα(t, j) = 0, t 6= 0

uα(0, j) = ϕ(j), α ∈ E, j ∈ Iα.
Theorem 4.1. For any ϕ ∈ l2, there exists a unique solution u = (uα)α∈E ∈ C(R, l2)
of the system (4.1) which satisfies ‖u(t)‖l2 = ‖ϕ‖l2. Moreover, if ϕ ∈ l1 then u can be
represented as

(4.2) u(t)n =
(
eit∆ϕ

)
n

=
1

2πi

∫
I

eitλ [Rλ− −Rλ+]ϕn dλ.

Proof. We now use the Hille-Yosida theorem, or it’s particular case, Stone’s theorem (the-
orems 13.37, 13.36 of [10]) to show that there exists a unique solution u ∈ C(R, l2) of
equation (6.1), given by

(4.3) u(t) = eit∆ϕ,

where the operators eit∆ are defined by power series or by functional calculus. They are
unitary operators, so

‖u(t)‖l2 = ‖ϕ‖l2 .
Before proving (4.2) let us recall that as a consequence of Cauchy’s formula (see [4] Th.

X.6.1), for any bounded and self-adjoint operator T , the resolution of the identity E is
given by

E(a, b) = lim
δ→0+

lim
ε→0+

1

2πi

∫ b−δ

a+δ

R(x−iε)T −R(x+iε)T dx

where the limit is in the strong-operator topology sense. Let us define

(4.4) µϕ,n(a, b) = E(a, b)ϕn = lim
δ→0+

lim
ε→0+

1

2πi

∫ b−δ

a+δ

[Rx−iε −Rx+iε]ϕn dx, .

Using functional calculus (see [10], Th. 12.23 and Th. 12.24) the solution of equation (4.1)
satisfies

(4.5) u(t)n =
(
eit∆ϕ

)
n

=

∫
σ(∆)

eitλ dµϕ,n, .

From now on, the integral on I = [−4, 0] means
∫
I

= limδ→0+

∫ −δ
−4+δ

. Using Proposition
3.1 we get

lim
ε→0+

∫ b

a

[Rx−iε −Rx+iε]ϕn dx =

∫ b

a

[Rx− −Rx+]ϕn dx.

Thus, from (4.5) and (4.4) we get

u(t)n =
(
eit∆ϕ

)
n

=
1

2πi

∫
I

eitλ [Rλ− −Rλ+]ϕn dλ,

which finishes the proof. �
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Before we prove the main result, we state the key lemma which will be proved in the
following sections.

Lemma 4.1. For any ϕ ∈ l1 and any t ∈ R, n ∈ Z the following inequalities are true:

(4.6)

∣∣∣∣∫
I

eitλaα−r
n dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
‖ϕ‖l1 ,

∣∣∣∣∫
I

eitλbα−r
n dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
‖ϕ‖l1

Proof of the main result:
We use (3.6) and (4.2) and observe that, in order to get the inequality (1.11), it suffices

to check that for all n and k

(4.7)

∣∣∣∣∫
I

eitλ Im aα−r
n dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
‖ϕ‖l1 ,

∣∣∣∣∫
I

eitλ Im bα−r
n dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
‖ϕ‖l1

(4.8)

∣∣∣∣∫
I

eitλ Im

[
1

r − 1
r

(
r|n−k| − rn+k

)]
dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
.

We recall that r is defined in Proposition 3.1, and uα0,−, b
α
− means lim(x−iε→x−0) of uα0 si

bα as functions of λ.
Inequality (4.8) was proved in [6], (4.13) , in a more general case by using Van der

Corput’s lemma.
It is sufficient to prove (4.7) without the imaginary part Im because, by chosing −t

instead of t and conjugating both, we get the inequalities with additional Im. So, by using
the lemma stated before, the result follows. �

Let’s note that what we have obtained thus far did not use the structure of the graph.
To prove (4.6) we must use the structure of the graph to estimate uα0 , a

α and bα using the
continuity and coupling conditions (2.1).

