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Introduction

The Schrodinger equation is the fundamental equation of physics for describing quan-
tum mechanical behavior. It is also often called the Schrodinger wave equation, and is a
partial differential equation that describes how the wave function of a physical system evolves
over time.

The purpose of this work is to give a presentation of some basic results concerning the
continuous Schodinger equation and some new results for the discrete Schodinger equation.

In the first chapter we recall some basic properties of the Fourier Transform and some
classical and new results on oscillatory integrals.

In Chapter 2 we establish some important properties of the linear equation

iy + Upe = 0, 7 € R, £ £ 0,
u(0,7) = ¢(z), v € R4

We recall the dispersive properties of this model and present some of its applications to
nonlinear models.

The core of this thesis is Chapter 3. In this chapter we study some models involv-
ing discrete Schrodinger equations focusing on the long time behavior of the solutions and
Strichartz-like properties. These results are contained in the paper Dispersive properties for
discrete Schrédinger Equation [5]. We now resume the result of Chapter 3. For completeness

we first present the long time behavior of the solutions for the equation
iy + Agu =0, jEZ,t+#0,
u(0) = o,
where Ay is the discrete laplacian defined by
(Aqu)(J) = wjs1 — 2uj +uj_q, JjEZ.

The main result consist of proving dispersive estimates for the system formed by two coupled

Schrodinger equations:

(iw(t, ) + b 2 (Aqu)(t, §) = 0, j< =1, t#£0,
iw(t, §) + by 2 (Aqu)(t, j) =0, j>1,t#0,
u(t,0) = v(t,0), t#0,

b2 (u(t, —1) —u(t,0)) = by 2 (v(t,0) — v(t, 1)), t#0,

L v(0,4) = #(), j>1




We obtain estimates for the resolvent of the discrete operator and prove that it satisfies the
limiting absorption principle. The decay of the solutions is proved by using classical and
some new results on oscillatory integrals.

Finally, T would like to thank my advisor, professor Liviu Ignat from IMAR, for his
support.



Chapter 1

The Fourier Transform

1.1 Main properties

In this section we will present some basic properties of the Fourier Transform.

Definition 1.1.1. The Fourier transform of a function f € L*(R"), denoted by f, is defined

as

f© = [ fla)e™@9de, for £ € R,
where x - £ = 21& + ... + 1,65, )
We list some basic properties of the Fourier transform in L!(R?).
Theorem 1.1.1. Let f € L*(RY). Then:
1. f s fis a linear transformation from L*(R?) into L>(R?) with
1 ety < Nl gey.

2. f 18 continuous.
3. f(€) = 0 as |¢| = oo ( Riemann Lebesgue).

4. If tf(x) = f(z — h) denotes the translation by h € R?, then

—

(rnf)(€) = e ™9 f(g),

and

—

e = (r_uf)(©).

5. If 0.f () = f(ax) denotes the dilatation by a > 0, then

(6.0)(€) = f()a(&).



10.

Let g € LY(R?) and f * g be the convolution of f and g. Then
(f  9)(&) = F(©)3(6).
Let g € L*(RY). Then

N Faw)dy = [ f(y)ily)dy.

Suppose x1,f € LY(R?), where z denotes the kth coordinate of x. Then f 18 differen-

tiable with respect to & and

of S
a_é_k(g) = (—2mzgf(2))(€).

In other words, the Fourier transform of the product xyf(x) is equal to a multiple of

the partial derivative of f(&) with respect to the k- variable.

Let f € LY(R?). Then

—

(52 ) =2miaio.
Let f, f € LY(RY). Then

fla) = /R TR, ae w R

Using the fact that L*(RY) N L2(RY) is a dense subset of L*(R?) and L?*(R?) we can define

the Fourier Transform for L?(R¢)-functions.

Theorem 1.1.2. (Plancherel) For any f € L*(R?), fe L*(R%) and

[y = (11| 2y

The following examples will be needed in the next sections.

Example 1.1.1. 1. (e—”/|?|2)(§) — el

2.

a2 i€|2 /4t
(6 4n2zt|x\2)(§) = (EAEMW'



1.2 The discrete Fourier Transform

The discrete Fourier Transform is defined for functions in /' (hZ) and it has similar properties
to the continuous one.
For a fixed number i > 0 we define the discrete Fourier transform of a function u € I'(hZ)
by
i:R—C, a¢)=hY e "u(jh),¢ R
JEL

These are some basic properties of the discrete Fourier transform:

Theorem 1.2.1. Let u € [*(hZ). Then

1. The discrete Fourier transform is periodic of period 27” It 1s sufficient to define it on

an interval of length 2% : [—F, %] .

2. We can recuperate the function u from its discrete Fourier transform by:

1 [ y
i) = 5 [ ) s

=13

3. The discrete Fourier transform of the discrete convolution is the product of the discrete

. —_— A A~
Fourier transforms: uxv = - v,

4. (Plancherel) For u € I>(hZ) we define its I>(hZ)-norm as follows:
lullfogzy = R ) luGh).
jeL
Then

[ulleznzy = H@HLQ(—g,g)-

1.3 Oscillatory Integrals

In many problems and applications the following question arises: what is the asymptotic

behavior of I(\) when A — oo where

I(\) = /b e f(2)d,

¢ is a smooth real valued function, called the phase function, and f is a smooth complex-
valued function? We shall see that this asymptotic behavior is determined by the critical

points of the phase function, i.e. the points T where the derivative of ¢ vanishes, ¢'(T) = 0.



Proposition 1.3.1. Let f € C§°([a,b]) and ¢ a smooth real valued function such that ¢'(x) #
0, for any x € [a,b]. Then, for any k € Z*

II(N)| < C(k, ¢, )N, for X big enough.

Proof. We consider the differential operator £ = 5 =-. His adjoint £* is the operator that

(z)/

[ o= | bfﬁ*(g>

c0 =7 (35)

Indeed, using integration by parts, we have that

/abz';w%g:fifwz‘/f_<m¢') /f (zw)'

It is easy to see that L(e*?) = e'** and, moreover, LF(e!*?) = 9.

Using integration by parts it follows that

/b ¢ oy = /b L5 fda = /b e (L (f)da.

b
/ e fdx

satisfies

We will prove that

This implies that

</ e 2y ()] e = / ey () ae
S(b—a)H(E : HLOOab)

< o=aOU S [N 00)
< Clabk, f, o)A

The proof is now finished. O

Proposition 1.3.2. Let k € Z* and assume that function ¢ satisfies ‘(b(k)(a:)‘ > 1 for any
x € [a,b] with ¢'(x) monotonic in the case k = 1. Then

b
/ iAp(x dl'
a

where the constant Cy, is independent of a and b.

< OV (1.1)

Proof. For k =1 we have that

b b . b
/ G g — / L(eM®) g — )\(b/ezw(x) _
a 1

a
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Clearly, the first term of the right hand side is bounded by 2A~!. On the other hand, the

hypothesis of monotonicity on ¢’ guarantees that

b b
/ezw)ld ldx<l/il gy — L
“ tAdx \ ¢/ M), |dx \ ¢ A

This yields the proof in the case k = 1.
For the proof in the case k > 2 we will use induction in k. Assuming the result for k,

we shall prove it for k + 1. By hypothesis |¢**)(z)| > 1. Let xy € [a,b] be such that

1 1
¢'(b)  ¢'(a)

0" (20)| = ag}éb 16*) (2)).

If ¢ (2) = 0, outside the interval (zq — &, z¢ + 0) one has || > § with ¢ monotonic if
k = 1. Splitting the domain of integration and using the hypothesis we obtain that

zo—0 4 b
/ M@ dy| + / @) g
a x0+0

A simple computation shows that
zo+0
/ @) e
To—0

b .
/ equb(x) dr

Is ¢®)(20) # 0, then 29 = a or b and a similar argument provides the same bound. Finally,

< Cp(A6)~VE,

< 2.

Thus
< cp(A6) TV 4 26.

taking 6 = A~*+1 we complete the proof. O
The result can be also stated for a phase function ¢ such that is minimum is positive.

Corrolary 1.3.1. Let k € Z* and mln |¢(k (z)| >0, with ¢/(x) monotonic in the case

z€[a,b]
k=1. Then \
/ iAp(x dilj'

where the constant CY, is independent of a and b.

z€la,b]

“1/k
< Cj ()\ min ’qﬁ(k |) , (1.2)

Proof. Let us set m = m[ir})] |¢(k)(a:)}. The proof follows immediately by considering the
z€Ja,

function ¢/m instead of ¢ and the number Am instead of A. n

Corrolary 1.3.2. (Van der Corput) Under the hypothesis of Proposition 1.3.2,

/a " ) ()

with ¢ independent of a and b.

< A (L ey + 1 ), (1.3)




Proof. Define
G(:U):/ oWy,

By (1.1) one has that
1G(z)] < eV

Now, using integration by parts, we obtain

b
/ iAp(x / Gl dx

< oA 1/k(||f||L°°(a,b)+ I/ ||L1<a7b>)-

< |G(x

/G

We shall present now some applications of this result.

b
- 2
/ e dy
a

Proof. The non-identically vanishing derivatives of the function ¢(z) = 2% are ¢/(r) = 2x

Example 1.3.1. For any a,b € R

< CONV2,

and ¢"(z) = 2. If the interval [a, b] contains the origin then the first derivative ¢’ vanish at
x = 0. Applying Corollary 1.3.1 with k£ = 2

b
1) = / e 0y

If the point 0 belongs to the interval [a,b] then this estimate cannot be improved. If 0 ¢

z€[a,b)

—-1/2
<C ()\ inf ¢ (x )) = C\V2,

[a, b] then the last nonzero derivative of ¢ is ¢’ and xier[gb] |¢'(z)| = 2min{]al, |b|}. Applying
Corollary 1.3.1 with £ = 2 we obtain a better estimate for large A

I(\) < C(2Amin{|al, |b]})~"
since (2Amin{|al, |b|})~! < CA~Y/2, which finishes the proof. O

A first improvement of Van der Corput’s Lemma has been obtained in [9] where the
authors analyze the smoothing effect of some dispersive equations. We will present here a
particular case of the results in [9], that will be sufficient for our purposes. In the sequel
will be a bounded interval. We consider class Aj of real functions ¢ € C3(Q) satisfying the
following conditions:

1) Set Sy ={£ € 2: ¢" = 0} is finite,
2) If §y € Sy then there exist constants €, ¢1, c2 and o > 2 such that for all [§ — | <€,

a6 — &% < 9" (9)] < eal€ — &2,

3) ¢” has a finite number of changes of monotonicity.

9



Lemma 1.3.1. Let € be a bounded interval, ¢ € Ay and

Tat) = [ 0l (g) g

Then for any z,t € R
(. 6)] < eoft| 2, (1.4)

where ¢, depends only on the constants involved in the definition of class As.

Remark 1.3.1. The results of [9] are more general that the one we presented here allowing

functions with vertical asymptotics, finite union of intervals or infinite domains.
As a corollary we also have [9]:

Corrolary 1.3.3. If ¢ € A, then

‘/ i(tp(§)—x€) ¢ (& )1/% df’ < Cylt]™ 1/2 ||1/)||L°o /|¢ |d§
holds for all xz,t € R.

