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Introduction

The Schrödinger equation is the fundamental equation of physics for describing quan-

tum mechanical behavior. It is also often called the Schrödinger wave equation, and is a

partial differential equation that describes how the wave function of a physical system evolves

over time.

The purpose of this work is to give a presentation of some basic results concerning the

continuous Schödinger equation and some new results for the discrete Schödinger equation.

In the first chapter we recall some basic properties of the Fourier Transform and some

classical and new results on oscillatory integrals.

In Chapter 2 we establish some important properties of the linear equation{
iut + uxx = 0, x ∈ Rd, t 6= 0,

u(0, x) = ϕ(x), x ∈ Rd.

We recall the dispersive properties of this model and present some of its applications to

nonlinear models.

The core of this thesis is Chapter 3. In this chapter we study some models involv-

ing discrete Schrodinger equations focusing on the long time behavior of the solutions and

Strichartz-like properties. These results are contained in the paper Dispersive properties for

discrete Schrödinger Equation [5]. We now resume the result of Chapter 3. For completeness

we first present the long time behavior of the solutions for the equation iut + ∆du = 0, j ∈ Z, t 6= 0,

u(0) = ϕ,

where ∆d is the discrete laplacian defined by

(∆du)(j) = uj+1 − 2uj + uj−1, j ∈ Z.

The main result consist of proving dispersive estimates for the system formed by two coupled

Schrodinger equations:

iut(t, j) + b−2
1 (∆du)(t, j) = 0, j ≤ −1, t 6= 0,

ivt(t, j) + b−2
2 (∆dv)(t, j) = 0, j ≥ 1, t 6= 0,

u(t, 0) = v(t, 0), t 6= 0,

b−2
1 (u(t,−1)− u(t, 0)) = b−2

2 (v(t, 0)− v(t, 1)), t 6= 0,

u(0, j) = ϕ(j), j ≤ −1,

v(0, j) = ϕ(j), j ≥ 1.
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We obtain estimates for the resolvent of the discrete operator and prove that it satisfies the

limiting absorption principle. The decay of the solutions is proved by using classical and

some new results on oscillatory integrals.

Finally, I would like to thank my advisor, professor Liviu Ignat from IMAR, for his

support.
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Chapter 1

The Fourier Transform

1.1 Main properties

In this section we will present some basic properties of the Fourier Transform.

Definition 1.1.1. The Fourier transform of a function f ∈ L1(Rn), denoted by f̂ , is defined

as

f̂(ξ) =

∫
Rn
f(x)e−2πi(x·ξ)dx, for ξ ∈ Rn,

where x · ξ = x1ξ1 + ...+ xnξn.

We list some basic properties of the Fourier transform in L1(Rd).

Theorem 1.1.1. Let f ∈ L1(Rd). Then:

1. f 7→ f̂ is a linear transformation from L1(Rd) into L∞(Rd) with

‖f̂‖L∞(Rd) ≤ ‖f‖L1(Rd).

2. f̂ is continuous.

3. f̂(ξ)→ 0 as |ξ| → ∞ ( Riemann Lebesgue).

4. If τhf(x) = f(x− h) denotes the translation by h ∈ Rd, then

(̂τhf)(ξ) = e−2πi(h·ξ)f̂(ξ),

and
̂e−2πi(x·h) = (τ−hf̂)(ξ).

5. If δaf(x) = f(ax) denotes the dilatation by a > 0, then

(̂δaf)(ξ) = f̂(ξ)ĝ(ξ).

4



6. Let g ∈ L1(Rd) and f ∗ g be the convolution of f and g. Then

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ).

7. Let g ∈ L1(Rd). Then ∫
Rd
f̂(y)g(y)dy =

∫
Rd
f(y)ĝ(y)dy.

8. Suppose xkf ∈ L1(Rd), where xk denotes the kth coordinate of x. Then f̂ is differen-

tiable with respect to ξk and

∂f̂

∂ξk
(ξ) = ( ̂−2πxkf(x))(ξ).

In other words, the Fourier transform of the product xkf(x) is equal to a multiple of

the partial derivative of f̂(ξ) with respect to the k- variable.

9. Let f ∈ L1(Rd). Then (̂
∂f

∂xk

)
(ξ) = 2πiξkf̂(ξ).

10. Let f, f̂ ∈ L1(Rd). Then

f(x) =

∫
Rd
e2πix·ξf̂(ξ)dξ, a.e. x ∈ Rd.

Using the fact that L1(Rd)∩L2(Rd) is a dense subset of L1(Rd) and L2(Rd) we can define

the Fourier Transform for L2(Rd)-functions.

Theorem 1.1.2. (Plancherel) For any f ∈ L2(Rd), f̂ ∈ L2(Rd) and

‖f̂‖L2(Rd) = ‖f‖L2(Rd).

The following examples will be needed in the next sections.

Example 1.1.1. 1. ̂(e−π|x|2)(ξ) = e−π|ξ|
2

2. ̂(e−4π2it|x|2)(ξ) = ei|ξ|
2/4t

(4πit)d/2
.
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1.2 The discrete Fourier Transform

The discrete Fourier Transform is defined for functions in l1(hZ) and it has similar properties

to the continuous one.

For a fixed number h > 0 we define the discrete Fourier transform of a function u ∈ l1(hZ)

by

û : R→ C, û(ξ) = h
∑
j∈Z

e−ijhξu(jh), ξ ∈ R.

These are some basic properties of the discrete Fourier transform:

Theorem 1.2.1. Let u ∈ l1(hZ). Then

1. The discrete Fourier transform is periodic of period 2π
h

. It is sufficient to define it on

an interval of length 2π
h

: [−π
h
, π
h
] .

2. We can recuperate the function u from its discrete Fourier transform by:

u(jh) =
1

2πh

∫ π
h

−π
h

û(ξ)eijhξdξ.

3. The discrete Fourier transform of the discrete convolution is the product of the discrete

Fourier transforms: û ? v = û · v̂;

4. (Plancherel) For u ∈ l2(hZ) we define its l2(hZ)-norm as follows:

‖u‖2
l2(hZ) = h

∑
j∈Z

|u(jh)|2.

Then

‖u‖l2(hZ) = ‖û‖L2(−π
h
,π
h

).

1.3 Oscillatory Integrals

In many problems and applications the following question arises: what is the asymptotic

behavior of I(λ) when λ→∞ where

I(λ) =

∫ b

a

eiλφ(x)f(x)dx,

φ is a smooth real valued function, called the phase function, and f is a smooth complex-

valued function? We shall see that this asymptotic behavior is determined by the critical

points of the phase function, i.e. the points x where the derivative of φ vanishes, φ′(x) = 0.
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Proposition 1.3.1. Let f ∈ C∞0 ([a, b]) and φ a smooth real valued function such that φ′(x) 6=
0, for any x ∈ [a, b]. Then, for any k ∈ Z+

|I(λ)| ≤ C(k, φ, f)λ−k, for λ big enough.

Proof. We consider the differential operator L = 1
iλφ′

df
dx

. His adjoint L∗ is the operator that

satisfies ∫ b

a

L(f)g =

∫ b

a

fL∗(g)

We will prove that

L∗(g) = − d

dx

(
g

iλφ′

)
.

Indeed, using integration by parts, we have that∫ b

a

1

iλφ′
df

dx
g = f

g

iλφ′
∣∣b
a
−
∫ b

a

f
d

dx

(
g

iλφ′

)
=

∫ b

a

f
−d
dx

(
g

iλφ′

)
.

It is easy to see that L(eiλφ) = eiλφ and, moreover, Lk(eiλφ) = eiλφ.

Using integration by parts it follows that∫ b

a

eiλφfdx =

∫ b

a

Lk(eiλφ)fdx =

∫ b

a

eiλφ (L∗)k (f)dx.

This implies that ∣∣∣∣∫ b

a

eiλφfdx

∣∣∣∣ ≤ ∫ b

a

∣∣∣eiλφ (L∗)k (f)
∣∣∣ dx =

∫ b

a

∣∣∣(L∗)k (f)
∣∣∣ dx

≤ (b− a)
∥∥(L∗)k(f)

∥∥
L∞(a,b)

≤ (b− a)λ−kC(f, f ′, ..., f (k), φ′, ..., φ(k))

≤ C(a, b, k, f, φ)λ−k.

The proof is now finished.

Proposition 1.3.2. Let k ∈ Z+ and assume that function φ satisfies
∣∣φ(k)(x)

∣∣ ≥ 1 for any

x ∈ [a, b] with φ′(x) monotonic in the case k = 1. Then∣∣∣∣∫ b

a

eiλφ(x)dx

∣∣∣∣ ≤ Ckλ
−1/k, (1.1)

where the constant Ck is independent of a and b.

Proof. For k = 1 we have that∫ b

a

eiλφ(x)dx =

∫ b

a

L(eiλφ(x))dx =
1

iλφ′
eiλφ(x)

∣∣∣b
a
−
∫ b

a

eiλφ(x) 1

iλ

d

dx

(
1

φ′

)
dx.
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Clearly, the first term of the right hand side is bounded by 2λ−1. On the other hand, the

hypothesis of monotonicity on φ′ guarantees that∣∣∣∣∫ b

a

eiλφ(x) 1

iλ

d

dx

(
1

φ′

)
dx

∣∣∣∣ ≤ 1

λ

∫ b

a

∣∣∣∣ ddx
(

1

φ′

)∣∣∣∣ dx =
1

λ

∣∣∣∣ 1

φ′(b)
− 1

φ′(a)

∣∣∣∣ ≤ 2

λ
.

This yields the proof in the case k = 1.

For the proof in the case k ≥ 2 we will use induction in k. Assuming the result for k,

we shall prove it for k + 1. By hypothesis
∣∣φ(k+1)(x)

∣∣ ≥ 1. Let x0 ∈ [a, b] be such that∣∣φk(x0)
∣∣ = min

a≤x0≤b
|φ(k)(x)|.

If φ(k)(x0) = 0, outside the interval (x0 − δ, x0 + δ) one has |φ(k)| ≥ δ with φ′ monotonic if

k = 1. Splitting the domain of integration and using the hypothesis we obtain that∣∣∣∣∫ x0−δ

a

eiλφ(x)dx

∣∣∣∣+

∣∣∣∣∫ b

x0+δ

eiλφ(x)dx

∣∣∣∣ ≤ Ck(λδ)
−1/k.

A simple computation shows that ∣∣∣∣∫ x0+δ

x0−δ
eiλφ(x)dx

∣∣∣∣ ≤ 2δ.

Thus ∣∣∣∣∫ b

a

eiλφ(x)dx

∣∣∣∣ ≤ ck(λδ)
−1/k + 2δ.

Is φ(k)(x0) 6= 0, then x0 = a or b and a similar argument provides the same bound. Finally,

taking δ = λ−1/(k+1) we complete the proof.

The result can be also stated for a phase function φ such that is minimum is positive.

Corrolary 1.3.1. Let k ∈ Z+ and min
x∈[a,b]

∣∣φ(k)(x)
∣∣ > 0, with φ′(x) monotonic in the case

k = 1. Then ∣∣∣∣∫ b

a

eiλφ(x)dx

∣∣∣∣ ≤ Ck

(
λ · min

x∈[a,b]

∣∣φ(k)(x)
∣∣)−1/k

, (1.2)

where the constant Ck is independent of a and b.

Proof. Let us set m = min
x∈[a,b]

∣∣φ(k)(x)
∣∣. The proof follows immediately by considering the

function φ/m instead of φ and the number λm instead of λ.

Corrolary 1.3.2. (Van der Corput) Under the hypothesis of Proposition 1.3.2,∣∣∣∣∫ b

a

eiλφ(x)f(x)dx

∣∣∣∣ ≤ ckλ
−1/k(‖f‖L∞(a,b) + ‖f ′‖L1(a,b)), (1.3)

with ck independent of a and b.
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Proof. Define

G(x) =

∫ x

a

eiλφ(y)dy.

By (1.1) one has that

|G(x)| ≤ ckλ
−1/k.

Now, using integration by parts, we obtain∣∣∣∣∫ b

a

eiλφ(x)f(x)dx

∣∣∣∣ =

∣∣∣∣∫ b

a

G′(x)f(x)dx

∣∣∣∣ ≤ |G(x)f(x)|
∣∣∣b
a

+

∣∣∣∣∫ b

a

G(x)f ′(x)dx

∣∣∣∣
≤ ckλ

−1/k(‖f‖L∞(a,b) + ‖f ′‖L1(a,b)).

We shall present now some applications of this result.

Example 1.3.1. For any a, b ∈ R∣∣∣∣∫ b

a

eiλx
2

dx

∣∣∣∣ ≤ Cλ−1/2.

Proof. The non-identically vanishing derivatives of the function φ(x) = x2 are φ′(x) = 2x

and φ
′′
(x) = 2. If the interval [a, b] contains the origin then the first derivative φ′ vanish at

x = 0. Applying Corollary 1.3.1 with k = 2

|I(λ)| =
∣∣∣∣∫ b

a

eiλx
2

dx

∣∣∣∣ ≤ C

(
λ inf
x∈[a,b]

φ
′′
(x)

)−1/2

= Cλ−1/2.

If the point 0 belongs to the interval [a, b] then this estimate cannot be improved. If 0 6∈
[a, b] then the last nonzero derivative of φ is φ′ and inf

x∈[a,b]
|φ′(x)| = 2 min{|a|, |b|}. Applying

Corollary 1.3.1 with k = 2 we obtain a better estimate for large λ

I(λ) ≤ C(2λmin{|a|, |b|})−1,

since (2λmin{|a|, |b|})−1 ≤ Cλ−1/2, which finishes the proof.

A first improvement of Van der Corput’s Lemma has been obtained in [9] where the

authors analyze the smoothing effect of some dispersive equations. We will present here a

particular case of the results in [9], that will be sufficient for our purposes. In the sequel Ω

will be a bounded interval. We consider class A2 of real functions φ ∈ C3(Ω) satisfying the

following conditions:

1) Set Sφ = {ξ ∈ Ω : φ′′ = 0} is finite,

2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 2 such that for all |ξ − ξ0| < ε,

c1|ξ − ξ0|α−2 ≤ |φ′′(ξ)| ≤ c2|ξ − ξ0|α−2,

3) φ′′ has a finite number of changes of monotonicity.
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Lemma 1.3.1. Let Ω be a bounded interval, φ ∈ A2 and

I(x, t) =

∫
Ω

ei(tφ(ξ)−xξ)|φ′′(ξ)|1/2dξ.

Then for any x, t ∈ R
|I(x, t)| ≤ cφ|t|−1/2, (1.4)

where cφ depends only on the constants involved in the definition of class A2.