5. A particular case

In this subsection, in order to better understand the difficulties of determining the coef-
ficients in Lemma 4.1, we first consider the particular case of a tree as in Fig. 3.

In the considered case the set or vertices is given by V = {v0, v1}. From v0 starts a
finite edge α = 1 on which we have the function uα = u1 : I1 = {1, 2, . . . N} → C and two
infinite edges u2 and u3. From v1, which is the endpoint of α = 1, start two infinite edges:
α ∈ {11, 12}.

We are in the case where λ ∈ I, but the sum (3.2) is also defined there for r1 = r.
Looking at (3.1), we see that we have to determine: u11

0 , u
12
0 , u

2
0, u

3
0, a = a1 and b = b1.

Writing the coupling conditions at vertices v0 and v1 it follows that

(5.1)

 u1
0 = a+ b = u2

0 = u3
0 =

u11+u21+u31
3

,

u1
N+1 = u11

0 = u12
0 =

u1N+u111 +u121
3

.
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u2

u3

ũ1

u12

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b b b

b

b

b

b

Figure 3. A particular case. At the blue points we have coupling condi-
tions, at the rest classical discrete Laplacian

Using the representation formula given by Theorem 3.2 we obtain that

(5.2)



u2
0 − u3

0 = 0,

u2
0 − a− b = 0,

(r − 1)u2
0 + (r − 1)u3

0 + (r − 1)a+ (r2 − 1)b = − (S1
1 + S2

1 + S3
1) = K3,

rN+1a+ rN+1
2 b− u11

0 = 0,

u11
0 − u12

0 = 0,

rNa+ rN2 b+
(
r − 3

2

)
u11

0 +
(
r − 3

2

)
u12

0 = − (S1
N + S11

1 + S12
1 ) = K6.
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In matrix formulation we have Mx = K where xT = [xi] = [u2
0, u

3
0, a, b, u

11
0 , u

12
0 ], KT =

[0, 0, K3, 0, 0, K6] and

M =



1 −1 0 | 0 0 0
1 0 −1 | −1 0 0

r1 − 1 r1 − 1 r1 − 1 | r2 − 1 0 0
−−− −−− −−− |

0 0 rN+1
1 rN+1

2 −1 0
0 0 0 0 1 −1
0 0 rN1 rN2 r1 − 3

2
r1 − 3

2


The determinant marked in the corner comes from the case where there are only three

infinite edges and it equals 3(r1 − 1). Each xi is given by xi = Di/ detM where Di is the
determinant of the matrix obtained from M by inserting column K in the place of column
i of M .

Lemma 5.1. For any i = 1, . . . , 6 and every α ∈ E there is a polynomial qα,i1 (x, y) and
another polynomial qα,iNα(x, y) when α is finite such that

(5.3) xi =
∑
α∈E

Sα1 · q
α,i
1 (r1,

1
r1

)

(r1 − 1)(r1 + 1)h(r1)
+

∑
α−finite

SαNα · q
α,i
Nα

(r1,
1
r1

)

(r1 − 1)(r1 + 1)h(r1)
,

where h is a rational function that does not vanishes on the unit circle.

Proof. Using that xi = Di/ detM we have to give some representation for Di and to
compute detM . Observe that

detM = (r1 − 1)2 · rN+1
2

[
9− r2N

1 (2r1 − 1)2
]
.

Denoting ϕ(x) = 9 − x2N(2x − 1)2, it satisfies ϕ(−1) = 0 and ϕ′(−1) 6= 0. Thus, there
is a polynomial function g(x) which does not vanish on T such that ϕ(x) = (x + 1)g(x).
Denoting now h(r1) = rN+1

2 g(r1), we obtain that

(5.4) detM = (r1 − 1)2 · (r1 + 1)h(r1).

Let us now analyze the form of the determinants Di. We want to prove that for every
1 ≤ i ≤ 6 and every α ∈ E there is a polynomial qα,i1 (x, y) and another polynomial
qα,iNα(x, y) when α is finite such that

(5.5) Di(r1) = (r1 − 1)

[∑
α∈E

Sα1 · q
α,i
1

(
r1,

1

r1

)
+

∑
α−finite

SαNα · q
α,i
Nα

(
r1,

1

r1

)]
.