In the proof of our main result we will need a result similar to Lemma 1.3.1 but with
[p"|'/% instead of [p”|'/? in the definition of I(z,t). We define class Az of real functions
¢ € C*(Q) satisfying the following conditions:

1) Set Sy = {£ € Q: ¢ = 0} is finite,
2) If & € Sy then there exist constants €, ¢1, c; and o > 3 such that for all | — &| <,

€ — &l < 9"(&)] < eal€ — &2, (1.5)

3) ¢ has a finite number of changes of monotonicity.

Lemma 1.3.2. Let Q be a bounded interval, ¢ € Az and

I(2,t) = /Q GO -20) 1 (¢)] 13 g

Then for any x,t € R
(. 8)] < eyt 2, (1.6)

where c, depends only on the constants involved in the definition of class As.

In the following we will write a < b if there exists a positive constant C' such that a < Cb.
Similar for a 2 b. Also we will write a ~ b if C1b < a < Csb for some positive constants C
and Cs.

10



Proof. We observe that since €2 is bounded we only need to consider the case when ¢ is large.
Case 1: 0 <m < [¢" ()| < M.
We apply Van der Corput’s Lemma with & = 3 to the phase function ¢(§) — x£/t and to
¢ = [¢"”|'/3. Then
(0] < Cltm) ™5 (]l ey + 1191l e)).

Since ¢” has a finite number of changes of monotonicity we deduce that ¢*) changes the

sign finitely many times and then

1 = 5 [ [0 (@) Fe@)de < gm™ [ 16(©)lde < Cm, b,

Hence
[(z,8)] < C(M,m)t 5.

Case 2: 0 < [¢" ()] < M.

Using the assumptions on ¢ we can assume that there exists only one point & € Q such
that ¢"'(§) = 0. Notice that if ¢ € Aj, then any translation and any linear perturbation
of ¢ (i.e. ¢(§ — &) + a& +b) is still in A3 and the conditions in the definition of set A3 are
verified with the same constants as ¢. Therefore we can assume that { = 0 and ¢'(§y) = 0.
Moreover let us assume that as & ~ 0, |¢/(&)| ~ [€]* and |¢"(£)] ~ [£|° for some numbers
a>2and 3 > 0.

We distinguish now two cases depending on the behavior of ¢’ near £ = 0. If o > 4 then
| (&)| ~ [£]*7* as € ~ 0 for k = 2,3 and, in particular 5 = o — 3. The case o = 3 cannot
appear since then 8 = a — 3 and ¢~ does not vanish at & = 0. For a = 2, [¢/(€)| ~ [¢],
1" (€)] ~ 1 as € ~ 0 and the third derivative satisfies |¢”(£)| ~ [£|® as € ~ 0 for some positive
integer 3. This last case occurs for example when ¢'(£) = £ + &3, In all cases 8 > a — 3.

We split Q2 as follows

fwwz/lﬂwwwW%W%+/ 10O~ () 3 de = T, + I,
¢<e

€]=e

Since £ = 0 is the only point where the third derivative vanishes we have that outside an
interval that contains the origin ¢"” does not vanish. Thus I can be treated as in the first
case.

Let us now estimate the first term I;. We define Q;,1 < j < 3, as follows

0 = {¢ € Q[[¢] < min(e, [t|7/)},
QQ — {f 6 Q - Ql
Qs ={£ € Q= (L UD)[[¢] < e}

GEHEE)

11



In the case of €; we use that for some 5 > 1, the third derivative of ¢ satisfies ¢;[€ |5 <
0" (&)] < e2l€]? for |€] < e. We get

oM@ < [ lglSde < Cloule i < CltfR o < o,
Ql Q1

where the last inequality holds since o < 5+ 3 and || > 1.

In the case of the integral on 2y we assume that x # 0 since otherwise (25 has measure

zero. Observe that for £ € {2y we have

s© -3 <3|

x
') F |2 <
which implies that
1|z 3|lx
3 < <3
o] < i <3
Since [¢/(€)] ~ |¢[~" we have that [¢] ~ |z/¢[=5. Then [¢"(€)] ~ [¢]" ~ |2/¢[=*T and

: u O
min |¢7()] >

Applying Van der Corput’s Lemma with & = 3 and using that ¢*) changes the sign finitely

many times we obtain that
| / 1091 g7 () 3de| < Cmin 6" (1) (116" ()F e + 116" €)Y 120
1 1 1 1 2
= Claninlo” (D310 (mac 0" + 3 [ 17O o ©)1e)

£eQe
< . " 7% " % 7%.
< C(min |$7(£)[)™ max [¢" ()] |1

Since on Qy, |¢" (&)| ~ |x/t\%, there exists a positive constant C' such that

max ¢ (€)|5 < C(min |¢

§€0 §€0
which gives us the desired estimates on the integral on €.

Now, we estimate the integral on Q3. Observe that we have to consider the case [t|~/* <

¢, otherwise Qy = Q3 = (. In particular, for £ € 3, we have [t|/® < ¢ < e. Integrating by

12



parts the integral on )3 satisfies

‘/QS e = g (¢) sdg‘ M‘/QS i(t9(6)-a9)) /;('b(gg )|
) |¢”’(

L |,

|H Wl

dg( (1.7)

) +e i(to(€)
=T

r ei(t¢(5)_xg)§|¢m( O3 6W(E((E) = %) — 10" (€3¢ ()
“il . (6~ )

O @E] 1 [ |e"©1e"©)l
¢'(€) — 7| It Jos (¢/(€) — %)
In the following we obtain upper bounds for all terms in the right hand side of (1.7).

dg)

2 9"(©)]

1

3

<—rnax—+—
t] ees |/ () — £ 3[t| Jo,

|9"(€ i
| .

Since on Q3, |¢/(§) — x/t| > |z /2t|, there exists a positive constant ¢ such that

x _
#() = 7| > cld/ () 2 clél™, vg € .
In the case of the first term
1 /1 C C
sup ‘¢ (5)‘ < s ‘5’ sup |€|f —a+1 < |t| 1/3 (18)
[t] cea [#/(6) — 2] = Tt] ecan €T [¢] eeon
since |€] < e <1 and [£]P/3—F! < [¢|(@m3)/B-atl — |¢|720/3 < |¢]2/3,

The second term satisfies

1()]-3 16 |20
— 3 (4) d
1o 00 —% <] 1 / et 107 £< g

Integrating by parts, applying the triangle inequality and using the definition of €23 we get

1751 (lds S suple T (©)] + [ 11l lag
Q3 Q3

Q3

B
3

€175~ gD () |de.

1t Jo

< sup [¢)5 1 + / €5 ede
QB Qg

< sup |5 < 23,
Q3

where the last inequality follows as in (1.8).

The last term in (1.7) can be estimated as follows
¢/// ¢// N B,
O EN e o [ 117 [ e 5 swp e < o
Qs (Cb/(f) - ) o [€]
Putting together the estimates for the terms in the right hand side of (1.7) we obtain that

the integral on (3 also decays as [¢t|~/3.

‘515/34—04 2

The proof is now finished. O]
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Chapter 2
The Schrodinger Equation

In this chapter we first present some classical facts about the linear Schrodinger equation.
We analyze the long time behavior of solutions and state some space-time estimates known
as Strichartz estimates. Using these estimates we obtain estimates for the solutions of non-
homogeneous Schrodinger equations and apply them to the well-posedness of solutions of

some nonlinear Schrodinger equations.

2.1 The linear Scrodinger Equation

In this section we will study the asymptotic behavior of the solution of the initial value

problem

{ w(t,r) = ilu(t,z), v € RY, £ £ 0, (2.1)

u(0,2) = ¢(z), v € R

Proposition 2.1.1. The solution of the linear equation (2.1) with initial data ¢ is denoted
by u(t,r) = e and it has the following important properties.

1. For allt € R, ¢® : L2(RY) — L2(RY) is an isometry; which implies

le" 2l p2(ray = ll0ll 2 ray.

) L L . . -1 . . *
2. elitBpit A el(t-i-t )A with (eztA) — e A — (eztA) '
3. 08 =1.

4. Fizing ¢ € L*(RY), the function ¢, : R — L*(R) defined by ¢,(t) = €'y is a

continuous function; i.e. describes a curve in L*(R?).

14



Proof. Applying the Fourier transform ( with respect to the spatial variable) to equation
(2.1) we get that

@t €) = idu(t,€), € € RY £ A0,
0(0,€) = B(€), € e RY

Using the properties of the Fourier Transform we have that Au(t, &) = —4r?|¢[2T(E, 1), € €
R? ¢t # 0. Thus function @ verifies the system:

(t,§) = —4r?ilg|*u(t,€), £ € RY, ¢ #0,
u(0,8) = @(¢), £ R

For ¢ fixed, this is an ordinary differential equation and has the solution
a(t, €) = e G (), (2.2)
Now, we consider the function K;(£) defined by means of its Fourier transform
K,(§) = e '™ e eRYt£0.
Using Example 1.1.1 from Section 1.1 we deduce that

ifa|?
e 4t

(4mit)4/?’

Ki(r) = r Rt A£N0.

It implies that solution u of equation (2.8) is given by

u(t,z) = K,(z) * o(x) = (4mit) %> /Rd ei‘wztylzgp(y)dy.
Using (2.2) the L?(R?) norm of u satisfies
||u<t>HL2(Rd) = Hu/(t\)HH(Rd) = Heﬂﬂ%tlé‘Z@HL?(Rd) = H@HLZ(Rd) = ||90HL2(Rd)-
Properties 2 — 4 follow by using property (2.2). ]

We recall a known result about interpolation of operators.

Theorem 2.1.1. (Riesz-Thorin) Let py # p1,q0 # q1. Let T be a bounded linear operator
from LP(X, A, ) to Lo (Y, B,v) with norm My and from LP*(X, A, ) to LY, B,v) with
norm My. Then T is bounded from LPo(X, A, n) to L% (Y,B,v) with norm My such that

My < M3 MY?,

with 1 1-6 60 1 1-60 6
— = +—, — = +—, 6€(0,1).
yZ Po P1 Qo qo q1

15



As a corollary we have the following well-known inequality:

Corrolary 2.1.1. (Young’s Inequality) Let f € LP(R?), 1 < p < oo, and g € L*(R?). Then
f*ge€ LP(RY) and
1f * gllzo@ay < || fllo@ay |9l 21 ey (2.3)

Now, we establish the properties how the group {e"m};iioO acts on the LP(R%)-spaces.