Remark 1.3.1. The results of [9] are more general that the one we presented here allowing

functions with vertical asymptotics, finite union of intervals or infinite domains.

As a corollary we also have [9]:

Corrolary 1.3.3. If φ ∈ A2 then∣∣∣ ∫
Ω

ei(tφ(ξ)−xξ)|φ′′(ξ)|1/2ψ(ξ)dξ
∣∣∣ ≤ Cφ|t|−1/2

(
‖ψ‖L∞(Ω) +

∫
Ω

|φ′(ξ)|dξ
)
,

holds for all x, t ∈ R.

In the proof of our main result we will need a result similar to Lemma 1.3.1 but with

|p′′′|1/3 instead of |p′′|1/2 in the definition of I(x, t). We define class A3 of real functions

φ ∈ C4(Ω) satisfying the following conditions:

1) Set Sφ = {ξ ∈ Ω : φ′′′ = 0} is finite,

2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 3 such that for all |ξ − ξ0| < ε,

c1|ξ − ξ0|α−3 ≤ |φ′′′(ξ)| ≤ c2|ξ − ξ0|α−3, (1.5)

3) φ′′′ has a finite number of changes of monotonicity.

Lemma 1.3.2. Let Ω be a bounded interval, φ ∈ A3 and

I(x, t) =

∫
Ω

ei(tφ(ξ)−xξ)|φ′′′(ξ)|1/3dξ.

Then for any x, t ∈ R
|I(x, t)| ≤ cφ|t|−1/3, (1.6)

where cφ depends only on the constants involved in the definition of class A3.

In the following we will write a . b if there exists a positive constant C such that a ≤ Cb.

Similar for a & b. Also we will write a ∼ b if C1b ≤ a ≤ C2b for some positive constants C1

and C2.
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Proof. We observe that since Ω is bounded we only need to consider the case when t is large.

Case 1: 0 < m ≤ |φ′′′(ξ)| ≤M .

We apply Van der Corput’s Lemma with k = 3 to the phase function φ(ξ) − xξ/t and to

ψ = |φ′′′|1/3. Then

|I(x, t)| ≤ C(tm)−
1
3 (‖ψ‖L∞(Ω) + ‖ψ′‖L1(Ω)).

Since φ′′′ has a finite number of changes of monotonicity we deduce that φ(4) changes the

sign finitely many times and then

‖ψ′‖L1(Ω) =
1

3

∫
Ω

∣∣∣(φ′′′(ξ))− 2
3φ(4)(ξ)

∣∣∣dξ ≤ 1

3
m−

2
3

∫
Ω

|φ(4)(ξ)|dξ ≤ C(m,M).

Hence

|I(x, t)| ≤ C(M,m)t−
1
3 .

Case 2: 0 ≤ |φ′′′(ξ)| < M .

Using the assumptions on φ we can assume that there exists only one point ξ0 ∈ Ω such

that φ′′′(ξ0) = 0. Notice that if φ ∈ A3, then any translation and any linear perturbation

of φ (i.e. φ(ξ − ξ0) + aξ + b) is still in A3 and the conditions in the definition of set A3 are

verified with the same constants as φ. Therefore we can assume that ξ0 = 0 and φ′(ξ0) = 0.

Moreover let us assume that as ξ ∼ 0, |φ′(ξ)| ∼ |ξ|α and |φ′′′(ξ)| ∼ |ξ|β for some numbers

α ≥ 2 and β > 0.

We distinguish now two cases depending on the behavior of φ′ near ξ = 0. If α ≥ 4 then

|φ(k)(ξ)| ∼ |ξ|α−k as ξ ∼ 0 for k = 2, 3 and, in particular β = α− 3. The case α = 3 cannot

appear since then β = α − 3 and φ
′′′

does not vanish at ξ = 0. For α = 2, |φ′(ξ)| ∼ |ξ|,
|φ′′(ξ)| ∼ 1 as ξ ∼ 0 and the third derivative satisfies |φ′′′(ξ)| ∼ |ξ|β as ξ ∼ 0 for some positive

integer β. This last case occurs for example when φ′(ξ) = ξ + ξ3. In all cases β ≥ α− 3.

We split Ω as follows

I(x, t) =

∫
|ξ|≤ε

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ +

∫
|ξ|≥ε

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ = I1 + I2.

Since ξ = 0 is the only point where the third derivative vanishes we have that outside an

interval that contains the origin φ′′′ does not vanish. Thus I2 can be treated as in the first

case.

Let us now estimate the first term I1. We define Ωj, 1 ≤ j ≤ 3, as follows

Ω1 = {ξ ∈ Ω||ξ| ≤ min(ε, |t|−1/α)},

Ω2 =

{
ξ ∈ Ω− Ω1||ξ| ≤ ε, and

∣∣∣φ′(ξ)− x

t

∣∣∣ ≤ 1

2

∣∣∣x
t

∣∣∣} ,
Ω3 = {ξ ∈ Ω− (Ω1 ∪ Ω2)||ξ| ≤ ε}.
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In the case of Ω1 we use that for some β ≥ 1, the third derivative of φ satisfies c1|ξ|β ≤
|φ′′′(ξ)| ≤ c2|ξ|β for |ξ| < ε. We get∫

Ω1

|φ′′′(ξ)|
1
3dξ ≤ c

1
3
2

∫
Ω1

|ξ|
β
3 dξ ≤ C|Ω1|t−

β
3α ≤ C|t|−

1
α
− β

3α ≤ C|t|−1/3,

where the last inequality holds since α ≤ β + 3 and |t| ≥ 1.

In the case of the integral on Ω2 we assume that x 6= 0 since otherwise Ω2 has measure

zero. Observe that for ξ ∈ Ω2 we have

±|φ′(ξ)| ∓
∣∣∣x
t

∣∣∣ ≤ ∣∣∣φ′(ξ)− x

t

∣∣∣ ≤ 1

2

∣∣∣x
t

∣∣∣ ,
which implies that

1

2

∣∣∣x
t

∣∣∣ ≤ |φ′(ξ)| ≤ 3

2

∣∣∣x
t

∣∣∣.
Since |φ′(ξ)| ∼ |ξ|α−1 we have that |ξ| ∼ |x/t|

1
α−1 . Then |φ′′′(ξ)| ∼ |ξ|β ∼ |x/t|

β
α−1 and

min
ξ∈Ω2

|φ′′′(ξ)| > 0.

Applying Van der Corput’s Lemma with k = 3 and using that φ(4) changes the sign finitely

many times we obtain that∣∣∣ ∫
Ω2

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ
∣∣∣ ≤ C(min

ξ∈Ω2

|φ′′′(ξ)||t|)−
1
3

(
‖|φ′′′(ξ)|

1
3‖L∞(Ω2) + ‖(|φ′′′(ξ)|

1
3 )′‖L1(Ω2)

)
= C(min

ξ∈Ω2

|φ′′′(ξ)|)−
1
3 |t|−

1
3

(
max
ξ∈Ω2

|φ′′′(ξ)|
1
3 +

1

3

∫
Ω2

|φ′′′(ξ)|−
2
3 |φ(4)(ξ)|dξ

)
≤ C(min

ξ∈Ω2

|φ′′′(ξ)|)−
1
3 max
ξ∈Ω2

|φ′′′(ξ)|
1
3 |t|−

1
3 .

Since on Ω2, |φ′′′(ξ)| ∼ |x/t|
β
α−1 , there exists a positive constant C such that

max
ξ∈Ω2

|φ′′′(ξ)|
1
3 ≤ C(min

ξ∈Ω2

|φ′′′(ξ)|)
1
3 ,

which gives us the desired estimates on the integral on Ω2.

Now, we estimate the integral on Ω3. Observe that we have to consider the case |t|−1/α <

ε, otherwise Ω2 = Ω3 = ∅. In particular, for ξ ∈ Ω3, we have |t|−1/α < ξ < ε. Integrating by
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parts the integral on Ω3 satisfies∣∣∣ ∫
Ω3

ei(tφ(ξ)−xξ)|φ′′′(ξ)|
1
3dξ
∣∣∣ =

1

|t|

∣∣∣ ∫
Ω3

(ei(tφ(ξ)−xξ))′
|φ′′′(ξ)| 13
φ′(ξ)− x

t

dξ
∣∣∣ (1.7)

≤ 1

|t|

∣∣∣± ei(tφ(ξ)−xξ) |φ′′′(ξ)|
1
3

φ′(ξ)− x
t

∣∣
∂Ω3

∣∣∣
+

1

|t|

∣∣∣ ∫
Ω3

ei(tφ(ξ)−xξ)
1
3
|φ′′′(ξ)|− 2

3φ(4)(ξ)(φ′(ξ)− x
t
)− |φ′′′(ξ)| 13φ′′(ξ)(

φ′(ξ)− x
t

)2 dξ
∣∣∣

≤ 2

|t|
max
ξ∈Ω3

|φ′′′(ξ)| 13∣∣φ′(ξ)− x
t

∣∣ +
1

3|t|

∫
Ω3

|φ′′′(ξ)|− 2
3 |φ(4)(ξ)|∣∣φ′(ξ)− x

t

∣∣ +
1

|t|

∫
Ω3

|φ′′′(ξ)| 13 |φ′′(ξ)|(
φ′(ξ)− x

t

)2 dξ.

In the following we obtain upper bounds for all terms in the right hand side of (1.7).

Since on Ω3, |φ′(ξ)− x/t| ≥ |x/2t|, there exists a positive constant c such that∣∣∣φ′(ξ)− x

t

∣∣∣ > c|φ′(ξ)| ≥ c|ξ|α−1, ∀ξ ∈ Ω3.

In the case of the first term

1

|t|
sup
ξ∈Ω3

|φ′′′(ξ)| 13∣∣φ′(ξ)− x
t

∣∣ ≤ C

|t|
sup
ξ∈Ω3

|ξ|β3
|ξ|α−1

=
C

|t|
sup
ξ∈Ω3

|ξ|
β
3
−α+1 ≤ |t|−1/3, (1.8)

since |ξ| ≤ ε ≤ 1 and |ξ|β/3−α+1 ≤ |ξ|(α−3)/3−α+1 = |ξ|−2α/3 ≤ |t|2/3.

The second term satisfies

1

|t|

∫
Ω3

1
3
|φ′′′(ξ)|− 2

3 |φ(4)(ξ)|∣∣φ′(ξ)− x
t

∣∣ dξ ≤ C

|t|

∫
Ω3

|ξ|−2β/3

|ξ|α−1
|φ(4)(ξ)|dξ ≤ C

|t|

∫
Ω3

|ξ|
−2β
3
−α+1|φ(4)(ξ)|dξ.

Integrating by parts, applying the triangle inequality and using the definition of Ω3 we get∫
Ω3

|ξ|
−2β
3
−α+1|φ(4)(ξ)|dξ . sup

Ω3

|ξ|
−2β
3
−α+1|φ′′′(ξ)|+

∫
Ω3

|ξ|
−2β
3
−α|φ′′′(ξ)|dξ

. sup
Ω3

|ξ|
β
3
−α+1 +

∫
Ω3

|ξ|
β
3
−αdξ

. sup
Ω3

|ξ|
β
3
−α+1 ≤ |t|2/3,

where the last inequality follows as in (1.8).

The last term in (1.7) can be estimated as follows∫
Ω3

|φ′′′(ξ)| 13 |φ′′(ξ)|(
φ′(ξ)− x

t

)2 dξ .
∫

Ω3

|ξ|β/3+α−2

|ξ|2(α−2)
=

∫
Ω3

|ξ|β/3−α . sup
Ω3

|ξ|
β
3
−α+1 ≤ |t|2/3.

Putting together the estimates for the terms in the right hand side of (1.7) we obtain that

the integral on Ω3 also decays as |t|−1/3.

The proof is now finished.
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Chapter 2

The Schrodinger Equation

In this chapter we first present some classical facts about the linear Schrodinger equation.

We analyze the long time behavior of solutions and state some space-time estimates known

as Strichartz estimates. Using these estimates we obtain estimates for the solutions of non-

homogeneous Schrödinger equations and apply them to the well-posedness of solutions of

some nonlinear Schrödinger equations.

2.1 The linear Scrödinger Equation

In this section we will study the asymptotic behavior of the solution of the initial value

problem {
ut(t, x) = i∆u(t, x), x ∈ Rd, t 6= 0,

u(0, x) = ϕ(x), x ∈ Rd.
(2.1)

Proposition 2.1.1. The solution of the linear equation (2.1) with initial data ϕ is denoted

by u(t, x) = eit∆ϕ and it has the following important properties.

1. For all t ∈ R, eit∆ : L2(Rd)→ L2(Rd) is an isometry; which implies

‖eit∆ϕ‖L2(Rd) = ‖ϕ‖L2(Rd).

2. eit∆eit
′
∆ = ei(t+t

′
)∆ with

(
eit∆
)−1

= e−it∆ =
(
eit∆
)∗
.

3. ei0∆ = 1.

4. Fixing ϕ ∈ L2(Rd), the function φϕ : R → L2(R) defined by φϕ(t) = eit∆ϕ is a

continuous function; i.e. describes a curve in L2(Rd).

14



Proof. Applying the Fourier transform ( with respect to the spatial variable) to equation

(2.1) we get that {
ût(t, ξ) = i∆̂u(t, ξ), ξ ∈ Rd, t 6= 0,

û(0, ξ) = ϕ̂(ξ), ξ ∈ Rd.

Using the properties of the Fourier Transform we have that ∆̂u(t, ξ) = −4π2|ξ|2û(ξ, t), ξ ∈
Rd, t 6= 0. Thus function û verifies the system:{

ût(t, ξ) = −4π2i|ξ|2û(t, ξ), ξ ∈ Rd, t 6= 0,

û(0, ξ) = ϕ̂(ξ), ξ ∈ Rd.

For ξ fixed, this is an ordinary differential equation and has the solution

û(t, ξ) = e−4π2it|ξ|2ϕ̂(ξ). (2.2)

Now, we consider the function Kt(ξ) defined by means of its Fourier transform

K̂t(ξ) = e−4π2it|ξ|2 , ξ ∈ Rd, t 6= 0.

Using Example 1.1.1 from Section 1.1 we deduce that

Kt(x) =
e
i|x|2
4t

(4πit)d/2
, x ∈ Rd, t 6= 0.

It implies that solution u of equation (2.8) is given by

u(t, x) = Kt(x) ∗ ϕ(x) = (4πit)−d/2
∫
Rd
e
i|x−y|2

4t ϕ(y)dy.