Recall that λ ∈ I, r2 = 1/r1 since they are the solutions of the equation

x2 − (2 + λ)x+ 1 = 0.

By inserting the column K in the position of column i in M and expanding the determinant
we obtain that Di is a polynomial in the variables (r1, r2). Setting r2 = 1/r1, there exists
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p ∈ N such that

Di(r1) =
P (r1)

rp1
.

We prove that, when r1 = 1, Di(r1) = 0. We distinguish two cases. If i /∈ {3, 4} then the
third and fourth columns are equal. When i ∈ {3, 4} we easily make a linear combination
of columns that vanishes. For example, for i = 3 we have: C1 + C2 + C4 + C5 + C6 = 0.
This proves the existence of a polynomial Q(x) such that

Di(r1) = (r1 − 1)
Q(r1)

rp1
.

By observing that K3 = − (S1
1 + S2

1 + S3
1) and K6 = − (S1

N + S11
1 + S12

1 ) are the elements
in K, and considering the expansion by that column, we get the desired formula for Di.

Using now (5.4) and 5.5 we get the desired expression for xi. �

6. The general case

Like in the particular case, we now have to determine the coefficients in Lemma 4.1.
Starting from a graph with n vertices Γn, we consider it as a graph with n− 1 vertices

Γn−1 to which we truncate an infinte edge U at the N + 1 point - where we add a new
vertex v, from which m new edges start: u1, . . . , um. The edge U starts from vertex w,
from which t edges start in total.

In the case of Γ2 we have a truncated edge, m = 2 new edges, and t = 3 because 3 edges
start from the origin.

For Γn−1, we denote by V0 the finite edges, by W0 the infinite edges except for U , and
consider U separately.

The expression of the resolvent in (5.3) is:

(6.1)


uαn = uα0 · rn1 + Sαn , α ∈ W0

uβn = aβ · rn1 + bβ · rn2 + Sβn , β ∈ V0

Un = U0 · rn1 + SUn .

For Γn, the former edge U , now restricted at {1, . . . , N}, is denoted by V . The resolvent
is:

(6.2)



uαn = uα0 · rn1 + Sαn , α ∈ W0

uβn = aβ · rn1 + bβ · rn2 + Sβn , β ∈ V0

Vn = a · rn1 + b · rn2 + SVn

uin = ui0 · rn1 + Sin, 1 ≤ i ≤ m

The continuity and coupling conditions (1.1) form a system, like in the previous case.
For the moment, we are only interested in the matrix of the system’s coefficients, which
we denote by Mn for Γn.
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The matrix Mn−1 characterises the system corresponding to Γn−1, but written in such
a way (by permuting the lines and the order of the variables) that U0 is the last variable
and the last two equations correspond to the vertex w in (1.1) (see the matrix below or
the particular case).

To get the relation between Mn−1 and Mn we see that, except for a - which formerly
coresponeded to U0, we have m+ 1 new variables: [b, u1

0, . . . u
m
0 ].

By using the system obtained for Γn−1 and the new coupling conditions, we get the
system for Γn given by the matrix:

(6.3)

Mn =



. . . . . . a b u1
0 u2

0 . . . um−1
0 um0

−−− −−− −−− − −−− −−− −−− −−− −−− −−−
|

. . . | 0
Mn−1 . . . | 0
. . . −1 | −1 0 0 0
. . . r1 − t+1

t
| r2 − t+1

t
0 0 0

−−− −−− −−−−− | −− −− −− −− −− −−
rN+1

1 | rN+1
2 −1

| 1 −1
| 1 −1

0 . . . . . . . . .
. . . . . . . . .
| 1 −1

rN1 | rN2 r1 − m+1
m

. . . . . . r1 − m+1
m


The matrix marked in the up-left corner is Mn−1 (the first line just lists the variables).
(An exception occurs when the vertex w is the origin and the term t+1

t
is replaced by 1.)