1 1
For any p € [1,00) we set p’ by the rule — 4+ — = 1.
p P
Proposition 2.1.2. For any t # 0 and p > 2, €*® maps continuously L¥ (R?) to LP(R%)
and L
120 (@) || 1o may < Ot~ 2P =D 0|l Lyt ay,  where PR (2.4)

Proof. From Proposition 2.1.1 we have that
ez’tA . L2(Rd) N LQ(Rd)

is an isometry; that is,

HeitASOHL%Rd) = ||90”L2(Rd)-

Using Young’s Inequality (2.3), we have

Cn e/

6itA oy =

Ch

< _Zn il Pray
< \4m’t\dH [ zoo ray llspl 22 ()

< C’t|_d/2||¢||Ll(Rd)~

* 90||L00(Rd)

Combining these inequalities with the Riesz-Thorin interpolation theorem 2.1.1, we obtain
that, for any p > 2, the operator ¢ maps L (R%) to LP(R?) and

160 gy < (1) llpll oy
where 19 20 1 1
—=-andl-0=1--=———.
p 2 p v p
The proof is now finished. O

Proposition 2.1.3. The following hold:

16



1. Given ty # 0 and p > 2, there exists f € L*(R?) such that > f ¢ LP(R?).

2. Let s > s >0 and f € H*(R?) such that f ¢ H* (RY). Then, for all t € R, e*®f €
H*(RY) and ™ f ¢ H* (R?).

Proof.  To show (1) it is enough to choose g € L?(R%) such that g ¢ LP(RY) and take

f — ef’itoAg‘
The statement (2) follows from the fact {2} _ is a unitary group in H*(R?) for
all s € R since

€2 flls = || (I — A)S/z(eitAf)Hm(Rd) = || ((I — A)S/zf)HLQ(Rd)
= (I = A fll ey = || f]

HS(Rd)‘
Therefore, for any sy > 0, if e f € H®(R?Y) then f = e "2 (e?)f € H*(R?). We then

conclude as in the case of LP-spaces. O]

In order to emphasize the optimality of the L!(R?) — L>®°(R?) estimate in Proposition

2.1.2 we can choose the particular case when the initial data is a gaussian profile ¢(x) =

—mlx|?

e
Using formula (2.2) the solution of equation (2.1) is given by

u(z,t) = (e‘*”Qit'g'z@(f))v = (e(1+4’f“)”'5|2>v
1 —7|x|?
= ——e€exp| ———
(1 + 4mit)4/2 P\ T+ dnmit
—7|z|? 4m?it|x|?
— (1 + 4mit) Y2 _—mel” S oy
(L4 dmit) 1 exp (1+ 16722 ) “P\ 1+ 167222

Notice that when ¢ >> 1 and |z| < t the solution is bounded below by ct~%2 and oscillates

for |z| > t'/2, but if |z| > ¢ the solution decays exponentially. Moreover,

C’t_d/QXﬂth}(:c) < u(z,t)] < ct~2,

17



2.2 Strichartz estimates

In this chapter we present some estimates for the inhomogeneous Scrodinger equation and

show how we can apply them to obtain the well-posedness of nonlinear problems.

First, we introduce some notation that will be used in what follows. The mixed Lebesgue
spaces L{L" 1 < ¢q,r < 0o, are defined as the completion of the set of all Schwartz functions
f:Ride—)Cinthenorm

o a/r 1/q
I fll La(r, Lr ey = (/ ( |f(t7$)|rdx) dt) .
0 Rd

The next result describes the global smoothing property of the group {e®*}>* _ and

these estimates are known as Strichartz estimates( see for examples Linares [11], page 64).

Theorem 2.2.1. The group {e®®} __ satisfies:

o0 1/q
(0 gt) < el

q 1/q o0 , 1/q
dt) <c (/ Hg<7t)qu/(Rd)dt> )
L7 (R4) —o0

2. </ H/ =98¢ (. 5)ds

[e%¢) [e’e) 1/q’
2| [Tt <e([T ot O )
—00 L2(]Rd) —00

with
2d
2<r<ooifd=2, (2.5)
2<r<ooifd=1,
2 d d .
and — = 3 where ¢ = ¢(r,d) is a constant that depends only on r and d.
q r

We recall here a stronger result due to Keel and Tao [8].

Definition 2.2.1. We say that a pair of exponents (q, r) is o-admissible, if g,r > 2,(q,r,0) #
(2,00,1) and

1 o o

-4 =< = 2.6

q i r 2 (2:6)
If equality holds in (2.6) we say that (g, ) is sharp o-admissible, otherwise we say that (g, r)

is nonsharp o-admissible. Note in particular that when ¢ > 1 the endpoint
2
P=(2579)
oc—1
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Theorem 2.2.2. Let H be a Hilbert space, (X, dz) be a measure space and U(t) : H — L*(X)

be a one parameter family of mappings, which obey the energy estimate

U@ fllzca) < Cllflla
and for some o > 0 one of the following decay estimates:

e forallt+# s and all g € L'(X)

V(0O () gl ) < Ot = 577 llgll 1) (umtruncated decay),

e forallt,s € R and g € L'(X)

U U(s)) gl ) < O+ [t = s)) 7 llgllooxy (truncated decay). — (2.7)

Then the following estimates hold for all sharp-c-admissible pairs (q,r), (4, 7). Furthermore,
if the decay hypothesis is strengthened to (2.7), then these estimates hold for all o- admissible

(q,7) and (q,T):

IU@) fllea@yzrx) < Cllf o,

|Jworre

/ U(t)(U(s))"F(s, -)ds

0

< OlF e @, (x))s

< Ol fllpa @7 (x)-
La(R,L™(X))

As a consequence, choosing H = L*(R%) and X = RY, we obtain that the solution of the

inhomogeneous problem

{iut—i-Au—i-F:O (2.8)

u(0,2) = .

satisfies the following theorem:

Theorem 2.2.3. Let (q,7) and (G,7) both be sharp o-admissible pairs with o = 1/2. Then,
1" f | zaLr) < Cllfllz2ze),
| [ e*2F(t,)dt| 2@y < ClIF| Lo 1 ety

t i(t—s
I Jo €2 F (s, )ds| Loge,rayy < Cllf e (g, ray) -
The solution of equation (2.8) satisfies

lell o ooy < C (Illzagmay + 1Pl e o cay ) -
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2.3 Nonlinear problems

In this section we give some well-posedness results for the semi-linear Schodinger equation:

(2.9)

iug + Au~+ MufPu=0,t > 0,2 € R
u(0,z) = o,

where p > 0 and )\ € R.
Theorem 2.3.1. Any regular solution of problem (2.9) has the following properties:
1. the conservation of the L*(R)-norm : |[u(t, z)| 2wy = ||l¢llr2(r)-

2. the conservation of energy:

1 A 1 A
— v t2——/ £)[P2d :—/V 2d ——/ P2z, vt € R.
2/]R| () = [ e =5 [ [Velde == | fel"de

Proof. First, we will show the conservation of the L?*(R)-norm.

d 5 d 9 / _
dt/R|u(t,x)| dx /Rdt|u(t,x)| dx i Re (uuy)dx

Since |u]?> = u - we have
O ul* = w + v, = 2 Re (u ).

We multiplicate the equation by w and integrate over R:

i/utﬂd;v—l—/Au-ﬂdx—l—)\/]u\puﬂ:O
R R R

thus
/ut cudr = 2/ Au - udr + Z')\/ lulPT2dx
R R R
and
Re </ ut~ﬂdx> = Re <2/ Au~ﬂdm) + Re <z>\/ ]u|”+2dx) :
R R R
But

/Au-ﬂdm = —/VuVﬂdx = —/ |Vul*dz € R
R R R
d
and also / |ulP*?dx € R. We deduce that Re (/ Uy ~ﬂdm) = 0, thus %/ lu(t, )|*dx = 0.
R R R

From this we obtain that [ |u(¢,)|*dx is constant with respect to variable ¢, i.e.:
R

[u(t, ©) |2y = |u(0, 2)[|2) = |l L2®)-
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Now we will prove conservation of the energy. Let us set

1 A
= §/R‘VU($’t)‘2 — p__|_2/R|u(x’t>’p+2’ for t € R.

_1 2 p+2
3 J vttt = [

S— A
VuVudr | — —— 2)R Putyd) .
e(/]R uVuy x) " R(p+) e (|ulPuudz)

dg() Re (/ Vuv_utdx—)\/ |u|pumdx).
dt ® R

We multiplicate equation (2.9) with @,, integrate over R and take the real part of the resulting

We have

Thus

terms:
Re (’L/ut -ﬂtda:+/Au-ﬂtdx+)\/ \u]puﬂtd:v) = 0.
R R R
We have
/Ut ﬂtd$ = / |Ut‘2dl' eR
R R
and thus

Re <i/utﬂtdx> =0, /Au-ﬂtdx = —/Vu-Vﬂtd:z:.
R R R

We obtain that
e (—/Vu-Vﬂtd:v—l—)\/Mp-u-ﬂt) =0,

which is exactly the derivative of £(t). It follows that £(t) is constant:

/ Vl2dr — 22 / o 2de.

We now prove a well-posedness result for H'(R) solutions of the semilinear problem (2.9).

]

Finding a solution for the equation (2.8) is equivalent to finding a solution for the integral

equation
(t)p + /0 S(t — s)F(u(s))ds, (2.10)

where F(u(t)) = Mu(t)|Pu(t) and S(t)p = e is the semigroup generated by the initial
value problem

w(t, x) = Au(t,z), = € Rt >0,

u(0,z) = p(x), z €R.
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Theorem 2.3.2. For any ¢ € H'(R) and p > 0 there exists a unique local solution u €
C([0,T], H'(R?)) of equation (2.9). Moreover, if X > 0 the solution is global.

Proof. We will prove local existence of the solution using Banach’s Fixed Point Theorem.

Define the following map

DX = X, 0(u) =S(t)p + /0 S(t— s)|u(s)[Pu(s)ds,

where

x = {ue Co. 71 1 ®): s lo0)lney < M.

endowed with the norm |ju||x = r%:m%(] ()] 1 (ry- The positive numbers M and T will be

chosen later such that ® to be well defined and contraction.
In order to do this, we first need to show that that function F' is locally Lipschitz on
H'(R). We recall the following inequality: there exists a constant C(p) > 0 such that

lla”" a — [bP~'0] < C (Jaf*~" + [b]P~") |a —b], Va,b> 0.