Using (2.2) the L2(Rd) norm of u satisfies

‖u(t)‖L2(Rd) = ‖û(t)‖L2(Rd) = ‖e−4π2it|ξ|2ϕ̂‖L2(Rd) = ‖ϕ̂‖L2(Rd) = ‖ϕ‖L2(Rd).

Properties 2− 4 follow by using property (2.2).

We recall a known result about interpolation of operators.

Theorem 2.1.1. (Riesz-Thorin) Let p0 6= p1, q0 6= q1. Let T be a bounded linear operator

from Lp0(X,A, µ) to Lq0(Y,B, ν) with norm M0 and from Lp1(X,A, µ) to Lq1(Y,B, ν) with

norm M1. Then T is bounded from Lpθ(X,A, µ) to Lqθ(Y,B, ν) with norm Mθ such that

Mθ ≤M1−θ
0 M θ

1 ,

with
1

pθ
=

1− θ
p0

+
θ

p1

,
1

qθ
=

1− θ
q0

+
θ

q1

, θ ∈ (0, 1).
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As a corollary we have the following well-known inequality:

Corrolary 2.1.1. (Young’s Inequality) Let f ∈ Lp(Rd), 1 ≤ p ≤ ∞, and g ∈ L1(Rd). Then

f ∗ g ∈ Lp(Rd) and

‖f ∗ g‖Lp(Rd) ≤ ‖f‖Lp(Rd)‖g‖L1(Rd). (2.3)

Now, we establish the properties how the group
{
eit∆
}∞
t=−∞ acts on the Lp(Rd)-spaces.

For any p ∈ [1,∞) we set p′ by the rule
1

p
+

1

p′
= 1.

Proposition 2.1.2. For any t 6= 0 and p ≥ 2, eit∆ maps continuously Lp
′
(Rd) to Lp(Rd)

and

‖eit∆ϕ(x)‖Lp(Rd) ≤ C|t|−d/2(1/p′−1/p)‖ϕ‖Lp′ (Rd), where
1

p
+

1

p′
= 1. (2.4)

Proof. From Proposition 2.1.1 we have that

eit∆ : L2(Rd)→ L2(Rd)

is an isometry; that is,

‖eit∆ϕ‖L2(Rd) = ‖ϕ‖L2(Rd).

Using Young’s Inequality (2.3), we have

‖eit∆ϕ‖L∞(Rd) =
Cn√
|4πit|d

‖ei|·|2/4t ∗ ϕ‖L∞(Rd)

≤ Cn√
|4πit|d

‖ei|·|2/4t‖L∞(Rd)‖ϕ‖L1(Rd)

≤ c|t|−d/2‖ϕ‖L1(Rd).

Combining these inequalities with the Riesz-Thorin interpolation theorem 2.1.1, we obtain

that, for any p ≥ 2, the operator eit∆ maps Lp
′
(Rd) to Lp(Rd) and∥∥eit∆ϕ∥∥

Lp(Rd)
≤ (c|t|−d/2)1−θ‖ϕ‖Lp′ (Rd),

where
1

p
=
θ

2
and 1− θ = 1− 2

p
=

1

p′
− 1

p
.

The proof is now finished.

Proposition 2.1.3. The following hold:
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1. Given t0 6= 0 and p > 2, there exists f ∈ L2(Rd) such that eit0∆f 6∈ Lp(Rd).

2. Let s′ > s > 0 and f ∈ Hs(Rd) such that f 6∈ Hs′(Rd). Then, for all t ∈ R, eit∆f ∈
Hs(Rd) and eit∆f 6∈ Hs′(Rd).

Proof. To show (1) it is enough to choose g ∈ L2(Rd) such that g 6∈ Lp(Rd) and take

f = e−it0∆g.

The statement (2) follows from the fact {eit∆}∞t=−∞ is a unitary group in Hs(Rd) for

all s ∈ R since

‖eit∆f‖s,2 = ‖(I −∆)s/2(eit∆f)‖L2(Rd) = ‖eit∆((I −∆)s/2f)‖L2(Rd)

= ‖(I −∆)s/2f‖L2(Rd) = ‖f‖Hs(Rd).

Therefore, for any s0 > 0, if eit∆f ∈ Hs0(Rd) then f = e−it∆(eit∆)f ∈ Hs0(Rd). We then

conclude as in the case of Lp-spaces.

In order to emphasize the optimality of the L1(Rd) → L∞(Rd) estimate in Proposition

2.1.2 we can choose the particular case when the initial data is a gaussian profile ϕ(x) =

e−π|x|
2
.

Using formula (2.2) the solution of equation (2.1) is given by

u(x, t) =
(
e−4π2it|ξ|2ϕ̂(ξ)

)∨
=
(
e−(1+4πit)π|ξ|2

)∨
=

1

(1 + 4πit)d/2
exp

(
−π|x|2

1 + 4πit

)
= (1 + 4πit)−d/2 exp

(
−π|x|2

1 + 16π2t2

)
exp

(
4π2it|x|2

1 + 16π2t2

)
.

Notice that when t >> 1 and |x| < t the solution is bounded below by ct−d/2 and oscillates

for |x| > t1/2, but if |x| > t the solution decays exponentially. Moreover,

Ct−d/2χ{|x|<t}(x) ≤ |u(x, t)| ≤ ct−d/2.
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2.2 Strichartz estimates

In this chapter we present some estimates for the inhomogeneous Scrödinger equation and

show how we can apply them to obtain the well-posedness of nonlinear problems.

First, we introduce some notation that will be used in what follows. The mixed Lebesgue

spaces LqtL
r
x, 1 ≤ q, r ≤ ∞, are defined as the completion of the set of all Schwartz functions

f : R1
+ × Rd → C in the norm

‖f‖Lq(R,Lr(Rd)) :=

(∫ ∞
0

(∫
Rd
|f(t, x)|rdx

)q/r
dt

)1/q

.

The next result describes the global smoothing property of the group {eit∆}∞t=−∞ and

these estimates are known as Strichartz estimates( see for examples Linares [11], page 64).

Theorem 2.2.1. The group {eit∆}∞t=−∞ satisfies:

1.

(∫ ∞
−∞
‖eit∆f‖q

Lr(Rd)
dt

)1/q

≤ c‖f‖L2(Rd),

2.

(∫ ∞
−∞

∥∥∥∥∫ ∞
−∞

ei(t−s)∆g(·, s)ds
∥∥∥∥q
Lr(Rd)

dt

)1/q

≤ c

(∫ ∞
−∞
‖g(·, t)‖q

′

Lr′ (Rd)
dt

)1/q′

,

3.

∥∥∥∥∫ ∞
−∞

g(·, t)dt
∥∥∥∥
L2(Rd)

≤ c

(∫ ∞
−∞
‖g(·, t)‖q

′

Lr′ (Rd)
dt

)1/q′

,

with 
2 ≤ r ≤ 2d

d−2
if d ≥ 3

2 ≤ r <∞ if d = 2,

2 ≤ r ≤ ∞ if d = 1,

(2.5)

and
2

q
=
d

2
− d

r
, where c = c(r, d) is a constant that depends only on r and d.

We recall here a stronger result due to Keel and Tao [8].

Definition 2.2.1. We say that a pair of exponents (q, r) is σ-admissible, if q, r ≥ 2, (q, r, σ) 6=
(2,∞, 1) and

1

q
+
σ

r
≤ σ

2
. (2.6)

If equality holds in (2.6) we say that (q, r) is sharp σ-admissible, otherwise we say that (q, r)

is nonsharp σ-admissible. Note in particular that when σ > 1 the endpoint

P =

(
2,

2σ

σ − 1

)
is sharp σ-admissible.
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Theorem 2.2.2. Let H be a Hilbert space, (X, dx) be a measure space and U(t) : H → L2(X)

be a one parameter family of mappings, which obey the energy estimate

‖U(t)f‖L2(X) ≤ C‖f‖H

and for some σ > 0 one of the following decay estimates:

• for all t 6= s and all g ∈ L1(X)

||U(t)(U(s))∗g‖L∞(X) ≤ C|t− s|−σ‖g‖L1(X)(untruncated decay),

• for all t, s ∈ R and g ∈ L1(X)

||U(t)(U(s))∗g‖L∞(X) ≤ C(1 + |t− s|)−σ‖g‖L1(X)(truncated decay). (2.7)

Then the following estimates hold for all sharp-σ-admissible pairs (q, r), (q̃, r̃). Furthermore,

if the decay hypothesis is strengthened to (2.7), then these estimates hold for all σ- admissible

(q, r) and (q̃, r̃):

‖U(t)f‖Lq(R)Lr(X) ≤ C‖f‖H ,∥∥∥∥∫ (U(t))∗F (t, ·)dt
∥∥∥∥
H

≤ C‖F‖Lq′ (R,Lr′ (X)),∥∥∥∥∫ t

0

U(t)(U(s))∗F (s, ·)ds
∥∥∥∥
Lq(R,Lr(X))

≤ C‖f‖Lq̃′ (R,Lr̃′ (X)).

As a consequence, choosing H = L2(Rd) and X = Rd, we obtain that the solution of the

inhomogeneous problem {
iut + ∆u+ F = 0

u(0, x) = ϕ.
(2.8)

satisfies the following theorem:

Theorem 2.2.3. Let (q, r) and (q̃, r̃) both be sharp σ-admissible pairs with σ = 1/2. Then,

‖eit∆f‖Lq(R,Lr(X)) ≤ C‖f‖L2(Rd),

‖
∫
eit∆F (t, ·)dt‖L2(Rd) ≤ C‖F‖Lq′ (R,Lr′ (Rd)),

‖
∫ t

0
ei(t−s)∆F (s, ·)ds‖Lq(R,Lr(Rd)) ≤ C‖f‖Lq̃′ (R,Lr̃′ (Rd)).

The solution of equation (2.8) satisfies

‖u‖Lq(R,Lr(Rd)) ≤ C
(
‖ϕ‖L2(Rd) + ‖F‖Lq̃′ (R,Lr̃′ (Rd))

)
.
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2.3 Nonlinear problems

In this section we give some well-posedness results for the semi-linear Schödinger equation:{
iut + ∆u+ λ|u|pu = 0, t > 0, x ∈ R
u(0, x) = ϕ,

(2.9)

where p > 0 and λ ∈ R.

Theorem 2.3.1. Any regular solution of problem (2.9) has the following properties:

1. the conservation of the L2(R)-norm : ‖u(t, x)‖L2(R) = ‖ϕ‖L2(R).

2. the conservation of energy:

1

2

∫
R
|∇u(t)|2 − λ

p+ 2

∫
R
|u(t)|p+2dx =

1

2

∫
R
|∇ϕ|2dx− λ

p+ 2

∫
R
|ϕ|p+2dx,∀t ∈ R.

Proof. First, we will show the conservation of the L2(R)-norm.

d

dt

∫
R
|u(t, x)|2dx =

∫
R

d

dt
|u(t, x)|2dx = 2

∫
R

Re (uut)dx.

Since |u|2 = u · u we have

∂t|u|2 = utu+ uut = 2 Re (utu).

We multiplicate the equation by u and integrate over R:

i

∫
R
ut · udx+

∫
R

∆u · udx+ λ

∫
R
|u|pu · u = 0

thus ∫
R
ut · udx = i

∫
R

∆u · udx+ iλ

∫
R
|u|p+2dx

and

Re

(∫
R
ut · udx

)
= Re

(
i

∫
R

∆u · udx
)

+ Re

(
iλ

∫
R
|u|p+2dx

)
.

But ∫
R

∆u · udx = −
∫
R
∇u∇udx = −

∫
R
|∇u|2dx ∈ R

and also

∫
R
|u|p+2dx ∈ R. We deduce that Re

(∫
R
ut · udx

)
= 0, thus

d

dt

∫
R
|u(t, x)|2dx = 0.

From this we obtain that

∫
R
|u(t, x)|2dx is constant with respect to variable t, i.e.:

‖u(t, x)‖L2(R) = ‖u(0, x)‖L2(R) = ‖ϕ‖L2(R).
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Now we will prove conservation of the energy. Let us set

E(t) =
1

2

∫
R
|∇u(x, t)|2 − λ

p+ 2

∫
R
|u(x, t)|p+2, for t ∈ R.

We have
d

dt
E(t) =

1

2

∫
R
|∇u|2dx− λ

p+ 2

d

dt

∫
R
|u|p+2

= Re

(∫
R
∇u∇utdx

)
− λ

p+ 2

∫
R
(p+ 2) Re (|u|puutdx) .

Thus
d

dt
E(t) = Re

(∫
R
∇u∇utdx− λ

∫
R
|u|puutdx

)
.

We multiplicate equation (2.9) with ut, integrate over R and take the real part of the resulting

terms:

Re

(
i

∫
R
ut · utdx+

∫
R

∆u · utdx+ λ

∫
R
|u|puutdx

)
= 0.

We have ∫
R
ut · utdx =

∫
R
|ut|2dx ∈ R

and thus

Re

(
i

∫
R
ututdx

)
= 0,

∫
R

∆u · utdx = −
∫
R
∇u · ∇utdx.

We obtain that

Re

(
−
∫
R
∇u · ∇utdx+ λ

∫
R
|u|p · u · ut

)
= 0,

which is exactly the derivative of E(t). It follows that E(t) is constant:

E(t) = E(0) =

∫
R
|∇ϕ|2dx− 2λ

p+ 2

∫
R
|ϕ|p+2dx.

We now prove a well-posedness result for H1(R) solutions of the semilinear problem (2.9).

Finding a solution for the equation (2.8) is equivalent to finding a solution for the integral

equation

u(t) = S(t)ϕ+

∫ t

0

S(t− s)F (u(s))ds, (2.10)

where F (u(t)) = λ|u(t)|pu(t) and S(t)ϕ = eit∆ϕ is the semigroup generated by the initial

value problem {
ut(t, x) = ∆u(t, x), x ∈ R, t > 0,

u(0, x) = ϕ(x), x ∈ R.
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Theorem 2.3.2. For any ϕ ∈ H1(R) and p > 0 there exists a unique local solution u ∈
C([0, T ], H1(Rd)) of equation (2.9). Moreover, if λ > 0 the solution is global.

Proof. We will prove local existence of the solution using Banach’s Fixed Point Theorem.

Define the following map

Φ : X → X,φ(u) = S(t)ϕ+

∫ t

0

S(t− s)|u(s)|pu(s)ds,

where

X =

{
u ∈ C([0, T ], H1(R)); max

t∈[0,T ]
‖u(t)‖H1(R) ≤M

}
,

endowed with the norm ‖u‖X = max
t∈[0,T ]

‖u(t)‖H1(R). The positive numbers M and T will be

chosen later such that Φ to be well defined and contraction.