We denote by M̃n the matrix Mn in which we have inserted in the last position r2− m+1
m

instead of r1 − m+1
m

.

We denote these determinants by Dn and D̃n.

Lemma 6.1. We have

(6.4)
D̃n

Dn

=

m−r2
m+1

− m−1−2r2
m+1

·
(
r1
r2

)N+1

· ˜Dn−1

Dn−1

1−
(
r1
r2

)N+1

· m−r2
m+1

· ˜Dn−1

Dn−1

.

For −1 6= r1 ∈ T we have
∣∣∣ D̃nDn ∣∣∣ < 1, and in r1 = −1 we have D̃n

Dn
= 1.

Proof. By expanding the determinants on the first lines until the marked line, we get the
following recurrence relation:

Dn = Dn−1

[
rN+1

2 (m · r1 −m− 1) + rN2
]
− ˜Dn−1

[
rN+1

1 (m · r1 −m− 1) + rN1
]
.
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(6.5) Dn = Dn−1 · rN+1
2 · (m+ 1) · (r1 − 1) ·

[
1−

(
r1

r2

)N+1
m− r2

m+ 1

˜Dn−1

Dn−1

]
.

Analogously

D̃n = Dn−1 ·
[
rN+1

2

(
(m− 1)(r1 −

m+ 1

m
) + r2 −

m+ 1

m

)
+ rN2

]
−

− ˜Dn−1 ·
[
rN+1

1

(
(m− 1)(r1 −

m+ 1

m
) + r2 −

m+ 1

m

)
+ rN1

]
.

(6.6) D̃n = Dn−1 · rN+1
2 · (m+ 1) · (r1 − 1) ·

[
m− r2

m+ 1
− m− 1− 2r2

m+ 1
·
(
r1

r2

)N+1

·
˜Dn−1

Dn−1

]
.

Observe that Dn and D̃n have the same factor before the large bracket, and this factor
cancels when we divide them, obtaining (6.4).

We prove the other statement by induction on n. For n = 1 we have a single vertex and
m infinite edges and

D̃1

D1

=
(m− 1)(r1 − 1) + r2 − 1

m(r1 − 1)
=
m− 1− r2

m

so the statement is true in this case.

Suppose that −1 6= r1, r2 ∈ T and denote z =
(
r1
r2

)N+1 ˜Dn−1

Dn−1
so that we can assume that

|z| < 1 for proving that

|m− r2 − (m− 1− 2r2)z| < |(m+ 1)− (m− r2)z| .
By squaring this inequality, simplifing and collecting the terms, it is equivalent to

(r2 + r̄2 + 2)
[
(m− 1) |z − 1|2 + 1− |z|2

]
> 0

which is true and completes the induction step for this case.

Suppose now that r1 = r2 = −1. The ratios
˜Dn−1

Dn−1
are rational functions and we write

D̃n

Dn

=
f(x)

g(x)
=
f1(x)

g1(x)
, f(x) = (x+ 1)f1(x) = mx− 1− x2N+2 [(m− 1)x− 2]

˜Dn−1

Dn−1

(x)

g(x) = (x+ 1)g1(x) = (m+ 1)x− x2N+2(mx− 1)
˜Dn−1

Dn−1

(x).

Then, for x ∈ T,

f(x)− g(x) = (x+ 1)

(
x2N+2

˜Dn−1

Dn−1

(x)− 1

)
⇒ f1(x)− g1(x) = x2N+2

˜Dn−1

Dn−1

(x)− 1.
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D̃n

Dn

(−1) = 1 ⇔ f1(−1)− g1(−1) = 0 ⇔
˜Dn−1

Dn−1

(−1) = 1.

�

Lemma 6.2. We have

(6.7) Dn = (r1 − 1)n · (r1 + 1)n−1 · h(r1)

for h a rational function which does not vanish on T.

Proof. The (r1 − 1)n factor is clear from (6.5) and, denoting the bracket from (6.5) by

ϕ(x) = 1− x2N+1mx− 1

m+ 1

˜Dn−1

Dn−1

(x)

we see from Lemma 6.1 that ϕ(−1) = 0, so that Dn = (r1 − 1)n · (r1 + 1)n−1 · h(r1), for
a rational function h.