As a consequence, we obtain that, for any u,v € H*(R),

[1F(u) = F0)|la @ < Cp) (HU(t)Hpoo(R) + lv() I R)) [ = | m)-
The embedding H!(R) < L>*(R) gives us that

|F () = F(0)llan sy < C0) (Ilu@ ey + 1000 10w ) 1 = ol
Indeed,

_ 2
1F (u(t)) = F (o)l = / (lu@) P~ ut) = @) (1) de
<C [ (up™+ pOP )’ (ult) - o) o
R

2 1) 1
< C (2@ + @2 ) lu®) = v(6)3a

so(u (ON525 + 0@ ) lla() = o0 e,

where for the last inequality we used the continuous embedding H'(R) < L>°(R). Also
I(F () = F0)all 2@ = 1 (w)ue = F'(0)vall 2@ < Cp)llv = vlla@
For u,v € X we have ||u(t)||g1®)y < M, ||[v(t)||g1@®) < M and this implies that
[1F () = Fo@®)ll2@ < C(M)|u(t) = v(@)]la @ < CM)[|u(t) = v@)]x-
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Step 1. @ is well defined. Let u € X. We have

el = s+ [ S(t — )uls)Pu(s)ds

X

< lstells + ) S0t — )uls)Pu(s)ds

X

Using Proposition 2.1.1, the first term satisfies

S(t = S(t LRy = 1R
H ( )SOHX tgﬁ% H ( )SOHH (R) HSDHH (R)

For the second term:

H/OtS(t—s)]u(s)\pu(s)dsHX — max H/Otsu—s)\u(s)ypu(s)ds(

te[0,7) H1(R)

t
< max/ H’u(5)|pu(3)”H1(R)d5
0

T t€[0,T]

<T ) Pu(t 1(R)-
< 7 s ) Pult)s

Using the embedding H'(R) < L>°(R) we have

IO ull g1 gy < Mu@)Pu@l 2@ + C lu)Puz )]l 2@
< Nz @y lu®)ll 2@y + Cllul) o @) lua ()]l 2 @)

< Cillul®)lf7

Thus, for any u € X

p+1 p+1
. < Cthrer%é:%)T]{] ||u(t)HH1(R) < CyTMP™,

/0 S(t — s)|u(s)|Pu(s)ds

We obtain
|Pullx < ll@llmm + CiTMP*

and, if we choose

1 _
M =2|¢||lm®) and T = az "ol m (2.11)
it follows that
|Pul|x < M.
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Step 2. @ is a contraction. For any u,v € X we have

[®(u) = ®(v)[[x = max /S(t—S)(IUI”u—Ivlpv)(S)dS

te[0,T)]

H'(R)

< max / 1(JulPu = [0Po)(5) | 11 gy s

t€[0,T]

< 7 e P~ o)) e

< T ana () = vy () s ey + 100 sy

1
< Tllw = vllx - 2M” = gllu —vllx,
where M and T are given by formula (2.11).
Thus, ® : X — X being a contraction, it follows that ¢ has a unique fixed point in X,
that means there exists solution of equation (2.9). Using similar arguments we can show
that the H'(R)-solution of equation (2.9) is unique.

Repeating the above arguments we can extend the solution of problem 2.9 up to a time T

where we have the blow-up alternative: if T < oo then 1%1%1 |w(t)]| g2y = o0. Since the L*(R)-
tTTo
norm is conserved it means that when 7 < oo we must have that l%n | (8)]| 2r) = 00. In
tTTo

the case A > 0 using the conservation of the energy we have that
[ ()| 2y < E(1) = £(0).
Thus, the solutions of (2.9) are global in this case, i.e. u € C([0,00), H'(R)). O

Theorem 2.3.3. L2-solutions If 0 < p < 4/d, then for all ¢ € L*(RY) there exists unique
global solution u of equation (2.9) that satisfies

u € C(R, L*(R")) N Li, (R, L"**(R)),
where r = 4(p + 2)/pd.

Proof. We first prove the existence of a local solution. We will obtain the existence of a time

T = T(||¢||L2may, d, A, p) such that the integral equation (2.10) has a unique solution
u€ C([0, 7], L*(RY)) N L7([0, T], L"*(R)).

This argument is standard and we use the Banach Fix Point Theorem in a suitable space.

We consider the space

E(T,a) :{u e 0([0, T], LA(R%)) N L7 ([0, T], LP2(RY)) -
1/r

T
el = sup (9 52e + ([ 1l mit) <l
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with 0 <p <4/d and r = 4(p+2)/pd. E(T,a) is a complete metric space.
For appropriate values of a and T" > 0 we shall show that

d(u)(t) =™y + z'/\/O A9 (|ulPu) (s)ds (2.12)

defines a contraction map on E(7T,a).

Without loss of generality we consider only the case T' > 0.

1/r T , 1/r
(T 1P ent) < ellpllizgen + oM (7 M1t

1/
T 1)r
< cllgllzegu + Al (Jy Tl 5 dt)

(2.13)
By hypothesis 0 < p < 4/d so (p+ 1)r" < r, since
4 2
p+l<r—1= ip+2) 1 which means (p + 1)r' = (]0—1—1)L <7
pd r—1
Therefore, from (2.13) we deduce that
1/r (p+1)/r

T T
([ 10@OR ) < el + N ([ TOpmgadt)

with 6 = 1 — pd/4 > 0. Then, if u € E(T,a) we have

1/r

T
([ 19Ol madt) < clilling + AT,
0

Using Theorem 2.2.1 and unitary group properties in expression (2.10), we obtain that if
u € E(T,a) then

T 1/r
sup. 1000)() ey < clilzaas + N ([ 1P et
t€[0,T] 0
< clloll2may + | A[T?aP*,
where constant ¢ depends only on p and dimension d. Hence,
2l < clloll 2 gay + AT a*.
If we fix a = 2¢||¢]| 12(rey and take T > 0 such that

2PN T || 0|7 <1/2 (2.14)

L2(R4)

it follows that the application ® is well defined on E(T,a). Now, if u,v € E(T,a),
t
((v) — @(u))(t) = M/ IR (oo — [ufPu)(s)ds.
0
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Thus
([ 160 - s Ot)
o

T
< ( I oo - \urpwuzwwmd)dt)
0

T 1/r
< A 0l + Do) 10 =l (0 )
0

T p/r T p/r T p/
gcp|>\|T9<(/ ||v||zp+2(Rd)dt) +</ ||u||zp+2(mdt) )(/ ||v<t>—u<t>||zp+w)dt)
0 0 0

T 1/r
< 2, ]\[T°a? ( [ - u<t>||zp+2(mdt)
0

r

Using the estimates from Theorem 2.2.1 we get

1/r

sup [|(®(v) — @ (u))(t)|| 2rey < 26| AT a” (/0 lo(t) — U(t)||2p+z(w)>

(0,77

Finally, it follows from the choice of a, that is a < 2c||¢|| 2Ry and inequality (2.14), that
2|\ T%a? < 2 ATl gy < 1.

Hence,
—4p
4 —pd

Thus, we have proved the existence and uniqueness in an appropriate class of solution of

T ~ || 2 ggay, With 5 = (2.15)

equation (2.10).

This proves the existence of a local solution
w € C((0, 7], L*(RY) N L7((0, T, L**(R)),

where T = T(||¢|| z2(ra), d, A, p). Using the conservation of the L?(R%)-norm, we obtain that
the solution exists globally. ]
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Chapter 3
The discrete Schrodinger Equation

In this chapter we will present some results obtained in [5], where we proved dispersive
estimates for the system formed by two coupled discrete Schrodinger equations. We obtained
estimates for the resolvent of the discrete operator and prove that it satisfies the limiting
absorption principle. The decay of the solutions was proved by using classical and some new
results on oscillatory integrals.

Let us consider the linear Schrédinger equation (LSE) in dimension 1:

(3.1)

Wy + Uz =0, 2 € R, #£0,
u(0,z) = ¢(x), z € R.

Linear equation (3.1) is solved by u(t, z) = S(t)¢, where S(t) = 2 is the free Schrodinger
operator. The linear semigroup has two important properties. First, the conservation of the
L?-norm:

1S@ell2@ = llell2m) (3.2)

and a dispersive estimate of the form:

1
(S()p)(x)] < WH@HLI(R), z€R, t#0. (3.3)
The space-time estimate
1Sl e, oy < Cllell 2w, (3.4)

due to Strichartz [14], is deeper. It guarantees that the solutions of system (3.1) decay as
t becomes large and that they gain some spatial integrability. Inequality (3.4) was general-
ized by Ginibre and Velo [3]. They proved the mixed space-time estimates, well known as

Strichartz estimates:
1SC)ellLa, Lrwyy < Clg, ) |l¢ll2®) (3.5)
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for the sharp 1/2-admissible pairs (g, r):

1_1<1 1) 2 < < (3.6)
-—=—=l=z—- r < 00. .
2 T? —QJ J—

Similar results can be stated in any space dimension but it is beyond the scope of this
article. These estimates have been successfully applied to obtain well-posedness results for
the nonlinear Schrodinger equation (see [2], [15] and the reference therein).

Let us now consider the following system of difference equations
g+ Aqu=0, j7€Z,t#0,

u(0) = ¢,

where Ay is the discrete laplacian defined by
(Ad’u,)(j) = Ujy1 — ZUJ' + U1, j € Z..

Concerning the long time behavior of the solutions of system (3.7) in [13] the authors have

proved that a similar to the continuous Scrodinger equation decay property holds:
[u)lli=@ < C(IE+ 1) Plelling, VE#0. (3.8)

The proof of (3.8) consists in writing solution u of (3.7) as the convolution between a kernel
K, and the initial data ¢ and then estimate K, by using Van der Corput’s lemma. For
the linear semigroup exp(itA,), Strichartz like estimates similar to those in (3.5) have been

obtained in [13] for a larger class of pairs (g, ), namely 1/3-admissible pairs,

1 1,1 1
<5
q 3

5—;), 2<q,r <oo. (3.9)

We give here the proof of the decay property (3.8) for the solutions of equation (3.7).

Theorem 3.0.4. For any ¢ € [*(Z) there exists a unique solution u € C'(R,I1*(Z)) of system

(3.7). Moreover the solution u satisfies

1. the energy identity: ||u(t)|2@z) = |l¢lle@),
2. the decay estimate: ||u(t)|;=zy < C(1+ [t]) " ||olln ).

Proof. The well-posedness is a consequence of the fact that the operator Ay is bounded on

I2(Z). Function u being defined on Z we apply the discrete Fourier transform with h = 1:
(1, €) + Agu(t,©) =0, j € Z,t #0,£ € [~ ],

a(0,6) = $(6) £ €[~ 7, (3.10)
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We now compute Agu:

Bau(€) = 3 e 6 (Aw)(j) = S e (u(j + 1) — 2u(j) + u(j — 1))
JEZ JEZL
= ) —2 T ) + e )
JEZ JEZ JEL

£

_ (eié 4 2) (&) = 2(cos& — Du(€) = —451112 ().

System (3.10) becomes
i,(€) — 4sin? §0(€) =0, € € [-m,7],t £ 0,

ﬁ(&f) = (ﬁ(g)’ 5 € [_7‘-777']-

This is an ordinary differential equation with initial data ¢ and its solution is given by:

at, &) = e I3 5(6), € € [—m, 7).

Let K; be such that f(\t(f) = e~4itsin® 5 Then u(t, &) = E(f)@(f) and from the properties
of the discrete Fourier Transform it follows that u(t) = K} * ¢, where here * is the discrete

convolution:

tj) =Y Kij—kp(k), VjeZ

keZ
The kernel K, satisfies || ||z < 1, since

1 4 . -
R S

Using the properties of the kernel K; we obtain the following estimates for the solution u of
system (3.10):

T 1/2
~ —4itsin? § ~
Llu®) 2@z = e z2em) = </ e~ 3 5(8)| d&) = |4l L2(—r.m) = Nl z2(mm)-

2||ulliezy = 1K * @llie@zy < 1 Killie@) - @llne < llellne)-

We can obtain stronger estimates for ||ul[;~(z) by using Van der Corput’s Lemma. We write

the kernel K; as follows:

. 1 71-fisinéi' 1 71-'ifsinﬁi
Kt(]):%/;ﬂ—e 4it 22€J£d€:%/_ﬂet( 4 22+Jt)d£.
Set
p&) =—4 sm2 S f.
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The derivatives of p are

p (&) = % —4sin§cos§ = ;—QSinfa
P(6) = ~2cost,
p (&) = 2siné.