In order to do this, we first need to show that that function F is locally Lipschitz on

H1(R). We recall the following inequality: there exists a constant C(p) > 0 such that∣∣|a|p−1a− |b|p−1b
∣∣ ≤ C

(
|a|p−1 + |b|p−1

)
|a− b|, ∀a, b > 0.

As a consequence, we obtain that, for any u, v ∈ H1(R),

‖F (u)− F (v)‖H1(R) ≤ C(p)
(
‖u(t)‖pL∞(R) + ‖v(t)‖pL∞(R)

)
‖u− v‖H1(R).

The embedding H1(R) ↪→ L∞(R) gives us that

‖F (u)− F (v)‖H1(R) ≤ C(p)
(
‖u(t)‖pH1(R) + ‖v(t)‖pH1(R)

)
‖u− v‖H1(R).

Indeed,

‖F (u(t))− F (v(t))‖2
L2(R) =

∫
R

(
|u(t)|p−1u(t)− |v(t)|p−1v(t)

)2
dx

≤ C

∫
R

(
|u(t)|p−1 + |v(t)|p−1

)2
(u(t)− v(t))2dx

≤ C
(
‖u(t)‖2(p−1)

L∞(R) + ‖v(t)‖2(p−1)
L∞(R)

)
‖u(t)− v(t)‖2

L2(R)

≤ C
(
‖u(t)‖2(p−1)

H1(R) + ‖v(t)‖2(p−1)

H1(R)

)
‖u(t)− v(t)‖2

H1(R),

where for the last inequality we used the continuous embedding H1(R) ↪→ L∞(R). Also

‖(F (u)− F (v))x‖L2(R) = ‖F ′(u)ux − F ′(v)vx‖L2(R) ≤ C(p)‖u− v‖H1(R).

For u, v ∈ X we have ‖u(t)‖H1(R) ≤M , ‖v(t)‖H1(R) ≤M and this implies that

‖F (u(t))− F (v(t))‖L2(R) ≤ C(M)‖u(t)− v(t)‖H1(R) ≤ C(M)‖u(t)− v(t)‖X .
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Step 1. Φ is well defined. Let u ∈ X. We have

‖Φ(u)‖X =

∥∥∥∥S(t)ϕ+

∫ t

0

S(t− s)|u(s)|pu(s)ds

∥∥∥∥
X

≤ ‖S(t)ϕ‖X +

∥∥∥∥∫ t

0

S(t− s)|u(s)|pu(s)ds

∥∥∥∥
X

.

Using Proposition 2.1.1, the first term satisfies

‖S(t)ϕ‖X = max
t∈[0,T ]

‖S(t)ϕ‖H1(R) = ‖ϕ‖H1(R).

For the second term:∥∥∥∫ t

0

S(t− s)|u(s)|pu(s)ds
∥∥∥
X

= max
t∈[0,T ]

∥∥∥∫ t

0

S(t− s)|u(s)|pu(s)ds
∥∥∥
H1(R)

≤ max
t∈[0,T ]

∫ t

0

‖|u(s)|pu(s)‖H1(R)ds

≤ T max
t∈[0,T ]

‖|u(t)|pu(t)‖H1(R).

Using the embedding H1(R) ↪→ L∞(R) we have

‖|u(t)|pu(t)‖H1(R) ≤ ‖|u(t)|pu(t)‖L2(R) + C ‖|u(t)|pux(t)‖L2(R)

≤ ‖u(t)‖pL∞(R)‖u(t)‖L2(R) + C‖u(t)‖pL∞(R)‖ux(t)‖L2(R)

≤ C1‖u(t)‖p+1
H1(R).

Thus, for any u ∈ X∥∥∥∥∫ t

0

S(t− s)|u(s)|pu(s)ds

∥∥∥∥
X

≤ C1T max
t∈[0,T ]

‖u(t)‖p+1
H1(R) ≤ C1TM

p+1.

We obtain

‖Φu‖X ≤ ‖ϕ‖H1(R) + C1TM
p+1

and, if we choose

M = 2‖ϕ‖H1(R) and T =
1

C1

2−p−1‖ϕ‖−pH1(R) (2.11)

it follows that

‖Φu‖X ≤M.
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Step 2. Φ is a contraction. For any u, v ∈ X we have

‖Φ(u)− Φ(v)‖X = max
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s)(|u|pu− |v|pv)(s)ds

∥∥∥∥
H1(R)

≤ max
t∈[0,T ]

∫ t

0

‖(|u|pu− |v|pv)(s)‖H1(R) ds

≤ T max
t∈[0,T ]

‖(|u|pu− |v|pv)(t)‖H1(R)

≤ T max
t∈[0,T ]

‖u(t)− v(t)‖H1(R)

(
‖u(t)‖pH1(R) + ‖v(t)‖pH1(R)

)
≤ T‖u− v‖X · 2Mp =

1

2
‖u− v‖X ,

where M and T are given by formula (2.11).

Thus, Φ : X → X being a contraction, it follows that φ has a unique fixed point in X,

that means there exists solution of equation (2.9). Using similar arguments we can show

that the H1(R)-solution of equation (2.9) is unique.

Repeating the above arguments we can extend the solution of problem 2.9 up to a time T0

where we have the blow-up alternative: if T0 <∞ then lim
t↑T0
‖u(t)‖H1(R) =∞. Since the L2(R)-

norm is conserved it means that when T0 < ∞ we must have that lim
t↑T0
‖ux(t)‖L2(R) =∞. In

the case λ > 0 using the conservation of the energy we have that

‖ux(t)‖L2(R) ≤ E(t) = E(0).

Thus, the solutions of (2.9) are global in this case, i.e. u ∈ C([0,∞), H1(R)).

Theorem 2.3.3. L2-solutions If 0 < p < 4/d, then for all ϕ ∈ L2(Rd) there exists unique

global solution u of equation (2.9) that satisfies

u ∈ C(R, L2(Rd)) ∩ Lrloc(R, Lp+2(Rd)),

where r = 4(p+ 2)/pd.

Proof. We first prove the existence of a local solution. We will obtain the existence of a time

T = T (‖ϕ‖L2(Rd), d, λ, p) such that the integral equation (2.10) has a unique solution

u ∈ C([0, T ], L2(Rd)) ∩ Lr([0, T ], Lp+2(Rd)).

This argument is standard and we use the Banach Fix Point Theorem in a suitable space.

We consider the space

E(T, a) =
{
u ∈ C([0, T ], L2(Rd)) ∩ Lr([0, T ], Lp+2(Rd)) :

|||u|||T := sup
[0,T ]

‖u(t)‖L2(Rd) +

(∫ T

0

‖u(t)‖rLp+2(Rd)dt

)1/r

≤ a
}
,
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with 0 < p < 4/d and r = 4(p+ 2)/pd. E(T, a) is a complete metric space.

For appropriate values of a and T > 0 we shall show that

Φ(u)(t) = eit∆ϕ+ iλ

∫ t

0

ei∆(t−s)(|u|pu)(s)ds (2.12)

defines a contraction map on E(T, a).

Without loss of generality we consider only the case T > 0.(∫ T
0
‖Φ(u)(t)‖r

Lp+2(Rd)
dt
)1/r

≤ c‖ϕ‖L2(Rd) + c|λ|
(∫ T

0
‖|u(t)|p+1‖r′

L(p+2)/(p+1)(Rd)
dt
)1/r′

≤ c‖ϕ‖L2(Rd) + c|λ|
(∫ T

0
‖u(t)‖(p+1)r′

Lp+2(Rd)
dt
)1/r′

.

(2.13)

By hypothesis 0 < p < 4/d so (p+ 1)r′ < r, since

p+ 1 < r − 1 =
4(p+ 2)

pd
− 1 which means (p+ 1)r′ = (p+ 1)

r

r − 1
< r.

Therefore, from (2.13) we deduce that(∫ T

0

‖Φ(u)(t)‖rLp+2(Rd)dt

)1/r

≤ c‖ϕ‖L2(Rd) + c|λ|T θ
(∫ T

0

‖u(t)‖rLp+2(Rd)dt

)(p+1)/r

,

with θ = 1− pd/4 > 0. Then, if u ∈ E(T, a) we have(∫ T

0

‖Φ(u)(t)‖rLp+2(Rd)dt

)1/r

≤ c‖ϕ‖L2(Rd) + c|λ|T θap+1.

Using Theorem 2.2.1 and unitary group properties in expression (2.10), we obtain that if

u ∈ E(T, a) then

sup
t∈[0,T ]

‖Φ(u)(t)‖L2(Rd) ≤ c‖ϕ‖L2(Rd) + c|λ|
(∫ T

0

‖|u(t)|p+1‖r′L(p+2)/(p+1)(Rd)dt

)1/r′

≤ c‖ϕ‖L2(Rd) + c|λ|T θap+1,

where constant c depends only on p and dimension d. Hence,

‖|Φ‖|T ≤ c‖ϕ‖L2(Rd) + c|λ|T θap+1.

If we fix a = 2c‖ϕ‖L2(Rd) and take T > 0 such that

2p+1cp+1|λ|T θ‖ϕ‖p
L2(Rd)

< 1/2 (2.14)

it follows that the application Φ is well defined on E(T, a). Now, if u, v ∈ E(T, a),

(Φ(v)− Φ(u))(t) = iλ

∫ t

0

ei(t−s)∆(|v|pv − |u|pu)(s)ds.
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Thus(∫ T

0

‖(φ(v)− φ(u))(t)‖rLp+2(Rd)dt

)1/r

≤ c|λ|
(∫ T

0

‖|v|pv − |u|pu)‖r′L(p+2)(p+1)(Rd)dt

)1/r′

≤ cp|λ|
(∫ T

0

(‖v‖p
Lp+2(Rd)

+ ‖u‖p
Lp+2(Rd)

)r
′‖v − u‖r′Lp+2(Rd)(t)dt

)1/r′

≤ cp|λ|T θ
((∫ T

0

‖v‖rLp+2(Rd)dt

)p/r
+

(∫ T

0

‖u‖rLp+2(Rd)dt

)p/r)
·
(∫ T

0

‖v(t)− u(t)‖rLp+2(Rd)dt

)p/r
≤ 2cp|λ|T θap

(∫ T

0

‖v(t)− u(t)‖rLp+2(Rd)dt

)1/r

.

Using the estimates from Theorem 2.2.1 we get

sup
[0,T ]

‖(Φ(v)− Φ(u))(t)‖L2(Rd) ≤ 2cp|λ|T θap
(∫ T

0

‖v(t)− u(t)‖rLp+2(Rd)

)1/r

.

Finally, it follows from the choice of a, that is a ≤ 2c‖ϕ‖L2(Rd) and inequality (2.14), that

2c|λ|T θap ≤ 2p+1cp+1|λ|T θ‖ϕ‖p
L2(Rd)

< 1.

Hence,

T ∼ ‖ϕ‖β
L2(Rd)

, with β =
−4p

4− pd
. (2.15)

Thus, we have proved the existence and uniqueness in an appropriate class of solution of

equation (2.10).

This proves the existence of a local solution

u ∈ C([0, T ], L2(Rd)) ∩ Lr([0, T ], Lp+2(Rd)),

where T = T (‖ϕ‖L2(Rd), d, λ, p). Using the conservation of the L2(Rd)-norm, we obtain that

the solution exists globally.
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Chapter 3

The discrete Schrodinger Equation

In this chapter we will present some results obtained in [5], where we proved dispersive

estimates for the system formed by two coupled discrete Schrödinger equations. We obtained

estimates for the resolvent of the discrete operator and prove that it satisfies the limiting

absorption principle. The decay of the solutions was proved by using classical and some new

results on oscillatory integrals.

Let us consider the linear Schrödinger equation (LSE) in dimension 1:{
iut + uxx = 0, x ∈ R, t 6= 0,

u(0, x) = ϕ(x), x ∈ R.
(3.1)

Linear equation (3.1) is solved by u(t, x) = S(t)ϕ, where S(t) = eit∆ is the free Schrödinger

operator. The linear semigroup has two important properties. First, the conservation of the

L2-norm:

‖S(t)ϕ‖L2(R) = ‖ϕ‖L2(R) (3.2)

and a dispersive estimate of the form:

|(S(t)ϕ)(x)| ≤ 1

(4π|t|)1/2
‖ϕ‖L1(R), x ∈ R, t 6= 0. (3.3)

The space-time estimate

‖S(·)ϕ‖L6(R, L6(R)) ≤ C‖ϕ‖L2(R), (3.4)

due to Strichartz [14], is deeper. It guarantees that the solutions of system (3.1) decay as

t becomes large and that they gain some spatial integrability. Inequality (3.4) was general-

ized by Ginibre and Velo [3]. They proved the mixed space-time estimates, well known as

Strichartz estimates:

‖S(·)ϕ‖Lq(R, Lr(R)) ≤ C(q, r)‖ϕ‖L2(R) (3.5)
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for the sharp 1/2-admissible pairs (q, r):

1

q
=

1

2

(1

2
− 1

r

)
, 2 ≤ q, r ≤ ∞. (3.6)

Similar results can be stated in any space dimension but it is beyond the scope of this

article. These estimates have been successfully applied to obtain well-posedness results for

the nonlinear Schrödinger equation (see [2], [15] and the reference therein).

Let us now consider the following system of difference equations iut + ∆du = 0, j ∈ Z, t 6= 0,

u(0) = ϕ,
(3.7)

where ∆d is the discrete laplacian defined by

(∆du)(j) = uj+1 − 2uj + uj−1, j ∈ Z.

Concerning the long time behavior of the solutions of system (3.7) in [13] the authors have

proved that a similar to the continuous Scrödinger equation decay property holds:

‖u(t)‖l∞(Z) ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀ t 6= 0. (3.8)

The proof of (3.8) consists in writing solution u of (3.7) as the convolution between a kernel

Kt and the initial data ϕ and then estimate Kt by using Van der Corput’s lemma. For

the linear semigroup exp(it∆d), Strichartz like estimates similar to those in (3.5) have been

obtained in [13] for a larger class of pairs (q, r), namely 1/3-admissible pairs,

1

q
≤ 1

3

(1

2
− 1

r

)
, 2 ≤ q, r ≤ ∞. (3.9)

We give here the proof of the decay property (3.8) for the solutions of equation (3.7).

Theorem 3.0.4. For any ϕ ∈ l2(Z) there exists a unique solution u ∈ C(R, l2(Z)) of system

(3.7). Moreover the solution u satisfies

1. the energy identity: ‖u(t)‖l2(Z) = ‖ϕ‖l2(Z),

2. the decay estimate: ‖u(t)‖l∞(Z) ≤ C(1 + |t|)−1/3‖ϕ‖l1(Z).