To prove that h does not vanish on T, by Lemma 6.1, we only need to prove that
ϕ′(−1) 6= 0.

ϕ′(−1) =
m(2N + 2) + 2N + 1

m+ 1
−

˜Dn−1

Dn−1

′

(−1).

We prove by induction that ∀n ≥ 1 : D̃n
Dn

′
(−1) ∈ (0, 1), which clearly implies ϕ′(−1) 6= 0.

For n = 1, we have D̃1

D1
(x) = m−1

m
− 1

mx
for which D̃1

D1

′
(−1) ∈ (0, 1).

For n > 1 we use the functions f, g, f1, g1 from Lemma 6.1 for which

D̃n

Dn

=
f1(x)

g1(x)
and f1(x)− g1(x) = x2N+2

˜Dn−1

Dn−1

(x)− 1.

D̃n

Dn

′

(−1) =
f ′1g1 − f1g

′
1

g2
1

(−1) =
f ′1 − g′1
g1

(−1) =
2N + 2− ˜Dn−1

Dn−1

′
(−1)

(2N + 2)(m+ 1) +m− (m+ 1)
˜Dn−1

Dn−1

′
(−1)

.

The last ratio is always in the interval (0, 1) using the induction hypothesis. For the
denominator we have used that g1(−1) = g′(−1). �

We write the coefficients from Lemma 4.1 in the vector x = [. . . , a, b, u1
0, u

2
0, . . . , u

m−1
0 , um−1

0 ] =
[xi]. Replacing the column i from Mn by column K, like in the particular case, we get a
determinant which we denote by Di

n. Then, the elements in the vector x are written

xi = Din
Dn

.

Lemma 6.3. We have

(6.8) Di
n = (r1 − 1)n−1 · (r1 + 1)n−2 ·

[∑
α∈E

Sα1 · q
α,i
1

(
r1,

1

r1

)
+

∑
α−finite

SαNα · q
α,i
Nα

(
r1,

1

r1

)]
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where qα,i1 si qα,iNα are polynomials. And

(6.9) xi =
∑
α∈E

Sα1 · q
α,i
1 (r1,

1
r1

)

(r1 − 1)(r1 + 1)h(r1)
+

∑
α−finite

SαNα · q
α,i
Nα

(r1,
1
r1

)

(r1 − 1)(r1 + 1)h(r1)
,

Proof. The column K contains sums of elements Sα1 and SαNα , like in the particular case
in Lemma 5.1 and the same reasoning applies here. So the formula (6.8) is true, provided
that we prove that the following derivatives are zero:

Di
n(1) = 0, Di

n(1)′ = 0, . . . , Di
n(1)(n−2) = 0

Di
n(−1) = 0, Di

n(−1)′ = 0, . . . , Di
n(−1)(n−3) = 0

(We write the number of derivatives in brackets placed up).
We use the following known rule for differentiating a determinant with columns c1, c2, . . . , cr:

if D(x) = |c1(x), . . . , cr(x)| then:

D′(x) = |c′1(x), c2(x), . . . , cr(x)|+ · · ·+ |c1(x), c2(x), . . . , c′r(x)| .

So, by iterating this rule and denoting c1, c2, . . . , cr the columns of Di
n, it is sufficient to

prove: ∣∣∣c(i1)
1 , c

(i2)
2 , . . . , c(ir)

r

∣∣∣ (1) = 0 ∀ i1 + i2 + · · ·+ ir ≤ n− 2∣∣∣c(j1)
1 , c

(j2)
2 , . . . , c(jr)

r

∣∣∣ (−1) = 0 ∀ j1 + j2 + · · ·+ jr ≤ n− 3.

Note that, in the same way as in the particular case Γ2 we had (in M) the columns 3
and 4 equal in r1 = 1 and r1 = −1, now, for Mn , we have n − 1 pairs of columns and in
each pair, the two columns are equal for r1 = r2 = ±1. This is true because, if Mn−1 has
n− 2 such pairs, Mn will have the additional pair (a, b).