Thus, on the interval [—7, 7] the second and the third derivatives can not vanish at the same
point since p” (&) = 0 only for ¢ € {—” z

202
the previous integral as follows:

T — 3 T L 3m x
itp(€) 7 _ b itp(e) titp(€) b itp(6) b itp(e) itp(€)
/_ﬂe d¢ /_ﬂ e d{—l—/_gfe df/_ e df—i—/:lr e d¢ 3%e dg.

T
Using Van der Corput’s Lemma we obtain that

'/4 ez‘tp(g)d£ < W*%, '/4 eitp(i)d§
3
— _3x

37

/ o eitp(é)dg

4

and p” (¢€) = 0 only for ¢ € {—m, w}. We split

INE

<l | [ e

< |tz

L

< [t|73,

/ O qe| < [t
3
4

Thus, for ¢ > 1 we obtain |K,(j)| < C|t|~3,Vj € Z. Using that | K1 (zy < 1 we get

1K illie(zy < C(Jt] 1)~/
and

[u()|liezy) < Ot + 1) ollin, VE#O.

O]
Theorem 3.0.5. For any 1/3-admissible pair (q,r) the solution of the inhomogeneous equa-
tion

iug(t,§) + Aqult,j) + f(t,j) =0, jEZieR a.11)
u(0,7) = ¢(7), JEL
satisfies the following estimates:

lu®)ll ooy < C (Il + 1O oo @ o))
Proof. We apply Theorem 2.2.2 with o = 1/3 since e#*2d¢p satisfies:

2|2z = Cllollz@) (3.12)
[eiBa (e840 ) ol 7y = ||l€" T Rp|100(z) < C(1 + [t — s]) 73] ollnnz)-

[l
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We also mention [6] and [7] where the authors consider a similar equation on hZ by replac-
ing Ag by Ag/h? and analyze the same properties in the context of numerical approximations
of the linear and nonlinear Schrédinger equation.

A more thorough analysis has been done in [10] and [12] where the authors analyze
the decay properties of the solutions of equation iu; + Au = 0 where A = Ay — V, with
V a real-valued potential. In these papers ['(Z) — [°°(Z) and [*_(Z) — I2(Z) estimates for
exp(itA) P, .(A) have been obtained where P, .(A) is the spectral projection to the absolutely
continuous spectrum of A and I3 _(Z) are weighted [?(Z)-spaces.

In what concerns the Schodinger equation with variable coefficients we mention the results
of Banica [1]. Consider a partition of the real axis as follows: —oco =g < 1 < -+ < xp11 =
oo and a step function o(z) = b;? for x € (x;,7;,1), where b; are positive numbers. The

solution w of the Schrodinger equation
iu(t,x) + (o(x)ug).(t,z) =0, for x € Rt #0,
u(0,x) = ug(x), z € R,

satisfies the dispersion inequality

Ju(@)||Lom®) < C|t|_1/2HUOHL1(R)7 t#0,

where constant C' depends on n and on sequence {b;}_,. We recall that in [4] the above result
was used in the analysis of the long time behavior of the solutions of the linear Schodinger
equation on regular trees. In the case of discrete equations the corresponding model is given
by

(o) = o (3.13)

where the infinite matrix A is symmetric with a finite number of diagonals nonidentically

{¢M+AU:Qt¢Q

vanishing. Once a result similar to [1] will be obtained for discrete Schrodinger equations
with non-constant coefficients we can apply it to obtain dispersive estimates for discrete
Schrodinger equations on trees. But as far as we know the study of the decay properties
of solutions of system (3.13) in terms of the properties of A is a difficult task and we try
to give here a partial answer to this problem. In the case when A is a diagonal matrix
these properties are easily obtained by using the Fourier transform and classical estimates
for oscillatory integrals.

The main goal of this article is to analyze a simplified model which consists in coupling
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two DSE by Kirchhoff’s type condition:

(du(t, §) 4+ 072 (Aqu)(t,5) = 0 j< =1, t#0,
vy (t, ) + by 2 (Aqu) (¢, 7) = 0 j>1, t#0,
u(t, 0) = v(t,0), t#0, (3.14)
bf2(u<t7 _1> o u(ta O)) = b52(v<t7 O) o U<t7 1))7 t # 0,

L v(0,) = (), j=1

In the above system wu(¢,0) and v(t,0) have been artificially introduced to couple the two
equations on positive and negative integers. The third condition in the above system requires
continuity along the interface j = 0 and the fourth one can be interpreted as the continuity
of the flux along the interface.

The main result of this paper is given in the following theorem.

Theorem 3.0.6. For any p € [*(Z\ {0}) there exists a unique solution (u,v) € C(R,1*(Z\
{0})) of system (3.14). Moreover, there exists a positive constant C'(by, be) such that

1w, ) ()i zgoy) < Cbr, b))t + 1)l oy,  VEER, (3.15)
holds for all ¢ € IN(Z\ {0}).

Using the well-known results of Keel and Tao [8] we obtain the following Strichartz-like
estimates for the solutions of system (3.14).

Theorem 3.0.7. For any ¢ € I*(Z\ {0}) the solution (u,v) of system (3.14) satisfies

[1(w, )| o, 2vjopy < Cla,7)l[@llzz o)
for all pairs (q,r) satisfying (3.9).

The paper is organized as follows: In section 3.1 we present some discrete models, in
particular system (3.14) in the case by = by and show how it is related with problem (3.7).
In addition, a system with a dynamic coupling along the interface is presented. In section
3.2 we obtain an explicit formula for the resolvent associated with system (3.14). We prove a
limiting absorption principle and we give the proof of the main result of this paper. Finally

we present some open problems.
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3.1 Some discrete models

In this section in order to emphasize the main differences and difficulties with respect to the
continuous case when we deal with discrete systems we will consider two models. In the first
case we consider system (3.14) with the two coefficients in the front of the discrete laplacian
equal. In the following we denote Z* = Z \ {0}.

Theorem 3.1.1. Let us assume that by = by. For any ¢ € [*(Z*) there exists a unique
solution u € C(R,I*(Z*)) of system (3.14). Moreover there exists a positive constant C(by)
such that

lu()llizy < CO(IH+ 1) PllellnEy), VteR, (3.1)

holds for all ¢ € I1(Z*).

In the particular case considered here we can reduce the proof of the dispersive estimate
(3.1) to the analysis of two problems: one with Dirichlet’s boundary condition and another
one with a discrete Neumann’s boundary condition.

Before starting the proof of Theorem 3.1.1 let us recall that in the case of system (3.7)
its solution is given by u(t) = K; * ¢ where x is the standard convolution on Z and

K,(j) = / eI G de e R, jE
In [13] a simple argument based on Van der Corput’s lemma has been used to show that

for any real number t the following holds:
(KD <Ot +1)7Y°, Vj e (3.2)

Proof of Theorem 3.1.1. The existence of the solutions is immediate since operator A defined
in (3.7) is bounded in [*(Z*). We prove now the decay property (3.1.1). Let us restrict for
simplicity to the case by = by = 1.
For (u,v) solution of system (3.14) let us set
, v(g) +u(—yJ _ v(g) —ul—yJ
() = () 2( )’ D(j) = () 2( )
Observe that v and v can be recovered from S and D as follows

,J 2 0.

(u,v) = ((S = D)(—),S+ D).

Writing the equations satisfied by u and v we obtain that D and S solve two discrete
Schrodinger equations on Z = {j € Z,j > 1} with Dirichlet, respectively Neumann bound-

ary conditions:
iDy(t,7) + (AgD)(t,j) =0 j =1, t#0,

D(t,0) =0, t£0, (3.3)

D(0,j) = £al—elod), j>1,
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and
iSi(t, ) + (AgS)(t,5) =0 j=>1,t#0,

S(4,0) = S(t,1), {40 (3.4)
S(O,]) _ SO(j)'*‘QSO(—j)’ j>1.

Making an odd extension of the function D and using the representation formula for the
solutions of (3.7) we obtain that the solution of the Dirichlet problem (3.3) satisfies

D(t,j) = Y (Ki(j — k) = Ki(j + k)D(0,k), t#0, j > 1. (3.5)
k>1
A similar even extension of function S permits us to obtain the explicit formula for the

solution of the Neumann problem (3.4)

S(t,j) =Y (Ki(k = j) + Ki(k +j = 1))S(0,k), t#0, j>1. (3.6)

k>1
Using the decay of the kernel K; given by (3.2) we obtain that S(¢) and D(t) decay as
(|t| + 1)~/3 and then the same property holds for « and v. This finishes the proof of this
particular case. O

Observe that our proof has taken into account the particular structure of the equations.
When the coefficients b; and b, are not equal we cannot write an equation verified by functions
DorS.

We now write system (3.14) in matrix formulation. Using the coupling conditions at

j = 0 system (3.14) can be written in the following equivalent form

Z.Ut +AU - O,
U(0) = o,

where U = (u,v)", u = (u(j));<-1, v = (v;);>1 and

0 0 0 0 0
0 b2 —2b2 b;? 0 0 0 0
o bi* b = g s 00 0 (3.7)
0 0 0 ﬁ —@—bﬁ b2 0 0
0 0 0 0 by? —2b,% by? 0
0 0 0 0 0
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In the particular case by = by = 1 the operator A can be decomposed as follows

0 0 0 0 0 i e e 00 0 0 0
01 -2 1 0 0 0 0 000 0 0 00 0

AoApp_| 00 1 =21 0 001 000 3 3000
00 0 1 -2 1 0 0 000 - 1 000
0 0 0 1 -2 1 0 000 0 0 00 0
00 0 0 0 00 0 0 0

However, we do not know how to use the dispersive properties of exp(itA,) and the particular
structure of B in order to obtain the decay of the new semigroup exp(it(Ag + B)).
Another model of interest is the following one inspired in the numerical approximations

of LSE. Set
bl_2, x <0,

a(gj):{ by%, x> 0.

Using the following discrete derivative operator

1 1
(Ou)(z) =u(z+ =) —ulx — =)
2 2
we can introduce the second order discrete operator
. A S o1 o1 . o1 .
0(adu)(j) = a(j + 5)uli +1) = (alj + 3) + alj = 3))ulj) + alj = F)uli —1),j € Z
In this case we have to analyze the following system
[ ui(t,5) + 072 (Aqu)(t, ) = 0, j< 1, t#£0,
iug(t, 5) + by *(Aqu)(t, §) = 0, j=1,t#0,

(3.8)
iy (t,0) 4+ by 2u(t, —1) — (by% 4 by 2)u(t, 0) 4+ by tu(t,1) =0, t#0,

| w(0.9) = o)), jeL.