Proof. The well-posedness is a consequence of the fact that the operator ∆d is bounded on

l2(Z). Function u being defined on Z we apply the discrete Fourier transform with h = 1:
iût(t, ξ) + ∆̂du(t, ξ) = 0, j ∈ Z, t 6= 0, ξ ∈ [−π, π],

û(0, ξ) = ϕ̂(ξ), ξ ∈ [−π, π],
(3.10)
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We now compute ∆̂du:

∆̂du(ξ) =
∑
j∈Z

e−ijξ(∆u)(j) =
∑
j∈Z

e−ijξ(u(j + 1)− 2u(j) + u(j − 1))

=
∑
j∈Z

e−i(j−1)ξu(j)− 2
∑
j∈Z

e−ijξu(j) +
∑
j∈Z

e−i(j+1)ξu(j)

=
(
eiξ + e−iξ − 2

)
û(ξ) = 2(cos ξ − 1)û(ξ) = −4 sin2 ξ

2
û(ξ).

System (3.10) becomes iût(ξ)− 4 sin2 ξ
2
û(ξ) = 0, ξ ∈ [−π, π], t 6= 0,

û(0, ξ) = ϕ̂(ξ), ξ ∈ [−π, π].

This is an ordinary differential equation with initial data ϕ̂ and its solution is given by:

û(t, ξ) = e−4it sin2 ξ
2 ϕ̂(ξ), ξ ∈ [−π, π].

Let Kt be such that K̂t(ξ) = e−4it sin2 ξ
2 . Then û(t, ξ) = K̂t(ξ)ϕ̂(ξ) and from the properties

of the discrete Fourier Transform it follows that u(t) = Kt ∗ ϕ, where here ∗ is the discrete

convolution:

u(t, j) =
∑
k∈Z

Kt(j − k)ϕ(k), ∀j ∈ Z.

The kernel Kt satisfies ‖Kt‖l∞(Z) ≤ 1, since

Kt(j) =
1

2π

∫ π

π

e−4it sin2 ξ
2 eijξdξ.

Using the properties of the kernel Kt we obtain the following estimates for the solution u of

system (3.10):

1.‖u(t)‖l2(Z) = ‖û(t)‖L2(π,π) =

(∫ π

−π
|e−4it sin2 ξ

2 ϕ̂(ξ)|2dξ
)1/2

= ‖ϕ̂‖L2(−π,π) = ‖ϕ‖L2(−π,π).

2.‖u‖l∞(Z) = ‖Kt ∗ ϕ‖l∞(Z) ≤ ‖Kt‖l∞(Z) · ‖ϕ‖l1(Z) ≤ ‖ϕ‖l1(Z).

We can obtain stronger estimates for ‖u‖l∞(Z) by using Van der Corput’s Lemma. We write

the kernel Kt as follows:

Kt(j) =
1

2π

∫ π

−π
e−4it sin2 ξ

2 eijξdξ =
1

2π

∫ π

−π
eit(−4 sin2 ξ

2
+ jξ

t
)dξ.

Set

p(ξ) = −4 sin2 ξ

2
+
jξ

t
.
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The derivatives of p are 
p
′
(ξ) = j

t
− 4 sin ξ

2
cos ξ

2
= j

t
− 2 sin ξ,

p
′′
(ξ) = −2 cos ξ,

p
′′′

(ξ) = 2 sin ξ.

Thus, on the interval [−π, π] the second and the third derivatives can not vanish at the same

point since p
′′
(ξ) = 0 only for ξ ∈

{
−π

2
, π

2

}
and p

′′′
(ξ) = 0 only for ξ ∈ {−π, π}. We split

the previous integral as follows:∫ π

−π
eitp(ξ)dξ =

∫ − 3π
4

−π
eitp(ξ)dξ +

∫ −π
4

− 3π
4

eitp(ξ)dξ

∫ π
4

−π
4

eitp(ξ)dξ +

∫ 3π
4

π
4

eitp(ξ)dξ

∫ π

3π
4

eitp(ξ)dξ.

Using Van der Corput’s Lemma we obtain that∣∣∣∣∣
∫ − 3π

4

−π
eitp(ξ)dξ

∣∣∣∣∣ ≤ |t|− 1
2 ,

∣∣∣∣∣
∫ −π

4

− 3π
4

eitp(ξ)dξ

∣∣∣∣∣ ≤ |t|− 1
3 ,

∣∣∣∣∣
∫ π

4

−π
4

eitp(ξ)dξ

∣∣∣∣∣ ≤ |t|− 1
2 ,

∣∣∣∣∣
∫ 3π

4

π
4

eitp(ξ)dξ

∣∣∣∣∣ ≤ |t|− 1
3 ,

∣∣∣∣∣
∫ π

3π
4

eitp(ξ)dξ

∣∣∣∣∣ ≤ |t|− 1
2 .

Thus, for t > 1 we obtain |Kt(j)| ≤ C|t|− 1
3 ,∀j ∈ Z. Using that ‖Kt‖l∞(Z) ≤ 1 we get

‖Kt‖l∞(Z) ≤ C(|t|+ 1)−1/3

and

‖u(t)‖l∞(Z) ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀t 6= 0.

Theorem 3.0.5. For any 1/3-admissible pair (q, r) the solution of the inhomogeneous equa-

tion {
iut(t, j) + ∆du(t, j) + f(t, j) = 0, j ∈ Z, t ∈ R
u(0, j) = ϕ(j), j ∈ Z

(3.11)

satisfies the following estimates:

‖u(t)‖Lq(R,lr(Z)) ≤ C
(
‖ϕ‖l2(Z) + ‖f(t)‖Lq̃′ (R,lr̃′ (Z)).

)
Proof. We apply Theorem 2.2.2 with σ = 1/3 since eit∆dϕ satisfies:

‖eit∆dϕ‖l2(Z) = C‖ϕ‖l2(Z)

‖eit∆d(eis∆d)∗ϕ‖l∞(Z) = ‖ei(t−s)∆dϕ‖l∞(Z) ≤ C(1 + |t− s|)−1/3‖ϕ‖l1(Z).
(3.12)
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We also mention [6] and [7] where the authors consider a similar equation on hZ by replac-

ing ∆d by ∆d/h
2 and analyze the same properties in the context of numerical approximations

of the linear and nonlinear Schrödinger equation.

A more thorough analysis has been done in [10] and [12] where the authors analyze

the decay properties of the solutions of equation iut + Au = 0 where A = ∆d − V , with

V a real-valued potential. In these papers l1(Z) − l∞(Z) and l2−σ(Z) − l2σ(Z) estimates for

exp(itA)Pa,c(A) have been obtained where Pa,c(A) is the spectral projection to the absolutely

continuous spectrum of A and l2±σ(Z) are weighted l2(Z)-spaces.

In what concerns the Schödinger equation with variable coefficients we mention the results

of Banica [1]. Consider a partition of the real axis as follows: −∞ = x0 < x1 < · · · < xn+1 =

∞ and a step function σ(x) = b−2
i for x ∈ (xi, xi+1), where bi are positive numbers. The

solution u of the Schrödinger equation iut(t, x) + (σ(x)ux)x(t, x) = 0, for x ∈ R, t 6= 0,

u(0, x) = u0(x), x ∈ R,

satisfies the dispersion inequality

‖u(t)‖L∞(R) ≤ C|t|−1/2‖u0‖L1(R), t 6= 0,

where constant C depends on n and on sequence {bi}ni=0. We recall that in [4] the above result

was used in the analysis of the long time behavior of the solutions of the linear Schödinger

equation on regular trees. In the case of discrete equations the corresponding model is given

by {
iUt + AU = 0, t 6= 0,

U(0) = ϕ,
(3.13)

where the infinite matrix A is symmetric with a finite number of diagonals nonidentically

vanishing. Once a result similar to [1] will be obtained for discrete Schrödinger equations

with non-constant coefficients we can apply it to obtain dispersive estimates for discrete

Schrödinger equations on trees. But as far as we know the study of the decay properties

of solutions of system (3.13) in terms of the properties of A is a difficult task and we try

to give here a partial answer to this problem. In the case when A is a diagonal matrix

these properties are easily obtained by using the Fourier transform and classical estimates

for oscillatory integrals.

The main goal of this article is to analyze a simplified model which consists in coupling
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two DSE by Kirchhoff’s type condition:

iut(t, j) + b−2
1 (∆du)(t, j) = 0 j ≤ −1, t 6= 0,

ivt(t, j) + b−2
2 (∆dv)(t, j) = 0 j ≥ 1, t 6= 0,

u(t, 0) = v(t, 0), t 6= 0,

b−2
1 (u(t,−1)− u(t, 0)) = b−2

2 (v(t, 0)− v(t, 1)), t 6= 0,

u(0, j) = ϕ(j), j ≤ −1,

v(0, j) = ϕ(j), j ≥ 1.

(3.14)

In the above system u(t, 0) and v(t, 0) have been artificially introduced to couple the two

equations on positive and negative integers. The third condition in the above system requires

continuity along the interface j = 0 and the fourth one can be interpreted as the continuity

of the flux along the interface.

The main result of this paper is given in the following theorem.

Theorem 3.0.6. For any ϕ ∈ l2(Z \ {0}) there exists a unique solution (u, v) ∈ C(R, l2(Z \
{0})) of system (3.14). Moreover, there exists a positive constant C(b1, b2) such that

‖(u, v)(t)‖l∞(Z\{0}) ≤ C(b1, b2)(|t|+ 1)−1/3‖ϕ‖l1(Z\{0}), ∀t ∈ R, (3.15)

holds for all ϕ ∈ l1(Z \ {0}).

Using the well-known results of Keel and Tao [8] we obtain the following Strichartz-like

estimates for the solutions of system (3.14).

Theorem 3.0.7. For any ϕ ∈ l2(Z \ {0}) the solution (u, v) of system (3.14) satisfies

‖(u, v)‖Lq(R, lr(Z\{0})) ≤ C(q, r)‖ϕ‖l2(Z\{0})

for all pairs (q, r) satisfying (3.9).

The paper is organized as follows: In section 3.1 we present some discrete models, in

particular system (3.14) in the case b1 = b2 and show how it is related with problem (3.7).

In addition, a system with a dynamic coupling along the interface is presented. In section

3.2 we obtain an explicit formula for the resolvent associated with system (3.14). We prove a

limiting absorption principle and we give the proof of the main result of this paper. Finally

we present some open problems.
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3.1 Some discrete models

In this section in order to emphasize the main differences and difficulties with respect to the

continuous case when we deal with discrete systems we will consider two models. In the first

case we consider system (3.14) with the two coefficients in the front of the discrete laplacian

equal. In the following we denote Z∗ = Z \ {0}.

Theorem 3.1.1. Let us assume that b1 = b2. For any ϕ ∈ l2(Z∗) there exists a unique

solution u ∈ C(R, l2(Z∗)) of system (3.14). Moreover there exists a positive constant C(b1)

such that

‖u(t)‖l∞(Z∗) ≤ C(b1)(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀ t ∈ R, (3.1)

holds for all ϕ ∈ l1(Z∗).

In the particular case considered here we can reduce the proof of the dispersive estimate

(3.1) to the analysis of two problems: one with Dirichlet’s boundary condition and another

one with a discrete Neumann’s boundary condition.

Before starting the proof of Theorem 3.1.1 let us recall that in the case of system (3.7)

its solution is given by u(t) = Kt ∗ ϕ where ∗ is the standard convolution on Z and

Kt(j) =

∫ π

−π
e−4it sin2( ξ

2
)eijξdξ, t ∈ R, j ∈ Z.

In [13] a simple argument based on Van der Corput’s lemma has been used to show that

for any real number t the following holds:

|Kt(j)| ≤ C(|t|+ 1)−1/3, ∀j ∈ Z. (3.2)

Proof of Theorem 3.1.1. The existence of the solutions is immediate since operator A defined

in (3.7) is bounded in l2(Z∗). We prove now the decay property (3.1.1). Let us restrict for

simplicity to the case b1 = b2 = 1.

For (u, v) solution of system (3.14) let us set

S(j) =
v(j) + u(−j)

2
, D(j) =

v(j)− u(−j)
2

, j ≥ 0.

Observe that u and v can be recovered from S and D as follows

(u, v) = ((S −D)(−·), S +D).

Writing the equations satisfied by u and v we obtain that D and S solve two discrete

Schrödinger equations on Z+ = {j ∈ Z, j ≥ 1} with Dirichlet, respectively Neumann bound-

ary conditions: 
iDt(t, j) + (∆dD)(t, j) = 0 j ≥ 1, t 6= 0,

D(t, 0) = 0, t 6= 0,

D(0, j) = ϕ(j)−ϕ(−j)
2

, j ≥ 1,

(3.3)
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and 
iSt(t, j) + (∆dS)(t, j) = 0 j ≥ 1, t 6= 0,

S(t, 0) = S(t, 1), t 6= 0,

S(0, j) = ϕ(j)+ϕ(−j)
2

, j ≥ 1.

(3.4)

Making an odd extension of the function D and using the representation formula for the

solutions of (3.7) we obtain that the solution of the Dirichlet problem (3.3) satisfies

D(t, j) =
∑
k≥1

(Kt(j − k)−Kt(j + k))D(0, k), t 6= 0, j ≥ 1. (3.5)

A similar even extension of function S permits us to obtain the explicit formula for the

solution of the Neumann problem (3.4)

S(t, j) =
∑
k≥1

(Kt(k − j) +Kt(k + j − 1))S(0, k), t 6= 0, j ≥ 1. (3.6)

Using the decay of the kernel Kt given by (3.2) we obtain that S(t) and D(t) decay as

(|t| + 1)−1/3 and then the same property holds for u and v. This finishes the proof of this

particular case.

Observe that our proof has taken into account the particular structure of the equations.

When the coefficients b1 and b2 are not equal we cannot write an equation verified by functions

D or S.

We now write system (3.14) in matrix formulation. Using the coupling conditions at

j = 0 system (3.14) can be written in the following equivalent form{
iUt + AU = 0,

U(0) = ϕ,

where U = (u, v)T , u = (u(j))j≤−1, v = (vj)j≥1 and

A =



... ... ... 0 0 0 0 0

0 b−2
1 −2b−2

1 b−2
1 0 0 0 0

0 0 b−2
1 −b−2

1 − 1
b21+b22

1
b21+b22

0 0 0

0 0 0 1
b21+b22

− 1
b21+b22

− b−2
2 b−2

2 0 0

0 0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 0 ... ... ...


. (3.7)
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In the particular case b1 = b2 = 1 the operator A can be decomposed as follows

A = ∆d+B =



... ... ... 0 0 0 0 0

0 1 −2 1 0 0 0 0

0 0 1 −2 1 0 0 0

0 0 0 1 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 ... ... ...