Now, for r1 = 1, in Di
n we also insert the column K:

• If K does not enter in one of these pairs of columns, as we only differentiate at
most n−2 columns, for at least one of these pairs the two columns will be identical
in r1 = 1.
• If K enters in one of the columns from the n− 1 pairs, as we differentiate at most
n − 2 of the others, considering the same reasoning as above, the only chance for
the determinant to be non-zero is if we differentiate one column from each of the
remaining pairs.

In this instance: we make a linear combination of columns (different from K) to
be zero by induction: assuming we have such a combination from Mn−1 \Kn−1, we
use it such that (in addition to it) we only have to make a linear combination of
the columns a, b, u1

0, u
2
0, . . . , u

m−1
0 , um−1

0 below the marked line, which is trivial.

For r1 = r2 = −1 it is simpler because we have at most n − 3 derivatives, so we can
always find a pair of columns which are equal.

Equality (6.9) follows from (6.8) and (6.7). �
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Proof of Lemma 4.1. We recall that we have to prove the following estimate∣∣∣∣∫
I

eitλxir
n
1 dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
‖ϕ‖l1 (n ∈ Z)

where xi are now written as in Lemma 6.3:

xi =
∑
α∈E

Sα1 · q
α,i
1 (r1,

1
r1

)

(r1 − 1)(r1 + 1)h(r1)
+

∑
α−finite

SαNα · q
α,i
Nα

(r1,
1
r1

)

(r1 − 1)(r1 + 1)h(r1)
.

Using (3.2) we have that Sα1 and SαNα have the form

Sα1 = −
∑
k∈Iα

rk1ϕ
α
k , SαNα = −rNα1

∑
k∈Iα

rk1 − r−k1

r1 − r−1
1

ϕαk .

Hence ∣∣∣∣∫
I

eitλxir
n
1 dλ

∣∣∣∣ ≤∑
α∈E

∑
k∈Iα

|ϕαk |

∣∣∣∣∣
∫
I

eitλ
rk1 · q

α,i
1 (r1,

1
r1

)

(r1 − 1)(r1 + 1)h(r1)
rn1 dλ

∣∣∣∣∣(6.10)

+
∑

α−finite

∑
k∈Iα

|ϕαk |

∣∣∣∣∣∣
∫
I

eitλ
rNα1

rk1−r
−k
1

r1−r−1
1

· qα,iNα(r1,
1
r1

)

(r1 − 1)(r1 + 1)h(r1)
rn1 dλ

∣∣∣∣∣∣ .
It is then sufficient to prove the following estimates

(6.11)

∣∣∣∣∣
∫
I

eitλ
qα,i1 (r1,

1
r1

)

(r1 − 1)(r1 + 1)h(r1)
rm1 dλ

∣∣∣∣∣ ≤ C
3
√

1 + |t|
and for finite edges α

(6.12)

∣∣∣∣∣∣
∫
I

eitλ
rk1−r

−k
1

r1−r−1
1

· qα,iNα(r1,
1
r1

)

(r1 − 1)(r1 + 1)h(r1)
rm1 dλ

∣∣∣∣∣∣ ≤ C
3
√

1 + |t|
.

We claim that it is sufficient to prove the following one:

(6.13)

∣∣∣∣∫
I

eitλ
rm1

(r1 − 1)(r1 + 1)h(r1)
dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
.

Indeed, qα,i1 (x, y) are a finite number of polynomials, since α ∈ E- a finite set and we get
the same constant for all of them. Hence inequality (6.11) clearly follows from (6.13). In
the case of (6.12), since k ∈ Iα, α is a finite edge and the graph has a finite number of
edges, it follows that |Iα| ≤ K, where the constant K depends only on the graph, and so
k ≤ K. By expanding

rk1 − r−k1

r1 − r−1
1

= rk−1
1 + rk−3

1 + · · ·+ r
−(k−1)
1

and using the fact that qα,iNα are polynomials, inequality (6.12) also follows from (6.13).
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Putting now the estimates (6.10), (6.11) and (6.12) together we obtain that∣∣∣∣∫
I