In matrix formulation it reads iU; + AU = 0 where U = (u(j));ez, and the operator A is
given by the following one

0 0 0 0
0 b2 —2b? b2 0 0 0

A=10 0 b —(b2+b% b* 0 0 (3.9)
0 0 0 b2 —2b,% by% 0
0 0 0 0

Observe that in the case by = by the results of [13] give us the decay of the solutions.
Regarding the long time behavior of the solutions of system (3.8) we have the following

result.
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Theorem 3.1.2. For any ¢ € [*(Z) there exists a unique solution u € C(R,1*(Z)) of system

(3.8). Moreover, there exists a positive constant C(by,bs) such that
lu(®)lli=@) < Co1,02) (8] + 1) llplln@), VteR,
holds for all v € I(Z).

The proof of this result is similar to the one of Theorem 3.0.6 and we will only sketch it
at the end of Section 3.2.

3.2 Proof of the main result

In this section we prove the main result of this paper. In order to do this, we will follow the

ideas of [1] in the case of a discrete operator. Let us consider the system

(3.1)

iUt + AU — 0,
U(0) = o,

where U(t) = (u(t,j));20 and operator A is given by (3.7). We compute explicitly the
resolvent (A —AI)~!, we obtain a limiting absorption principle and finally we prove the main

result of this paper Theorem 3.0.6.

3.2.1 The resolvent.

We start by localizing the spectrum of operator A and computing the resolvent R(\) =

(A — XI)~*. We use some classical results on difference equations.

Theorem 3.2.1. For any by and by positive the spectrum of operator A satisfies
o(A) = [~4max{b;?, b,?},0]. (3.2)
Proof. Since A is self-adjoint we have that

o(A) c| inf (Au,u), sup (Au,u)].

lull2 z+) <1 l[ull 2 2y <1

Explicit computations show that
- 1 -
(Au,u) = =b” > (w —uj)* — PRI w)? = b2 (i — )’
js—1 Lo i>1
It is easy to see that (Au,u) <0 and
(Au,u) > —2max{b;?, b,?} Z(u? +uj, ) = —4max{b;? b} Z u?.

jez* jez*
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In order to prove that the spectrum is continuous we need to prove that for any A €
[—4 max{b;?, b5}, 0] we can find u,, € (*(Z*) with ||u, 2@z« < 1such that [|(A—A)up|ez@z
tends to zero. To fix the ideas let us assume that by < by and A € [—4b,2,0]. We construct

uy, such that all its components w,, ;, j < —1, vanish. Thus for such u,’s we have that
(Aun)] = b;Q(Adun)j, j Z 1.

Using the fact that any A € [—4b,2,0] belongs to o(b;2A4) we can construct sequences
(Un,j)j>1 such that [juy |2z < 1 and |[(A = Al)uyl[2@z+y — 0. This implies that A € o(A)
and the proof is finished. O

Before computing the resolvent (A — AI)~! we need some results for difference equations.

Lemma 3.2.1. For any A € C\ [—4,0] and g € I>(Z*), any solution f € I*(Z*) of

Aaf(j) = Af(G) =9(), J#0

with f(0) prescribed is given by

FG) = @bl 4 e S g (k) (3.3)

keZ*

where « is determined by f(0) and r is the unique solution with |r| <1 of
r? —2r4+1=\r

Moreover .

F(G) = FO)rPl 4 ——= N (b — il g (k) £ 0.

r—r
k

Proof. Let us consider the case when j > 1, the other case j < —1 can be treated similarly.

Writing the equation satisfied by f we obtain that

FO+D -+ +fU -1 =90), j=L

This is an inhomogeneous difference equation whose solutions are written as the sum between

a particular solution and the general solution for the homogeneous difference equation

fG+)=C+NfG)+f0G-1)=0, j=1
Let us denote by r; and 79, || < |r2|, the two solutions of the second order equation

=24+ Nr+1=0.
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Since 2 + A € C\ [-2,2] we have that 7 and ry belong to C \ R and more than that
|r1] < 1 < |rg|. Thus we obtain that

. A A 1 -
f() :W{*-ﬁr%*'mzrlf (k). (3.4)
keZ*
Since f is an (*(ZT) function we should have 8 = 0. Then formula (3.3) holds. The last

identity is obtained by putting j = 0 in (3.4) and using that 2r —2 — X =r —r~%. O
As an application of the previous Lemma we have the following result.

Lemma 3.2.2. Set Z, = ZN(—o0, —1] and Zy = ZN[1,00). For any X € C\[—4max{b;?, b,%},0]
and g € I*(Z*), any solution f € I*(Z) of

b2 Aaf () = M) = 9(j), J € Zs,

with f(0) prescribed is given by

. b> .
Nyl b5 k| ,
F) = a4+ 2 2 > riHg(k), j€ Zos € {1,2} (3.5)
keZs
where for s € {1,2}, constant oy is determined by f(0) and rs is the unique solution with
Irs| <1 of
r2 — 21, + 1 = Mryb2.

Moreover )
FG) = FOIE 4+ 2 S (R (1) € 2, (3.

"
s S keZ,

The proof of this lemma consists in just applying Lemma 3.2.1 to the difference equations
in Z7 and Zs.

Lemma 3.2.3. Let A € C\ [~4max{b;?, b,°},0]. For any g € [*>(Z*) there exists a unique
solution f € I1*(Z*) of the equation (A — N )f = g. Moreover, it is given by the following
formula
]
: —Ts |%| |F|
1G) = - > gt + D rlg(e)] (3.7)
by % (1 —ra) +b7%(1 — 1) kezz: ' ,;% i
b? - ; .
= > =l g (k). e 2,

T's =Ts " pez,

where for s € {1,2}, rs = r5(\) is the unique solution with |rs| < 1 of the equation

r2 —2r, + 1= \br,.
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Proof. Any solution of (A — AI)f = g satisfies
Aaf(§) = BAF() = b2g(h), J € Z,,

br*(f(=1) = f(0)) = b *(f(0) — f(1)),

where f(0) is artificially introduced in order to write the system in a convenient form that
permits us to apply Lemma 3.2.2.
Using (3.6) we obtain

F(=1) = FO)rs =62 g (k)

keZs

and
F1) = fO)re — 03> rilg(k).
k€Zo

The coupling condition gives us that
-1

£(0) = > (k).

b1_2<1 — 1) + b2_2(1 —72) s=1,2, kE€Zs

Introducing this formula in (3.6) we obtain the explicit formula of the resolvent. [

3.2.2 Limiting absorption principle

In this subsection we write a limiting absorption principle. From Lemma 3.2.3 we know that
for any A € C\[—4 max{b;?,b,2},0] and o € [?(Z*) there exists R(\)¢ = (A—\)"Lp € I*(Z*)
and it is given by

i
BN = =a T 020 =) [; (k) + ’; Tgklw(k)} (3.8)
i _bgrl DV = o k), € Z,

where 7y = r5(\), s € {1,2}, is the unique solution with |rs| < 1 of the equation
7"5 —2rs+1= )\bgrs.

Let us now consider I = [—4max{b;?,b,2},0]. As we proved in Theorem 3.2.1 we have
that 0(A) = I. For any w € [ and € > 0 let us denote by r;'fe the unique solution with
modulus less than one of

r? —2r + 1 = (w £ ie)b?r.
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Denoting rf. = exp(z}.) with 2z = af +ial , af < 0 and af, € [-m, 7] we obtain by

S,€7

taking the imaginary part in the equation satisfied by 7, that
(exp(ay,) — exp(—a,))sin(af,) = €.

Thus af, € [—7r 0]. A similar result holds for r_ € [0, 7.

S,€7

Let us set 7 = lim.jo <. Using the sign of the 1mag1nary part of 7‘ . we obtain that £

are the solutions with Im (rj) <0 < Im(r;) of the equation

r? —2r +1=wbr.

. - T . - _ T
Also, using that Toe = T4 We obtain r; =rf.

For any w € J = I\ {—4b;?, —4b,%,0} and ¢ € [*(Z*) let us set

. —(r)l ) )
(R0 =308 1570 | z (k) + Z G
b SN - e, ez

$ kel

We will prove that R*(w) are well defined as bounded operators from ['(Z*) to [>°(Z*).
We point out that we cannot define R*(w) for w € {—4b; 2, —4b;?, 0} since for w = 0 we
have r; = ro = 1 and for w = 4b;%,s € {1,2}, we have r, = —1. We also emphasize that
R~ (w)p = RT(w)p. This is a consequence of the fact that for any w € I, r7 (w) = ¥ (w).

Formally, the above operator equals R(w = i€) with ¢ = 0. We point out that as operators

on [*(Z*), R(w =+ i¢) are defined for any w € I but only if € # 0.

Lemma 3.2.4. For any ¢ € I*(Z*) operator exp(itA) satisfies

) 1 )
ety = % |, e"™[RT(w) — R~ (w)]e dw.
Proof. To clarify the ideas behind the proof we divide it in several steps.
Step 1. Let I; be a bounded interval such that I C I;. There exists a constant

1 1 1

C —
() W2 TR a2 T o A

c L'(I)

such that for all w € I; \ {—4b,2, —4b, 2,0} the following inequality
[(R(w £ ie)p)(n)| < C(w)||¢llnzr), for all p € I'(Z*) and n € Z*,

holds uniformly on small enough e.
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Step 2. For any w € J, R*¥(w) are bounded operators from ['(Z*) to [*°(Z*) and

1B (@)l z)-1= 2y S Clw).

Step 3. For any w € J, ¢ € [(Z*) and n € Z* the following holds

EgKR@uiidwﬂn)Z(Riwﬁwﬂn)

Step 4. For any ¢ € [1(Z*) and n € Z* we have

1eif(r)l i "™ (R(w % i€)p)(n)dw = /Ieit“(Ri(w)cp)(n)dw.

Step 5. For any ¢ € [1(Z*)

o= _— [ ™[R (w) — R (w)]pdw.

2im Jr
Proof of Step 1. Observe that for any w € R and € > 0 we have
|(R(wtie)p)(n)]

1 1
< *< + * )
~ H(lel(Z ) |bQ_2(1 _ r;:ﬁ) + b1_2(1 —_ Tf€)| |Tit’6 - (Tfe)_1| |,r§|:,e - (Té‘:,ﬁ)_l‘

Solution 737, of equation 7* — 2r + 1 = (w + i€)b2r satisfies

=] —|ril < — | = by|w £ i€ 2.
T S,€
Then for all w € I; and € small enough we have
el = - >0 >0
r
T bslw tie|V/2 4 (b2|w L] + 42 T
and
\7" \_’ rét,e_rT < (] < o0.
Thus for any w € I} we have
< 1 < 1 1
rie = (ri) 7 T =i [L il ™ 11— T,
Using the equation satisfied by r;t,e we find that
11—ri] =b, |wj:26|1/2|7“ | > |w eV > |w|!?
and
11+ 73] = [(w=+ie)b? —|—4|1/2|7“ | = | (w £ i€)b? 4 4|2 > |wb? + 4]
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Putting together the above estimates for the roots 'r’;'fe we find that for all w € I} and € small
enough the following holds

1 .\ 1 D S S
rie = (i)™ e = (g )7 Y w2 fwbd + 412 Jwb] + 412

We now prove that
1 < 1 '
[022(1 = 130) + 077 (L = i) ™ Jw['?