+



... ... ... 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1
2
−1

2
0 0 0

0 0 0 −1
2

1
2

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 ... ... ...


.

However, we do not know how to use the dispersive properties of exp(it∆d) and the particular

structure of B in order to obtain the decay of the new semigroup exp(it(∆d +B)).

Another model of interest is the following one inspired in the numerical approximations

of LSE. Set

a(x) =

{
b−2

1 , x < 0,

b−2
2 , x > 0.

Using the following discrete derivative operator

(∂u)(x) = u(x+
1

2
)− u(x− 1

2
)

we can introduce the second order discrete operator

∂(a∂u)(j) = a(j +
1

2
)u(j + 1)−

(
a(j +

1

2
) + a(j − 1

2
)
)
u(j) + a(j − 1

2
)u(j − 1), j ∈ Z.

In this case we have to analyze the following system

iut(t, j) + b−2
1 (∆du)(t, j) = 0, j ≤ −1, t 6= 0,

iut(t, j) + b−2
2 (∆du)(t, j) = 0, j ≥ 1, t 6= 0,

iut(t, 0) + b−2
1 u(t,−1)− (b−2

1 + b−2
2 )u(t, 0) + b−1

2 u(t, 1) = 0, t 6= 0,

u(0, j) = ϕ(j), j ∈ Z.

(3.8)

In matrix formulation it reads iUt + AU = 0 where U = (u(j))j∈Z, and the operator A is

given by the following one

A =


... ... ... 0 0 0 0

0 b−2
1 −2b−2

1 b−2
1 0 0 0

0 0 b−2
1 −(b−2

1 + b−2
2 ) b−2

2 0 0

0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 ... ... ...

 . (3.9)

Observe that in the case b1 = b2 the results of [13] give us the decay of the solutions.

Regarding the long time behavior of the solutions of system (3.8) we have the following

result.
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Theorem 3.1.2. For any ϕ ∈ l2(Z) there exists a unique solution u ∈ C(R, l2(Z)) of system

(3.8). Moreover, there exists a positive constant C(b1, b2) such that

‖u(t)‖l∞(Z) ≤ C(b1, b2)(|t|+ 1)−1/3‖ϕ‖l1(Z), ∀t ∈ R,

holds for all ϕ ∈ l1(Z).

The proof of this result is similar to the one of Theorem 3.0.6 and we will only sketch it

at the end of Section 3.2.

3.2 Proof of the main result

In this section we prove the main result of this paper. In order to do this, we will follow the

ideas of [1] in the case of a discrete operator. Let us consider the system{
iUt + AU = 0,

U(0) = ϕ,
(3.1)

where U(t) = (u(t, j))j 6=0 and operator A is given by (3.7). We compute explicitly the

resolvent (A−λI)−1, we obtain a limiting absorption principle and finally we prove the main

result of this paper Theorem 3.0.6.

3.2.1 The resolvent.

We start by localizing the spectrum of operator A and computing the resolvent R(λ) =

(A− λI)−1. We use some classical results on difference equations.

Theorem 3.2.1. For any b1 and b2 positive the spectrum of operator A satisfies

σ(A) = [−4 max{b−2
1 , b−2

2 }, 0]. (3.2)

Proof. Since A is self-adjoint we have that

σ(A) ⊂ [ inf
‖u‖l2(Z∗)≤1

(Au, u), sup
‖u‖l2(Z∗)≤1

(Au, u)].

Explicit computations show that

(Au, u) = −b−2
1

∑
j≤−1

(uj − uj−1)2 − 1

b2
1 + b2

2

(u−1 − u1)2 − b−2
2

∑
j≥1

(uj+1 − uj)2.

It is easy to see that (Au, u) ≤ 0 and

(Au, u) ≥ −2 max{b−2
1 , b−2

2 }
∑
j∈Z∗

(u2
j + u2

j+1) = −4 max{b−2
1 , b−2

2 }
∑
j∈Z∗

u2
j .
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In order to prove that the spectrum is continuous we need to prove that for any λ ∈
[−4 max{b−2

1 , b−2
2 }, 0] we can find un ∈ l2(Z∗) with ‖un‖l2(Z∗) ≤ 1 such that ‖(A−λI)un‖l2(Z∗)

tends to zero. To fix the ideas let us assume that b2 ≤ b1 and λ ∈ [−4b−2
2 , 0]. We construct

un such that all its components un,j, j ≤ −1, vanish. Thus for such un’s we have that

(Aun)j = b−2
2 (∆dun)j, j ≥ 1.

Using the fact that any λ ∈ [−4b−2
2 , 0] belongs to σ(b−2

2 ∆d) we can construct sequences

(un,j)j≥1 such that ‖un‖l2(Z∗) ≤ 1 and ‖(A − λI)un‖l2(Z∗) → 0. This implies that λ ∈ σ(A)

and the proof is finished.

Before computing the resolvent (A−λI)−1 we need some results for difference equations.

Lemma 3.2.1. For any λ ∈ C \ [−4, 0] and g ∈ l2(Z∗), any solution f ∈ l2(Z∗) of

∆df(j)− λf(j) = g(j), j 6= 0

with f(0) prescribed is given by

f(j) = αr|j| +
1

2r − 2− λ
∑
k∈Z∗

r|j−k|g(k) (3.3)

where α is determined by f(0) and r is the unique solution with |r| < 1 of

r2 − 2r + 1 = λr.

Moreover

f(j) = f(0)r|j| +
1

r − r−1

∑
k

(r|j−k| − r|j|+|k|)g(k), j 6= 0.

Proof. Let us consider the case when j ≥ 1, the other case j ≤ −1 can be treated similarly.

Writing the equation satisfied by f we obtain that

f(j + 1)− (2 + λ)f(j) + f(j − 1) = g(j), j ≥ 1.

This is an inhomogeneous difference equation whose solutions are written as the sum between

a particular solution and the general solution for the homogeneous difference equation

f(j + 1)− (2 + λ)f(j) + f(j − 1) = 0, j ≥ 1.

Let us denote by r1 and r2, |r1| ≤ |r2|, the two solutions of the second order equation

r2 − (2 + λ)r + 1 = 0.

37



Since 2 + λ ∈ C \ [−2, 2] we have that r1 and r2 belong to C \ R and more than that

|r1| < 1 < |r2|. Thus we obtain that

f(j) = αrj1 + βrj2 +
1

2r − 2− λ
∑
k∈Z∗

r
|j−k|
1 g(k). (3.4)

Since f is an l2(Z+) function we should have β = 0. Then formula (3.3) holds. The last

identity is obtained by putting j = 0 in (3.4) and using that 2r − 2− λ = r − r−1.

As an application of the previous Lemma we have the following result.

Lemma 3.2.2. Set Z1 = Z∩(−∞,−1] and Z2 = Z∩[1,∞). For any λ ∈ C\[−4 max{b−2
1 , b−2

2 }, 0]

and g ∈ l2(Z∗), any solution f ∈ l2(Z) of

b−2
s ∆df(j)− λf(j) = g(j), j ∈ Zs,

with f(0) prescribed is given by

f(j) = αsr
|j|
s +

b2
s

2rs − 2− λb2
s

∑
k∈Zs

r|j−k|s g(k), j ∈ Zs, s ∈ {1, 2} (3.5)

where for s ∈ {1, 2}, constant αs is determined by f(0) and rs is the unique solution with

|rs| < 1 of

r2
s − 2rs + 1 = λrsb

2
s.

Moreover

f(j) = f(0)r|j|s +
b2
s

rs − r−1
s

∑
k∈Zs

(r|j−k|s − r|j|+|k|s )g(k), j ∈ Zs. (3.6)

The proof of this lemma consists in just applying Lemma 3.2.1 to the difference equations

in Z1 and Z2.

Lemma 3.2.3. Let λ ∈ C \ [−4 max{b−2
1 , b−2

2 }, 0]. For any g ∈ l2(Z∗) there exists a unique

solution f ∈ l2(Z∗) of the equation (A − λI)f = g. Moreover, it is given by the following

formula

f(j) =
−r|j|s

b−2
2 (1− r2) + b−2

1 (1− r1)

[∑
k∈Z1

r
|k|
1 g(k) +

∑
k∈Z2

r
|k|
2 g(k)

]
(3.7)

+
b2
s

rs − r−1
s

∑
k∈Zs

(r|j−k|s − r|j|+|k|s )g(k), j ∈ Zs,

where for s ∈ {1, 2}, rs = rs(λ) is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2

srs.
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Proof. Any solution of (A− λI)f = g satisfies ∆df(j)− b2
sλf(j) = b2

sg(j), j ∈ Zs,

b−2
1 (f(−1)− f(0)) = b−2

2 (f(0)− f(1)),

where f(0) is artificially introduced in order to write the system in a convenient form that

permits us to apply Lemma 3.2.2.

Using (3.6) we obtain

f(−1) = f(0)r1 − b2
1

∑
k∈Z2

r
|k|
1 g(k)

and

f(1) = f(0)r2 − b2
2

∑
k∈Z2

r
|k|
2 g(k).

The coupling condition gives us that

f(0) =
−1

b−2
1 (1− r1) + b−2

2 (1− r2)

∑
s=1,2, k∈Zs

r|k|s g(k).

Introducing this formula in (3.6) we obtain the explicit formula of the resolvent.

3.2.2 Limiting absorption principle

In this subsection we write a limiting absorption principle. From Lemma 3.2.3 we know that

for any λ ∈ C\[−4 max{b−2
1 , b−2

2 }, 0] and ϕ ∈ l2(Z∗) there exists R(λ)ϕ = (A−λ)−1ϕ ∈ l2(Z∗)
and it is given by

(R(λ)ϕ)(j) =
−r|j|s

b−2
2 (1− r2) + b−2

1 (1− r1)

[∑
k∈I1

r
|k|
1 ϕ(k) +

∑
k∈I2

r
|k|
2 ϕ(k)

]
(3.8)

+
b2
s

rs − r−1
s

∑
k∈Is

(r|j−k|s − r|j|+|k|s )ϕ(k), j ∈ Zs,

where rs = rs(λ), s ∈ {1, 2}, is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2

srs.

Let us now consider I = [−4 max{b−2
1 , b−2

2 }, 0]. As we proved in Theorem 3.2.1 we have

that σ(A) = I. For any ω ∈ I and ε ≥ 0 let us denote by r±s,ε the unique solution with

modulus less than one of

r2 − 2r + 1 = (ω ± iε)b2
sr.
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Denoting r+
s,ε = exp(z+

s,ε) with z+
s,ε = a+

s,ε + iã+
s,ε, a

+
s,ε < 0 and ã+

s,ε ∈ [−π, π] we obtain by

taking the imaginary part in the equation satisfied by r+
s,ε that

(exp(a+
s,ε)− exp(−a+

s,ε)) sin(ã+
s,ε) = εb2

s.

Thus ã+
s,ε ∈ [−π, 0]. A similar result holds for r−s,ε, ã

−
s,ε ∈ [0, π].

Let us set r±s = limε↓0 r
±
s,ε. Using the sign of the imaginary part of r±s,ε we obtain that r±s

are the solutions with Im (r+
s ) ≤ 0 ≤ Im (r−s ) of the equation

r2 − 2r + 1 = ωb2
sr.

Also, using that r−s,ε = r+
s,ε we obtain r−s = r+

s .

For any ω ∈ J = I \ {−4b−2
1 ,−4b−2

2 , 0} and ϕ ∈ l1(Z∗) let us set

(R±(ω)ϕ)(j) =
−(r±s )|j|

b−2
2 (1− r±2 ) + b−2

1 (1− r±1 )

[∑
k∈I1

(r±1 )|k|ϕ(k) +
∑
k∈I2

(r±2 )|k|ϕ(k)
]

+
b2
s

r±s − (r±s )−1

∑
k∈Is

((r±s )|j−k| − (r±s )|j|+|k|)ϕ(k), j ∈ Zs.

We will prove that R±(ω) are well defined as bounded operators from l1(Z∗) to l∞(Z∗).
We point out that we cannot define R±(ω) for ω ∈ {−4b−2

1 ,−4b−2
2 , 0} since for ω = 0 we

have r1 = r2 = 1 and for ω = 4b−2
s , s ∈ {1, 2}, we have rs = −1. We also emphasize that

R−(ω)ϕ = R+(ω)ϕ. This is a consequence of the fact that for any ω ∈ I, r−s (ω) = r+
s (ω).

Formally, the above operator equals R(ω ± iε) with ε = 0. We point out that as operators

on l2(Z∗), R(ω ± iε) are defined for any ω ∈ I but only if ε 6= 0.

Lemma 3.2.4. For any ϕ ∈ l1(Z∗) operator exp(itA) satisfies

eitAϕ =
1

2iπ

∫
I

eitω[R+(ω)−R−(ω)]ϕdω. (3.9)

Proof. To clarify the ideas behind the proof we divide it in several steps.

Step 1. Let I1 be a bounded interval such that I ⊂ I1. There exists a constant

C(ω) =
1

|ω|1/2
+

1

|ωb2
1 + 4|1/2

+
1

|ωb2
2 + 4|1/2

∈ L1(I1) (3.10)

such that for all ω ∈ I1 \ {−4b−2
1 ,−4b−2

2 , 0} the following inequality

|(R(ω ± iε)ϕ)(n)| . C(ω)‖ϕ‖l1(Z∗), for all ϕ ∈ l1(Z∗) and n ∈ Z∗,

holds uniformly on small enough ε.
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Step 2. For any ω ∈ J , R±(ω) are bounded operators from l1(Z∗) to l∞(Z∗) and

‖R±(ω)‖l1(Z∗)−l∞(Z∗) . C(ω).

Step 3. For any ω ∈ J , ϕ ∈ l1(Z∗) and n ∈ Z∗ the following holds

lim
ε↓0

(R(ω ± iε)ϕ)(n) = (R±(ω)ϕ)(n).

Step 4. For any ϕ ∈ l1(Z∗) and n ∈ Z∗ we have

lim
ε↓0

∫
I

eitω(R(ω ± iε)ϕ)(n)dω =

∫
I

eitω(R±(ω)ϕ)(n)dω.

Step 5. For any ϕ ∈ l1(Z∗)

eitAϕ =
1

2iπ

∫
I

eitω[R+(ω)−R−(ω)]ϕdω.

Proof of Step 1. Observe that for any ω ∈ R and ε > 0 we have

|(R(ω±iε)ϕ)(n)|

. ‖ϕ‖l1(Z∗)

( 1

|b−2
2 (1− r±2,ε) + b−2

1 (1− r±1,ε)|
+

1

|r±1,ε − (r±1,ε)
−1|

+
1

|r±2,ε − (r±2,ε)
−1|

)
.