eitλxir
n
1 dλ

∣∣∣∣ ≤ C
3
√

1 + |t|

[∑
α∈E

∑
k∈Iα

|ϕαk |+
∑

α−finite

∑
k∈Iα

|ϕαk |

]
≤ C

3
√

1 + |t|
‖ϕ‖l1 .,

which proves the desired inequality.
Let us now prove (6.13).
Since h is a rational function, it has an absolutely and uniformly convergent Laurent

series on an annulus and this series becomes a fourier series if restricted to T. The function
h does not vanish on the unit circle so, using Wiener’s theorem (see [10]), 1/h has an
absolutely and uniformly convergent Fourier series

1

h(r1)
=
∑
p∈Z

apr
p
1,

∑
p∈Z

|ap| < A.

This reduces the proof of (6.13) to the following estimate∣∣∣∣∫
I

eitλ
rm1

(r1 − 1)(r1 + 1)
dλ

∣∣∣∣ ≤ C
3
√

1 + |t|
. (m ∈ Z).

We now write r1 = eiθ and hence λ = 2(cos θ + 1) and (r1 − 1)(r1 + 1) = i sin θ exp(iθ).
By making a change of variable such that we integrate over θ ∈ [0, π], the last integral
becomes ∣∣∣∣∫ π

0

e2it(cos θ−1)eimθ dθ

∣∣∣∣ ≤ C
3
√

1 + |t|
(m ∈ Z).

This last estimate has been proved in [6] by using Van der Corput’s Lemma.
The proof if now complete. �
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[4] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part II: Spectral theory, self adjoint oper-
ators in Hilbert space. With the assistance of William G. Bade and Robert G. Bartle. Repr. of the
orig., publ. 1963 by John Wiley &amp; Sons Ltd., Paperback ed. Wiley Classics Library. New York
etc.: John Wiley &amp; Sons Ltd./Interscience Publishers, Inc. ix, 859-1923 $25.95 , 1988.

[5] Liviu I. Ignat. Strichartz estimates for the Schrödinger equation on a tree and applications. SIAM J.
Math. Anal., 42(5):2041–2057, 2010.

[6] Liviu I. Ignat and Diana Stan. Dispersive properties for discrete schrödinger equations. Journal of
Fourier Analysis and Applications, 17(5):1035–1065, 2011.

[7] M. Keel and T. Tao. Endpoint Strichartz estimates. Am. J. Math., 120(5):955–980, 1998.
[8] P. Kuchment. Quantum graphs: an introduction and a brief survey. In Analysis on graphs and its

applications, volume 77 of Proc. Sympos. Pure Math., pages 291–312. Amer. Math. Soc., Providence,
RI, 2008.

[9] Alexander Mielke and Carsten Patz. Dispersive stability of infinite-dimensional Hamiltonian systems
on lattices. Appl. Anal., 89(9):1493–1512, 2010.

[10] Walter Rudin. Functional analysis. 2nd ed. International Series in Pure and Applied Mathematics.
New York, NY: McGraw-Hill. xviii, 424 p. , 1991.

[11] A. Stefanov and P.G. Kevrekidis. Asymptotic behaviour of small solutions for the discrete nonlinear
Schrödinger and Klein-Gordon equations. Nonlinearity, 18(4):1841–1857, 2005.

[12] T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Math-
ematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006.
Local and global analysis.

C. Gavrus
Scoala Normala Superioara Bucuresti - at the Institute of Mathematics “Simion Stoilow”

of the Romanian Academy,
21 Calea Grivitei Street, 010702 Bucharest, Romania.
E-mail address: gcd2006@gmail.com

L. I. Ignat
Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
21 Calea Grivitei Street, 010702 Bucharest, Romania.
E-mail address: liviu.ignat@gmail.com
Web page: http://www.imar.ro/~ lignat


	1. Introduction
	2. Notations and Preliminaries
	3. The spectrum and the resolvent of the discrete laplacian
	4. The main result
	5. A particular case
	6. The general case
	References