We recall that the sign of the imaginary parts of ri and 7"5%5 is the same. Also, since [rf,| < 1,

the real parts of 1 — rfﬁ and 1 — 7’;6 are positive. These properties of the roots imply that
105 2(1 = r5) + 02 (1= i)l > b5 2|1 —ra | + b %1 — 7 | 2 [w[ V2.

Putting together the above results we obtain that Step 1 is satisfied with C(w) given by
(3.10) uniformly on all € > 0 sufficiently small.

Step 2 follows as Step 1 by putting e = 0 and replacing rf:e with 7<.

Proof of Step 3. We write
R(w % ie)p(n) = Y R(w *ie,n, k)o(k),
kez*

where R(w =£ ie, n, k) collects all the coefficients in front of (k) in formula (3.7).
Using that, for any w € J, ri (w) — ri(w) we obtain that R(w % ie,n, k)p(k) —
R*(w,n, k)p(k). Since for any w € J and € small enough we have the uniform bound
|R(w £ ie,n, k)p(k)| < C(w)|p(k)],Vk € Z7,
we can apply Lebesgue’s dominated convergence theorem to conclude that
> RlwEie,n k)p(k) = ¥ R*(w,n,k)p(k),
kez* kez*
which proves Step 3.
Step 4 follows by Lebesgue’s dominated convergence theorem since we have the pointwise

convergence in Step 3 and the uniform bound in Step 1.
Proof of Step 5. Applying Cauchy’s formula we obtain that

. 1 .
6ztA - — eztwR(w)dw
2im Jr

for any curve I' that rounds the spectrum of operator A. For small parameter ¢ we choose

in the above formula path I'. to be the following rectangle

[ ={w +ie,w € [~4max{b;? b;°} — ¢, €]}
U {—4max{b®,b?} — e+ imn € [~e, ]} U {e +inn € [~e d}).
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Using the estimates for R(\), A € T'. obtained in Step 1 and the convergence in Step 4 we
obtain that for any ¢ € I'(Z*) the following holds:

ety = L e (RT(w) — R~ (w))pdw.

21 J;

The proof is now complete. O

3.2.3 Proof of the main result

We now prove the main result of this paper.

Proof of Theorem 3.0.6. For any ¢ € ['(Z*) Lemma 3.2.4 gives us that

() (n) = —— / (R (w) — B~ (@))p(n)ds, n € Z"

271

where I = [—4max{b;2, b;2},0]. Using the fact that R~ (w)p = R*(w)% we obtain

1 / ¢ ((Im R*)(w)g)(n)dw, n € Z°,

T™Jr

(ep)(n) =
where Im R™ is given by

(BT (@)@)(§) = (R (w)9)(5)

(1m B*)(w)p(j) = -
_ ()
_kEZI@(k)Imb - )+ b 21— 1)
()l ()
+I;ZQ¢<k)Imb 21 —r)) +b,2(1 — 1))
b3 ) (I = (), ez

and for s € {1,2}, rf is the root of r* — 2r + 1 = wb?r with the imaginary part nonpositive.

In order to prove (3.15) it is sufficient to show the existence of a constant C' = C'(by, bs)
such that

zth (T+)‘j‘( +)|k| d <C 1 -1/3 /4 7*
Z ‘90 ’ Hl 1 b Wi = <|t| + ) HSOHP(Z*)? J € )
keZ, — Ty ) + ( )
(3.11)
and
—k|
S ek |(/ T - dw‘ < Ot + 173 gllizey, Vi € Z°. (3.12)
keZs
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The estimates for the other two terms occurring in the representation of Im R*(w) are

similar.
Step I. Proof of (3.12). We prove that
ztw T+)|J| 1/3
Sup‘ o | S COub)(il + )7, Ve R (3.13)
€z

We split [ as I = I; U I, where I, = [—4max{b;?, by°},4b;2%] and I, = [4b;2,0]. If w € I,
the following equation

1
T+ - =2+ wb?
r

4 +3141
/e”” Im —(TS ) dw = 0.
I T

=0

When w € I, root r, of equation r, + r—lg = 2 + wb? has the form r, = e .0 ¢ [0, 7.

has real roots and then

Using the change of variables w = b;?(2cosf — 2) we get

. +13l LA e—uilo
/ & Im (rs ) - dw = 2[);2 / eztbs (2 cos 0—2) Im Sln 0do
Iz )_ 0 e

+ _ (pt 0 —
ri — (r] 0 _ it
T —i|j]6
_ b2 _ € .
— — 202 [ MO ey~ ginfdh
0 2isin 0

™
L, —2 .
:bs_2/ eztbs (2cos0—2) Re e—z|]|0d8
0

b2 [T .~ o L
287/ eztb52(2005972)(€zm0 +671|j|9)d9.
0

Van der Corput’s Lemma applied to the phase function ¢(6) = (2cosf — 2)b;% + j0/t shows
that -
(/ e“@msf’*?)bfewde’ <Ot +1)3 VEeR,Yj eZ (3.14)
0
The proof of (3.12) is now finished.
Step II. Proof of (3.11). It is sufficient to prove that

sup
j,keN

4 Y (r )k
et () (rs dw‘<0b,b tl+1)7Y3, Ve e R,
/ by? (1= r3) + b (1= 1) neE

To fix the ideas let us assume that by < b;. We split interval I as follows I = I; U I, where
I} = [4by?%, —4b;?] and I, = [—4b;%,0]. We remark that on I, r; € Rand r§ € C\R. On
I, both r{ and r; belong to C \ R. We prove that

+H@V 13
Sup‘/h | < COn b+ 1) (3.15)

J,keN
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and

sup
j.keN

itw (ri )/ (r3)" 1/3
/e s el St ) (s

Let us set h(w) = by %(1 — rf (w)) + b;%(1 — r (w)) Using the same arguments as in the
proof of Lemma 3.2.4 we get that |h(w)| > C(by,by)|w|/?. Then, on I, |h(w)| > ¢ > 0.
Moreover |h'(w)| < ¢ < co. Using integration by parts we obtain that

PV ()
[ M
n 1_T2)+b (1—=rf)
<sup| [© e y)tas] (11 Mamim + 10/ o)

z€ly ' J —4b;?
§C(bl,b2)sup/ eit“’(rf)j(r?)kdw’.

el —4172_2

A similar argument shows that

‘/ e ( (r) 7°2 )kdw < sup
b2

y<z

/—Zb—Q eitw(T;)k ‘(H(ﬁ ) HL°°(11) + H((Tl ) )/HL°°(11)>-

Observe that for w € I, ri (w) given by

2+ bw — 24+ b2w)? —4
Tl (w> + 1w \/<2+ 1("‘7)

is a decreasing function. Thus

D) ey S NV ey <1, VjeN.

The proof of (3.15) is now reduced to the following estimate:

sup
yel

y .
/ e”“’(@(w))’“dw] < C(by,bo)(Jt| +1)"3, Vk € N, t € R.
—4b5 2

Making the change of variables w = b;%(2cos# — 2) and applying Van der Corput’s Lemma
as in the final step of Step I we obtain that

‘ / ¢ (1 () dw‘ — 22
4b_

We now prove (3.16). We first make the change of variables w = b;?(2cos @ — 2). Thus

/ eitw (T’f)(T’;)k dw = 2b /7r eitb 2(2cos 6— 2)6 6‘6 2ik arcsin(boby ' sin ¢ )Slnedg’
no bt(—r) b (1 =) 0 h(®)

™

eitb§(2c0s072)€7ik0 sin Odw| < C(bg)(’ﬂ + 1)71/3.

2arcsin(b2 /y)

where h(0) = by2(1 — 5 (0)) + by2(1 — 11 (0)), r{(0) = e~ and r} (9) = e~ arcsin(babi sin ),
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Using that far from # = 0 function h satisfies |h(0)| > 0 we choose a small parameter e

and split our integral as follows:

" ithy 2(2cos 0—2) —1]0 —2zkarcs1n(bgb Lsin & )Slned‘g - T T
/0 e’ _h(Q) 1+ 12

. .
_ pithy *(2cos 6-2) ,—ij6 ,~2ik arcsin(baby ' sin §) sin ¢/ do
0 h(0)

N /7r eitb;2(2 cos 9—2)6—2]9 —2ik arcsin(bab] lgin @ ) sin Qde
) h(6)

Observe that on interval [0, €]

SmH d sm@
<M
HLoooe Hd@ h(Q))‘Ll(o,e) = =0
and on interval [e, 7]
55l + 1 ey <27 <
h(9> Lo (e,m) do h(@) Ll(em) o

Then we have the following estimates for T} and 75

|T1| <M sup /:C 6it‘bl_Z(Q cos 0—2)6—m0 —2ik aurcsm(bgb1 sin § dQ’
z€[0,€]
and
™
|T2’ <M sup / e'L'tb1_2(2 cos 972)672‘]'6’6722% arcsin(bzbl_1 sin g) sin ede‘ ]
z€e,m]

We now apply the following lemma that we prove later.

Lemma 3.2.5. Let a € (0,1] and 0 < 0 < 7. There exists C(a,d) such that for all real

numbers y, z and t
‘/ 6it(2cose-i-Qzarcsin(asing))ein sm@dQ‘ < C(a,é)(|t| + 1)—1/3 (317)
5
and if 6 > 0

’/ 20089+2zarcsm(asm 1y9d§‘ < C CL 5)(|t| + 1) 1/3 (318)

We obtain that
Ty| < MC(a,e)([t] + 1)1/

and
Ty < MC(a, ) ([t + 1)

The proof of Theorem 3.0.6 is now finished. O]
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Proof of Lemma 3.2.5. Since the integrals in (3.17) and (3.18) are on bounded intervals it

‘—1/3

is sufficient to prove that, for ¢ large enough, each of the integrals is bounded by |¢ . In

the case of (3.17) we will consider the case 0 = 0 since the proof for § > 0 is similar.

Let us denote by 1 either the function x(—s) or sinf. We set

p(0) = 2cos B + 2z arcsin(a sin g), 6 € [0, 7.

Using the Maple software we obtain that

If z is such that |z — 4—”1(1_“2| > ¢ > 0 then Van der Corput’s lemma applied to the phase
function p(6) + yf/t guarantees that

| / 0 (0)d8] < Cla, )] + 1)
0

Assume now that |z — 4—V1a_“2| < € with € small enough that we will specify later. Let us

write
z = —4\/1(1_7 +0
with b a small parameter such that |b] < e. With this notation p(6) = p,(0) = q(8) + br(6)
where
q(0) = 2cos(9) + %_az arcsin(a sin g)
and

r(6) = 2 arcsin(a sin g)

Solving system (¢”(#),¢"(¢)) = (0,0) with Maple software we obtain that it has a unique

solution # = . Thus for any 0 < 7 there exists a positive constant ¢(a,d) such that
[¢"(O) + 1¢"()] = c(a,9), V0 €[0,m—d].