Solution r±s,ε of equation r2 − 2r + 1 = (ω ± iε)b2
sr satisfies

1

|r±s,ε|
− |r±s,ε| ≤

∣∣∣∣r±s,ε − 1

r±s,ε

∣∣∣∣ = bs|ω ± iε|1/2.

Then for all ω ∈ I1 and ε small enough we have

|r±s,ε| ≥
2

bs|ω ± iε|1/2 + (b2
s|ω ± iε|+ 4)1/2

≥ C > 0

and

|r±s,ε| ≤
1

|r±s,ε|
+
∣∣∣r±s,ε − 1

r±s,ε

∣∣∣ ≤ C1 <∞.

Thus for any ω ∈ I1 we have

1

|r±s,ε − (r±s,ε)
−1|

.
1

|1− r±s,ε||1 + r±s,ε|
.

1

|1− r±s,ε|
+

1

|1 + r±s,ε|
.

Using the equation satisfied by r±s,ε we find that

|1− r±s,ε| = bs|ω ± iε|1/2|r±s,ε| & |ω ± iε|1/2 ≥ |ω|1/2

and

|1 + r±s,ε| = |(ω ± iε)b2
s + 4|1/2|r±s,ε| & |(ω ± iε)b2

s + 4|1/2 ≥ |ωb2
s + 4|1/2.
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Putting together the above estimates for the roots r±s,ε we find that for all ω ∈ I1 and ε small

enough the following holds

1

|r±1,ε − (r±1,ε)
−1|

+
1

|r±2,ε − (r±2,ε)
−1|

.
1

|ω|1/2
+

1

|ωb2
1 + 4|1/2

+
1

|ωb2
2 + 4|1/2

.

We now prove that

1

|b−2
2 (1− r±2,ε) + b−2

1 (1− r±1,ε)|
.

1

|ω|1/2
.

We recall that the sign of the imaginary parts of r±1,ε and r±2,ε is the same. Also, since |r±s,ε| < 1,

the real parts of 1− r±1,ε and 1− r±2,ε are positive. These properties of the roots imply that

|b−2
2 (1− r±2,ε) + b−2

1 (1− r±1,ε)| ≥ b−2
2 |1− r±2,ε|+ b−2

1 |1− r±1,ε| & |ω|1/2.

Putting together the above results we obtain that Step 1 is satisfied with C(ω) given by

(3.10) uniformly on all ε > 0 sufficiently small.

Step 2 follows as Step 1 by putting ε = 0 and replacing r±s,ε with r±s .

Proof of Step 3. We write

R(ω ± iε)ϕ(n) =
∑
k∈Z∗

R(ω ± iε, n, k)ϕ(k),

where R(ω ± iε, n, k) collects all the coefficients in front of ϕ(k) in formula (3.7).

Using that, for any ω ∈ J , r±s,ε(ω) → r±s (ω) we obtain that R(ω ± iε, n, k)ϕ(k) →
R±(ω, n, k)ϕ(k). Since for any ω ∈ J and ε small enough we have the uniform bound

|R(ω ± iε, n, k)ϕ(k)| ≤ C(ω)|ϕ(k)|, ∀k ∈ Z∗,

we can apply Lebesgue’s dominated convergence theorem to conclude that∑
k∈Z∗

R(ω ± iε, n, k)ϕ(k)→
∑
k∈Z∗

R±(ω, n, k)ϕ(k),

which proves Step 3.

Step 4 follows by Lebesgue’s dominated convergence theorem since we have the pointwise

convergence in Step 3 and the uniform bound in Step 1.

Proof of Step 5. Applying Cauchy’s formula we obtain that

eitA =
1

2iπ

∫
Γ

eitωR(ω)dω

for any curve Γ that rounds the spectrum of operator A. For small parameter ε we choose

in the above formula path Γε to be the following rectangle

Γε ={ω ± iε, ω ∈ [−4 max{b−2
1 , b−2

2 } − ε, ε]}
∪ {−4 max{b−2

1 , b−2
2 } − ε+ iη, η ∈ [−ε, ε]} ∪ {ε+ iη, η ∈ [−ε, ε]}.
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Using the estimates for R(λ), λ ∈ Γε obtained in Step 1 and the convergence in Step 4 we

obtain that for any ϕ ∈ l1(Z∗) the following holds:

eitAϕ =
1

2πi

∫
I

eitω(R+(ω)−R−(ω))ϕdω.

The proof is now complete.

3.2.3 Proof of the main result

We now prove the main result of this paper.

Proof of Theorem 3.0.6. For any ϕ ∈ l1(Z∗) Lemma 3.2.4 gives us that

(eitAϕ)(n) =
1

2πi

∫
I

eitω(R+(ω)−R−(ω))ϕ(n)ds, n ∈ Z∗,

where I = [−4 max{b−2
1 , b−2

2 }, 0]. Using the fact that R−(ω)ϕ = R+(ω)ϕ we obtain

(eitAϕ)(n) =
1

π

∫
I

eitω(( ImR+)(ω)ϕ)(n)dω, n ∈ Z∗,

where ImR+ is given by

( ImR+)(ω)ϕ(j) =
(R+(ω)ϕ)(j)− (R−(ω)ϕ)(j)

2i

=
∑
k∈Z1

ϕ(k) Im
−(r+

s )|j|(r+
1 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )

+
∑
k∈Z2

ϕ(k) Im
−(r+

s )|j|(r+
2 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )

+
∑
k∈Zs

ϕ(k) Im
b2
s

r+
s − (r+

s )−1
((r+

s )|j−k| − (r+
s )|j|+|k|), j ∈ Zs

and for s ∈ {1, 2}, r+
s is the root of r2 − 2r+ 1 = ωb2

sr with the imaginary part nonpositive.

In order to prove (3.15) it is sufficient to show the existence of a constant C = C(b1, b2)

such that∑
k∈Z1

|ϕ(k)|
∣∣∣ ∫

I

eitω Im
(r+
s )|j|(r+

1 )|k|

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z∗,

(3.11)

and ∑
k∈Zs

|ϕ(k)|
∣∣∣ ∫

I

eitω Im
(r+
s )|j−k|

r+
s − (r+

s )−1
dω
∣∣∣ ≤ C(|t|+ 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z∗. (3.12)
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The estimates for the other two terms occurring in the representation of ImR+(ω) are

similar.

Step I. Proof of (3.12). We prove that

sup
j∈Z

∣∣∣ ∫
I

eitω Im
(r+
s )|j|

r+
s − (r+

s )−1
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3, ∀ t ∈ R. (3.13)

We split I as I = I1 ∪ I2 where I1 = [−4 max{b−2
1 , b−2

2 }, 4b−2
s ] and I2 = [4b−2

s , 0]. If ω ∈ I1,

the following equation

r +
1

r
= 2 + ωb2

s

has real roots and then ∫
I

eitω Im
(r+
s )|j|

r+
s − (r+

s )−1
dω = 0.

When ω ∈ I2, root rs of equation rs + 1
rs

= 2 + ωb2
s has the form rs = e−iθ, θ ∈ [0, π].

Using the change of variables ω = b−2
s (2 cos θ − 2) we get∫

I2

eitω Im
(r+
s )|j|

r+
s − (r+

s )−1
dω = 2b−2

s

∫ π

0

eitb
−2
s (2 cos θ−2) Im

e−i|j|θ

e−iθ − eiθ
sin θdθ

=− 2b−2
s

∫ π

0

eitb
−2
s (2 cos θ−2) Im

e−i|j|θ

2i sin θ
sin θdθ

=b−2
s

∫ π

0

eitb
−2
s (2 cos θ−2) Re e−i|j|θdθ

=
b−2
s

2

∫ π

0

eitb
−2
s (2 cos θ−2)(ei|j|θ + e−i|j|θ)dθ.

Van der Corput’s Lemma applied to the phase function φ(θ) = (2 cos θ− 2)b−2
s + jθ/t shows

that ∣∣∣ ∫ π

0

eit(2 cos θ−2)b−2
s eijθdθ

∣∣∣ ≤ C(bs)(|t|+ 1)−3, ∀ t ∈ R,∀j ∈ Z (3.14)

The proof of (3.12) is now finished.

Step II. Proof of (3.11). It is sufficient to prove that

sup
j,k∈N

∣∣∣ ∫
I

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3, ∀t ∈ R.

To fix the ideas let us assume that b2 ≤ b1. We split interval I as follows I = I1 ∪ I2 where

I1 = [−4b−2
2 ,−4b−2

1 ] and I2 = [−4b−2
1 , 0]. We remark that on I1, r+

1 ∈ R and r+
2 ∈ C \R. On

I2 both r+
1 and r+

2 belong to C \ R. We prove that

sup
j,k∈N

∣∣∣ ∫
I1

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3 (3.15)
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and

sup
j,k∈N

∣∣∣ ∫
I2

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3. (3.16)

Let us set h(ω) = b−2
2 (1 − r+

2 (ω)) + b−2
1 (1 − r+

1 (ω)) Using the same arguments as in the

proof of Lemma 3.2.4 we get that |h(ω)| ≥ C(b1, b2)|ω|1/2. Then, on I1, |h(ω)| ≥ c > 0.

Moreover |h′(ω)| ≤ c2 <∞. Using integration by parts we obtain that∣∣∣ ∫
I1

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω
∣∣∣

≤ sup
x∈I1

∣∣∣ ∫ x

−4b−2
2

eitω(r+
1 )j(r+

2 )kdω
∣∣∣(‖1/h‖L∞(I1) + ‖(1/h)′‖L1(I1)

)
≤ C(b1, b2) sup

x∈I1

∣∣∣ ∫ x

−4b−2
2

eitω(r+
1 )j(r+

2 )kdω
∣∣∣.

A similar argument shows that∣∣∣ ∫ x

−4b−2
2

eitω(r+
1 )j(r+

2 )kdω
∣∣∣ ≤ sup

y≤x

∣∣∣ ∫ y

−4b−2
2

eitω(r+
2 )kdω

∣∣∣(‖(r+
1 )j‖L∞(I1) + ‖((r+

1 )j)′‖L∞(I1)

)
.

Observe that for ω ∈ I1, r+
1 (ω) given by

r+
1 (ω) =

2 + b2
1ω −

√
(2 + b2

1ω)2 − 4

2

is a decreasing function. Thus

‖((r+
1 )j)′‖L1(I1) ≤ ‖(r+

1 )j‖L∞(I1) ≤ 1, ∀j ∈ N.

The proof of (3.15) is now reduced to the following estimate:

sup
y∈I1

∣∣∣ ∫ y

−4b−2
2

eitω(r+
2 (ω))kdω

∣∣∣ ≤ C(b1, b2)(|t|+ 1)−1/3,∀k ∈ N, t ∈ R.

Making the change of variables ω = b−2
2 (2 cos θ − 2) and applying Van der Corput’s Lemma

as in the final step of Step I we obtain that∣∣∣ ∫ y

−4b−2
2

eitω(r+
2 (ω))kdω

∣∣∣ = 2b−2
2

∣∣∣ ∫ π

2 arcsin(b22/y)

eitb
2
2(2 cos θ−2)e−ikθ sin θdω

∣∣∣ ≤ C(b2)(|t|+ 1)−1/3.

We now prove (3.16). We first make the change of variables ω = b−2
1 (2 cos θ − 2). Thus∫

I2

eitω
(r+

1 )j(r+
2 )k

b−2
2 (1− r+

2 ) + b−2
1 (1− r+

1 )
dω = 2b−2

1

∫ π

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ,

where h(θ) = b−2
2 (1− r+

2 (θ)) + b−2
1 (1− r+

1 (θ)), r+
1 (θ) = e−iθ and r+

2 (θ) = e−2i arcsin(b2b
−1
1 sin θ

2
).
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Using that far from θ = 0 function h satisfies |h(θ)| > 0 we choose a small parameter ε

and split our integral as follows:∫ π

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ = T1 + T2

=

∫ ε

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ

+

∫ π

ε

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θ

h(θ)
dθ.

Observe that on interval [0, ε]∥∥∥sin θ

h(θ)

∥∥∥
L∞(0,ε)

+
∥∥∥ d
dθ

(
sin θ

h(θ)
)
∥∥∥
L1(0,ε)

≤M <∞

and on interval [ε, π] ∥∥∥ 1

h(θ)

∥∥∥
L∞(ε,π)

+
∥∥∥ d
dθ

(
1

h(θ)
)
∥∥∥
L1(ε,π)

≤M <∞.

Then we have the following estimates for T1 and T2

|T1| ≤M sup
x∈[0,ε]

∣∣∣ ∫ x

0

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
)dθ
∣∣∣

and

|T2| ≤M sup
x∈[ε,π]

∣∣∣ ∫ π

x

eitb
−2
1 (2 cos θ−2)e−ijθe−2ik arcsin(b2b

−1
1 sin θ

2
) sin θdθ

∣∣∣.
We now apply the following lemma that we prove later.

Lemma 3.2.5. Let a ∈ (0, 1] and 0 ≤ δ ≤ π. There exists C(a, δ) such that for all real

numbers y, z and t∣∣∣ ∫ π

δ

eit(2 cos θ+2z arcsin(a sin θ
2

))eiyθ sin θdθ
∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3 (3.17)

and if δ > 0 ∣∣∣ ∫ π−δ

0

eit(2 cos θ+2z arcsin(a sin θ
2

))eiyθdθ
∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3. (3.18)

We obtain that

|T1| ≤MC(a, ε)(|t|+ 1)−1/3

and

|T2| ≤MC(a, ε)(|t|+ 1)−1/3.

The proof of Theorem 3.0.6 is now finished.
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Proof of Lemma 3.2.5. Since the integrals in (3.17) and (3.18) are on bounded intervals it

is sufficient to prove that, for t large enough, each of the integrals is bounded by |t|−1/3. In

the case of (3.17) we will consider the case δ = 0 since the proof for δ > 0 is similar.

Let us denote by ψ either the function χ(0,π−δ) or sin θ. We set

p(θ) = 2 cos θ + 2z arcsin(a sin
θ

2
), θ ∈ [0, π].

Using the Maple software we obtain that

min
θ∈[0,π]

[(p′′(θ))2 + (p′′′(θ))2] ≥ min
{

4 +
z2a2(a2 − 1)

2

16
,

a2

4(1− a2)

(
z − 4

√
1− a2

a

)2
}
.

If z is such that |z − 4
√

1−a2
a
| ≥ ε > 0 then Van der Corput’s lemma applied to the phase

function p(θ) + yθ/t guarantees that∣∣∣ ∫ π

0

eitp(θ)eiyθψ(θ)dθ
∣∣∣ ≤ C(a, ε)(|t|+ 1)−1/3.