It implies the existence of an € = €(a, d) such that for all |b| < e

/! /11 " n CCL76
PO + )] > cla.8) = B sup (7] b7 = S5,
x€|0,m

vV oel0,m—9].
Hence, Van der Corput’s Lemma applied to the phase function p,(0) + y6/t guarantees that
T—4
‘ / ey (0)dh| < Cla,8)(Jt| + 1), V|p| < e,V t,y € R
0

The proof of (3.18) is finished.
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To prove estimate (3.17) it remains to show that we can choose §(a) small enough such
that for all |b] < e

|I,(t)] := ‘/ ) )eitp”(e)eiye sin(0)d| < C(a)(Jt] +1)7Y3, Wy, t €R. (3.19)

The Taylor expansions of ¢ and r near ¢ = 7 are as follows

_ —2a+8y1—d’arcsin(a) 1 (2 a*—1) (0 — 7r)4_i(4a2 —1)(6 _QW)6+O((6’—7T)8),
a 16 —1+a? 384 (—1+ a?)

q(0)

4 /1 —a? 192 (1 — q2)*?

Also the second derivatives of ¢ and r satisfy

O—7m)'+0(O-7)°).

" __§ (2&2—1) (0_7T)2 4
q"(0) = 1 S +0O(0 —n|*) asf~m,
and
" 1 a 2
r"(0) = +00—m)° asf~m.

2VI-a
Observe that for a # 1/v/2, the second derivative of ¢ behaves as (6 — 7)? near § = 7.
Otherwise it behaves as (# — m)* near the same point. Since the proof of (3.19) is quite
different in the two cases we will treat then separately.
In the sequel §(a) is chosen such that we can compare ¢ and r with their Taylor expressions
near 6 = .
Case 1. a # 1/v/2. The main idea is to split the interval [x — §(a), 7] in three intervals

where we can compare |§ — 7| with |[b|'/? and decide which of them dominates the other:
[ —d(a), 7] = [r — d(a), 7 — anlb| /] U [r — axlb]"/*, 7 — an|b]' 2] U [ — au|b['/2, ],

where o << 1 << ay are independent of b but depend on the parameter a. More precisely
the parameters a; and ay are chosen in terms of the first two coefficients of the Taylor
expansion of functions ¢ and r near 6 = 7.

Let us consider the interval [ — §(a), T — a|b|*/?] with ay large enough. In this interval
|0 — 7| dominates |b|'/? and we apply Lemma 1.3.1. We check the hypotheses of this lemma.

In this interval the first derivative of p, is of the same order as |6 — 7 |* :
b (O)] = 1¢'(0)] = bl (0)] = C10 = 7|(|0 — 7* — Calbl) = C5]6 — m]*

and
()] < |4 (0)] + [b]['(8)] > Cul0 — 7| (|0 — w|* + C5[b]) > Cgl6 — 7|
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Also, the second derivative satisfies:
Py (0) = |q"(0)| = [bllr"(0)] = C(|0 — 7* — Cslb]) = Col0 — 7f?
and
5 (O)] < 1a"(O)] + [bllr"(0)] = Cro(l0 — 7| + Cra|b]) > Cra|0 — ],

We emphasize that all the above constants are independent of b. Observe that on the
considered interval |p]| 2 |b]. If we try to apply Van der Corput’s Lemma with k = 2 we
obtain

m—az|b|1/? )
‘/ et 0 gin (0)dh| < (|tb])~Y/? max |sin ] < C(6(a))|th| "2,
r5(a) fr—5(a),m—auslb]1/2]

an estimate that is not uniform in the parameter b.
However, using Lemma 1.3.1 we obtain the existence of a constant C' depending on all
the constants C;,7 = 1, ..., 12 but independent of the parameter b, such that

T—an[b[L/2 m—azb['/2 . sin
‘/ ztpb zy9 Sll’l d@’ — ‘/ ztpb(Q)e'LyG|p;)/(0)‘1/2—d(9) (320)

o(a) |p”( 1/2
T—an|b|t/? Sin(@) ,
<o max RO / (29 Y (6)|as)
T a2 i @12+ s Nppepz) @
< C|t’71/2 max |SlIl< )| C| | 1/2 max |SlIl( >| < Cl | 1/2

[r—6(a),m—asp1/2] [Py (0)[1/2 ™ [r—6(a),r—aslp1/2] |0 — 7| ~
On the interval [ — ay|b|'/2, m — a1|b|'/?] the third derivative of p, satisfies:

[p"(0)] = 10 — w[|C(a) + b] = [b]'/,

since C'(a) # 0 in the case a # 1/4/2. Applying Van der Corput’s Lemma with k = 3 we get

w—ar |b|H/2 '
| / ¢70) 99 iy (9)d6)| < (|tb]/2)~1/3 max sing] < V5. (3.21)

oua|b|1/2 O€[m—aa|b|1/2,m—aq |b|1/2]

On interval [ — ay|b|'/?, 7] with a; small enough, the term |br”(6)| dominates |¢”(6)]|.
The the behavior of pj/(f) is given by |br”(6)]:

5 (0)] = [br" ()] = 1g"(0)] = C1(b] — Cal0 — 7[*) > Cs]b],

for some positive constants C; and Cy independent of the parameter b. Applying Van der

Corput’s Lemma with £ = 2 we get

\/ e @ sin(0)do| S (jtb]) ™ max - [sin0] S [H7H% (3.22)
m—a |b|1/2

0c[r—aq |b|t/2 7
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Using (3.20), (3.21) and (3.22) we obtain that (3.19) holds uniformly for all |b| < €,y and

t real numbers.

Case 2. a = 1/v/2. In this case the Taylor expansion of function ¢ at § = 7 is given by

—2a+8+1—a*arcsin(a) 1 (4a2—1)(0 —n)°

) = O(|6 — = [%).
4(0) : Ol l)
We split the interval [1 — d(a), 7] as follows:
[ — d(a), 7] =[r — d(a), 7 — ag[b| /] U [r — as|b|"*, 7 — az|b]"/"]
U [ — aolb] ', 7 — on|b]?] U [ — o [p]'/?, 7],

where ap << 1 << a3 and all ay, as, a3 are independent of b.
On the first interval [ —&(a), ™ — as|b|'/*] we apply Lemma 1.3.2. We have to check that

the first third derivatives behave as powers of |§ — 7| in this interval. Observe that
6] > Culp —1(18 — 7' — o) > Gl — P

and
[p(0)] < Cul0 — 7|(10 — 7|* + C5[b]) = Col6 — 7.

In a similar manner

Crl0 — " < [ph(0)] < Csl0 — 7™,

Also the third derivative satisfies
py'(0)] > Col0 — 7|(|0 — 7[> — Cho|b]) > Ca]0 — 7]

and
Py (0)] < Cha|0 — w|(|0 — 7 + Cuslb]) > Chal6 — wf.

We now apply Lemma 1.3.2 taking into account that all the above constants are independent

of b and we obtain

[ s | [ cmoonypops i o2
7—3(a) |pZ’(9)|1/3
de)

| masbl ging s
Sh( SO / [
T s 2 i OB T s \P@7

d

< Jt7V3 max _siné]

<1 [m—3(a),m—aslb1/4] [Py (0)]1/3

5 |t|_1/3 ’Slne‘ < C|t| 1/3

[r—b(a),m—asb|/4] |0 — 7|
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In the case of the interval [r — aslb| — ay|b|'*] we apply Van der Corput’s Lemma

with k& = 3 and use that
py ()] > C1l0 — 7[(10 — 7| — Ca|b]) > C116 — w|(a3|b|'/* = Ca|b]) > Cslb|/*1/2.

Then

m—az|b|t/4 )
’/ eitre(9) giyo sinH‘ < (|t][p]>/*)~1/3 max |sinf] < CJt|7V3.  (3.24)

as|b|1/4 [m—as|b|1/4,m—azb|1/4]

Let us now consider the integral on the interval [x — a|b|"/*, 7 — a;|b|'/?]. Observe that

in this case

T—avy |b|1/2 w—ar |b|/2 az|b|1/4
‘ / e!tPe(9) o0 gin 9d9‘ / | sin |df < / | sin 6|d6 (3.25)
T—aig|b|1/4 T—ag|b|1/4 aq|b|1/2
a2|b\1/4
< / 0do < C|b|*? < C|t| /3,
al‘b‘l/Q
as long as |b] < [t|7%/3.
We now consider the case |b| > [t|7%/® and prove that a similar estimate can be obtained.

Observe that on the considered interval the second derivative of p, satisfies
[ ()] = [bl["(8)] = |g"(8)] > Ci([b] = Csl — 7[*) > Cu([b] — Calaalo[*)") > Cslb].

Thus, Van der Corput’s Lemma with k£ = 2 gives us

m—ay |b|1/2
) / e e sin d6| < (|tb]) /> max | sin 0] < (|tb])""/?[p['/* (3.26)

aua|b|1/4 O€[m—aa|b|t/4,m—an|b|1/2]

< |t’ 1/2|b| 1/4< |t’ 1/2|t|1/6 |t| 1/3

On the last interval [ —a;|b|'/2, 7] the term |br”(0)| dominates |¢”(6)|. Then the behavior
of py/(#) in the considered interval is given by |br”(6)|:

Pk (0)] = [br" ()] — 1" (0)] = C1(|b] — C2]0 — =|*) > Cs]b].
Thus

‘/ e @il gin(9)do| < (|th])"Y?  max |sinf| < [¢|7V2 (3.27)
m—a |b|1/2

Oe[m—ai|b|1/2,7

Using the previous estimates (3.23), (3.24), (3.25), (3.26) and (3.27) we obtain that
estimate (3.19) also holds in the case a = 1/+/2.
The proof of Lemma 3.2.5 is now finished. O]
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In the case of system (3.8) the proof of Theorem 3.1.2 follows the lines of the proof of
Theorem 3.0.6 by taking into account the representation formula for the resolvent of the

operator A given by (3.9).

Lemma 3.2.6. Let A € C\ [~4max{b;?,b;°},0] and A given by (3.9). For any g € 1*(Z*)
there exists a unique solution f € I*(Z*) of the equation (A—XI)f = g. Moreover, it is given
by the following formula

_TLJ\

|| |k
= g g 3.28
b 2(Tf1 P 2(751 1) [ ) + r gk T3 g( } ( )

keZ1 k€Za

% T |
+ g Y (T =g (), e 2,

r
S keZs

where for s € {1,2}, rs = r5(\) is the unique solution with |rs| < 1 of the equation
7"? —2rs+1= )\bgrs.

We leave the complete details of the proof of Theorem 3.1.2 to the reader.

3.3 Open problems

In this article we have analyzed the dispersive properties of the solutions of a system con-
sisting in coupling two discrete Schrodinger equations. However we do not cover the case
when more discrete equations are coupled. The main difficulty is to write in an accurate
and clean way the resolvent of the linear operator occurring in the system. Once this case
will be understood then we can treat discrete Schodinger equations on trees similar to those
considered in [4] in the continuous case.

There is another question which arises from this paper. Suppose that we have a system
1U; + AU = 0 with an initial datum at ¢ = 0, where A is an symmetric operator with a finite
number of diagonals not identically vanishing. Under which assumptions on the operator
A does solution U decay and how we can characterize the decay property in terms of the
properties of A7 When A is a diagonal operator we can use Fourier’s analysis tools but in

the case of a non-diagonal operator this is not useful.
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