Assume now that |z − 4
√

1−a2
a
| < ε with ε small enough that we will specify later. Let us

write

z =
4
√

1− a2

a
+ b

with b a small parameter such that |b| < ε. With this notation p(θ) = pb(θ) = q(θ) + br(θ)

where

q(θ) = 2 cos(θ) +
8
√

1− a2

a
arcsin(a sin

θ

2
)

and

r(θ) = 2 arcsin(a sin
θ

2
).

Solving system (q′′(θ), q′′′(θ)) = (0, 0) with Maple software we obtain that it has a unique

solution θ = π. Thus for any δ < π there exists a positive constant c(a, δ) such that

|q′′(θ)|+ |q′′′(θ)| ≥ c(a, δ), ∀ θ ∈ [0, π − δ].

It implies the existence of an ε = ε(a, δ) such that for all |b| ≤ ε

|p′′b (θ)|+ |p′′′b (θ)| ≥ c(a, δ)− |b| sup
x∈[0,π]

(|r′′|+ |r′′′|) ≥ c(a, δ)

2
, ∀ θ ∈ [0, π − δ].

Hence, Van der Corput’s Lemma applied to the phase function pb(θ) + yθ/t guarantees that∣∣∣ ∫ π−δ

0

eitpb(θ)eiyθψ(θ)dθ
∣∣∣ ≤ C(a, δ)(|t|+ 1)−1/3, ∀|b| < ε,∀ t, y ∈ R.

The proof of (3.18) is finished.
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To prove estimate (3.17) it remains to show that we can choose δ(a) small enough such

that for all |b| < ε

|Ib(t)| :=
∣∣∣ ∫ π

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ
∣∣∣ ≤ C(a)(|t|+ 1)−1/3, ∀y, t ∈ R. (3.19)

The Taylor expansions of q and r near θ = π are as follows

q(θ) =
−2a+ 8

√
1− a2 arcsin (a)

a
− 1

16

(2 a2 − 1) (θ − π)4

−1 + a2
− 1

384

(4 a2 − 1) (θ − π)6

(−1 + a2)2 +O((θ−π)8),

and

r(θ) = 2 arcsin (a)− 1

4

a√
1− a2

(θ − π)2 +
1

192

a (2 a2 + 1)

(1− a2)3/2
(θ − π)4 +O

(
(θ − π)6) .

Also the second derivatives of q and r satisfy

q′′(θ) = −3

4

(2 a2 − 1) (θ − π)2

−1 + a2
+O(|θ − π|4) as θ ∼ π,

and

r′′(θ) = −1

2

a√
1− a2

+O(θ − π)2 as θ ∼ π.

Observe that for a 6= 1/
√

2, the second derivative of q behaves as (θ − π)2 near θ = π.

Otherwise it behaves as (θ − π)4 near the same point. Since the proof of (3.19) is quite

different in the two cases we will treat then separately.

In the sequel δ(a) is chosen such that we can compare q and r with their Taylor expressions

near θ = π.

Case 1. a 6= 1/
√

2. The main idea is to split the interval [π − δ(a), π] in three intervals

where we can compare |θ − π| with |b|1/2 and decide which of them dominates the other:

[π − δ(a), π] = [π − δ(a), π − α2|b|1/2] ∪ [π − α2|b|1/2, π − α1|b|1/2] ∪ [π − α1|b|1/2, π],

where α1 << 1 << α2 are independent of b but depend on the parameter a. More precisely

the parameters α1 and α2 are chosen in terms of the first two coefficients of the Taylor

expansion of functions q and r near θ = π.

Let us consider the interval [π − δ(a), π − α2|b|1/2] with α2 large enough. In this interval

|θ−π| dominates |b|1/2 and we apply Lemma 1.3.1. We check the hypotheses of this lemma.

In this interval the first derivative of pb is of the same order as |θ − π|3 :

|p′b(θ)| ≥ |q′(θ)| − |b||r′(θ)| ≥ C1|θ − π|(|θ − π|2 − C2|b|) ≥ C3|θ − π|3

and

|p′b(θ)| ≤ |q′(θ)|+ |b||r′(θ)| ≥ C4|θ − π|(|θ − π|2 + C5|b|) ≥ C6|θ − π|3.
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Also, the second derivative satisfies:

|p′′b (θ)| ≥ |q′′(θ)| − |b||r′′(θ)| ≥ C7(|θ − π|2 − C8|b|) ≥ C9|θ − π|2

and

|p′′b (θ)| ≤ |q′′(θ)|+ |b||r′′(θ)| ≥ C10(|θ − π|2 + C11|b|) ≥ C12|θ − π|2.

We emphasize that all the above constants are independent of b. Observe that on the

considered interval |p′′b | & |b|. If we try to apply Van der Corput’s Lemma with k = 2 we

obtain∣∣∣ ∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ
∣∣∣ ≤ (|tb|)−1/2 max

[π−δ(a),π−α2|b|1/2]
| sin θ| ≤ C(δ(a))|tb|−1/2,

an estimate that is not uniform in the parameter b.

However, using Lemma 1.3.1 we obtain the existence of a constant C depending on all

the constants Ci, i = 1, ..., 12 but independent of the parameter b, such that∣∣∣ ∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ
∣∣∣ =

∣∣∣ ∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ|p′′b (θ)|1/2
sin(θ)

|p′′b (θ)|1/2
dθ
∣∣∣ (3.20)

≤ C|t|−1/2
(

max
[π−δ(a),π−α1|b|1/2]

| sin(θ)|
|p′′b (θ)|1/2

+

∫ π−α2|b|1/2

π−δ(a)

∣∣∣( sin(θ)

|p′′b (θ)|1/2
)′

(θ)
∣∣∣dθ)

≤ C|t|−1/2 max
[π−δ(a),π−α2|b|1/2]

| sin(θ)|
|p′′b (θ)|1/2

. C|t|−1/2 max
[π−δ(a),π−α2|b|1/2]

| sin(θ)|
|θ − π|

. C|t|−1/2.

On the interval [π − α2|b|1/2, π − α1|b|1/2] the third derivative of pb satisfies:

|p′′′(θ)| ' |θ − π||C(a) + b| ' |b|1/2,

since C(a) 6= 0 in the case a 6= 1/
√

2. Applying Van der Corput’s Lemma with k = 3 we get∣∣∣ ∫ π−α1|b|1/2

π−α2|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ . (|tb|1/2)−1/3 max
θ∈[π−α2|b|1/2,π−α1|b|1/2]

| sin θ| . |t|−1/3. (3.21)

On interval [π − α1|b|1/2, π] with α1 small enough, the term |br′′(θ)| dominates |q′′(θ)|.
The the behavior of p′′b (θ) is given by |br′′(θ)|:

|p′′b (θ)| ≥ |br′′(θ)| − |q′′(θ)| ≥ C1(|b| − C2|θ − π|2) ≥ C3|b|,

for some positive constants C1 and C2 independent of the parameter b. Applying Van der

Corput’s Lemma with k = 2 we get∣∣∣ ∫ π

π−α1|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ . (|tb|)−1/2 max
θ∈[π−α1|b|1/2,π]

| sin θ| . |t|−1/2. (3.22)
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Using (3.20), (3.21) and (3.22) we obtain that (3.19) holds uniformly for all |b| < ε, y and

t real numbers.

Case 2. a = 1/
√

2. In this case the Taylor expansion of function q at θ = π is given by

q(θ) =
−2a+ 8

√
1− a2 arcsin (a)

a
− 1

384

(4 a2 − 1) (θ − π)6

(−1 + a2)2 +O(|θ − π|8).

We split the interval [π − δ(a), π] as follows:

[π − δ(a), π] =[π − δ(a), π − α3|b|1/4] ∪ [π − α3|b|1/4, π − α2|b|1/4]

∪ [π − α2|b|1/4, π − α1|b|1/2] ∪ [π − α1|b|1/2, π],

where α2 << 1 << α3 and all α1, α2, α3 are independent of b.

On the first interval [π− δ(a), π−α3|b|1/4] we apply Lemma 1.3.2. We have to check that

the first third derivatives behave as powers of |θ − π| in this interval. Observe that

|p′b(θ)| ≥ C1|θ − π|(|θ − π|4 − C2|b|) ≥ C3|θ − π|5

and

|p′b(θ)| ≤ C4|θ − π|(|θ − π|4 + C5|b|) ≥ C6|θ − π|5.

In a similar manner

C7|θ − π|4 ≤ |p′′b (θ)| ≤ C8|θ − π|4.

Also the third derivative satisfies

|p′′′b (θ)| ≥ C9|θ − π|(|θ − π|2 − C10|b|) ≥ C11|θ − π|3

and

|p′′′b (θ)| ≤ C12|θ − π|(|θ − π|2 + C13|b|) ≥ C14|θ − π|3.

We now apply Lemma 1.3.2 taking into account that all the above constants are independent

of b and we obtain∣∣∣ ∫ π−α3|b|1/4

π−δ(a)

eitpb(θ)eiyθ sin θdθ
∣∣∣ =

∣∣∣ ∫ π−α3|b|1/4

π−δ(a)

eitpb(θ)eiyθ|p′′′b (θ)|1/3 sin θ

|p′′′b (θ)|1/3
dθ
∣∣∣ (3.23)

. |t|−1/3
(

max
[π−δ(a),π−α3|b|1/4]

| sin θ|
|p′′′b (θ)|1/3

+

∫ π−α3|b|1/4

π−δ(a)

∣∣∣( sin θ

|p′′′b (θ)|1/3
)′∣∣∣dθ)

. |t|−1/3 max
[π−δ(a),π−α3|b|1/4]

| sin θ|
|p′′′b (θ)|1/3

. |t|−1/3 max
[π−δ(a),π−α3|b|1/4]

| sin θ|
|θ − π|

≤ C|t|−1/3.
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In the case of the interval [π − α3|b|1/4, π − α2|b|1/4] we apply Van der Corput’s Lemma

with k = 3 and use that

|p′′′b (θ)| ≥ C1|θ − π|(|θ − π|2 − C2|b|) ≥ C1|θ − π|(α2
2|b|1/2 − C2|b|) ≥ C3|b|1/4+1/2.

Then∣∣∣ ∫ π−α2|b|1/4

π−α3|b|1/4
eitpb(θ)eiyθ sin θ

∣∣∣ ≤ (|t||b|3/4)−1/3 max
[π−α3|b|1/4,π−α2|b|1/4]

| sin θ| ≤ C|t|−1/3. (3.24)

Let us now consider the integral on the interval [π − α2|b|1/4, π − α1|b|1/2]. Observe that

in this case∣∣∣ ∫ π−α1|b|1/2

π−α2|b|1/4
eitpb(θ)eiyθ sin θdθ

∣∣∣ ≤ ∫ π−α1|b|1/2

π−α2|b|1/4
| sin θ|dθ ≤

∫ α2|b|1/4

α1|b|1/2
| sin θ|dθ (3.25)

≤
∫ α2|b|1/4

α1|b|1/2
θdθ ≤ C|b|1/2 ≤ C|t|−1/3,

as long as |b| ≤ |t|−2/3.

We now consider the case |b| ≥ |t|−2/3 and prove that a similar estimate can be obtained.

Observe that on the considered interval the second derivative of pb satisfies

|p′′b (θ)| ≥ |b||r′′(θ)| − |q′′(θ)| ≥ C1(|b| − C2|θ − π|4) ≥ C1(|b| − C2(α2|b|1/4)4) ≥ C3|b|.

Thus, Van der Corput’s Lemma with k = 2 gives us∣∣∣ ∫ π−α1|b|1/2

π−α2|b|1/4
eitpbeiyθ sin θdθ

∣∣∣ . (|tb|)−1/2 max
θ∈[π−α2|b|1/4,π−α1|b|1/2]

| sin θ| ≤ (|tb|)−1/2|b|1/4 (3.26)

≤ |t|−1/2|b|−1/4 ≤ |t|−1/2|t|1/6 = |t|−1/3.

On the last interval [π−α1|b|1/2, π] the term |br′′(θ)| dominates |q′′(θ)|. Then the behavior

of p′′b (θ) in the considered interval is given by |br′′(θ)|:

|p′′b (θ)| ≥ |br′′(θ)| − |q′′(θ)| ≥ C1(|b| − C2|θ − π|4) ≥ C3|b|.

Thus ∣∣∣ ∫ π

π−α1|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ . (|tb|)−1/2 max
θ∈[π−α1|b|1/2,π]

| sin θ| . |t|−1/2. (3.27)

Using the previous estimates (3.23), (3.24), (3.25), (3.26) and (3.27) we obtain that

estimate (3.19) also holds in the case a = 1/
√

2.

The proof of Lemma 3.2.5 is now finished.
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In the case of system (3.8) the proof of Theorem 3.1.2 follows the lines of the proof of

Theorem 3.0.6 by taking into account the representation formula for the resolvent of the

operator A given by (3.9).

Lemma 3.2.6. Let λ ∈ C \ [−4 max{b−2
1 , b−2

2 }, 0] and A given by (3.9). For any g ∈ l2(Z∗)
there exists a unique solution f ∈ l2(Z∗) of the equation (A−λI)f = g. Moreover, it is given

by the following formula

f(j) =
−r|j|s

b−2
1 (r−1

1 − r1) + b−2
2 (r−1

2 − r2)

[
g(0) +

∑
k∈Z1

r
|k|
1 g(k) +

∑
k∈Z2

r
|k|
2 g(k)

]
(3.28)

+
b2
s

rs − r−1
s

∑
k∈Zs

(r|j−k|s − r|j|+|k|s )g(k), j ∈ Zs,

where for s ∈ {1, 2}, rs = rs(λ) is the unique solution with |rs| < 1 of the equation

r2
s − 2rs + 1 = λb2

srs.

We leave the complete details of the proof of Theorem 3.1.2 to the reader.

3.3 Open problems

In this article we have analyzed the dispersive properties of the solutions of a system con-

sisting in coupling two discrete Schrödinger equations. However we do not cover the case

when more discrete equations are coupled. The main difficulty is to write in an accurate

and clean way the resolvent of the linear operator occurring in the system. Once this case

will be understood then we can treat discrete Schödinger equations on trees similar to those

considered in [4] in the continuous case.

There is another question which arises from this paper. Suppose that we have a system

iUt +AU = 0 with an initial datum at t = 0, where A is an symmetric operator with a finite

number of diagonals not identically vanishing. Under which assumptions on the operator

A does solution U decay and how we can characterize the decay property in terms of the

properties of A? When A is a diagonal operator we can use Fourier’s analysis tools but in

the case of a non-diagonal operator this is not useful.
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