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1 Many-valued logics

1.1 Paradoxes of vague terms and fuzzy approach

Human description of the world provides us with remarkable situations of a special kind. Consider
the following form of the sorites paradox (paradox of heap): ”A heap consisting of just one grain of sand
is small. If you add one grain to small heap, it remains small. Therefore, each heap is small.”

To see clearly that there is nothing wrong in the inference of the paradox (in a classical logic ap-
proach), let us formalize: let S(x) stand for ”a heap with x grains of sand is small”. Then the assump-
tions axioms are: S(1) and S(x)⇒ S(x+1). Now, let there be a heap consisting of n grains of sand and
let us prove that the heap is small, i.e. we want to prove S(n). This can be done by repeated application
of modus ponens. Indeed, from S(1) and S(1)⇒ S(2), we get S(2) which together with S(2)⇒ S(3)
gives S(3) etc. Thus we obtain S(n).

Let us consider another example. Let A ≈ B denote the fact that the colors A and B are not much
different. Intuitively clear is that if A is not much different from B and B is not much different from
C, then A is not much different from C, i.e. A ≈ B and B ≈ C implies A ≈ C (transitivity of ≈).
Now, take two colors A and B. There is no doubt that we can find a series B1, . . . , Bn of colors such
that A ≈ B1, B1 ≈ B2, . . . , Bn ≈ B, i.e. a chain of colors starting with A and ending with B such that
the successive colors are not much different. By transitivity, we get A ≈ B, i.e. any two colors are not
much different.

Looking closer at the above paradoxes we find a common feature: they are formulated in natural lan-
guage and contain terms which are referred to as vague (”small”, ”not much different”). When analyzing
paradoxes, terms used to formulate them should have exact meaning. And there is a problem with vague
terms because they have no exact meaning.

The discussion leads us to an old tradition in science, namely to the ideal of precision and to the
principle of bivalence. Statements that are to be useful and scientific statements in particular have been
traditionally required to be precise (the more, the better). Thus, data were required to be as precise as
possible in order to be considered serious, valuable. On the other hand, if the data were not precise,
they were considered unreliable and somewhat suspicious. This view is called ideal of precision and
is prevailed in philosophy and science for centuries (and still has a strong influence up to now). The
principle of bivalence says that any statement is either true or false. Thus, given a number x, either ”x in
odd” is true or ”x is odd” is false; given a heap h, either ”h is small” is true or ”h is small” is false.

Lofti A. Zadeh recognize vagueness as immanent to human description of the world. He proposed
a natural formalism, so-called fuzzy sets, for dealing with vagueness. Zadeh’s motivations came from
systems engineering. In his paper [21] he summarized the arguments:

More often than not, the classes of objects encountered in the real physical world do not have pre-
cisely defined criteria of membership. For example, the class of animals clearly includes dogs, horses,
birds, etc. as its members, and clearly excludes such objects as rocks, fluids, plants etc. However, such
objects as starfish, bacteria etc. have an ambiguous status with respect to the class of animals. The same
kind of ambiguity arises in the case of a number such as 10 in relation to the ”class” of all real numbers
which are much greater than 1.

Clearly, the ”class of all real numbers which are much greater than 1”, or ”the class of beautiful
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women”, or ”the class of tall men”, do not constitute classes or sets in the usual mathematical sense
of these terms. Yet, the fact remains that such imprecisely defined ”classes” play an important role in
human thinking, particularly in the domains of pattern recognition, communication of information, and
abstraction.

Zadeh came up with the concept of a fuzzy set:

A fuzzy set (class) A in X is characterized by a membership (characteristic) function fA(X) which
associates with each point in X a real number in the interval [0, 1], with the value of fA(x) at x repre-
senting the ”grade of membership” of x in A. Thus, the nearer the value of fA(x) to unity, the higher
the grade of membership of x in A. When A is a set in the ordinary sense of the term, its membership
function can take on only two values 0 and 1, with fA(x) = 1 or 0 according as x does or does not
belong to A. Thus, in this case fA(x) reduces to the familiar characteristic function of a set A.

Zadeh’s message points out two important facts. First, collections of objects encountered in human
description of the world are, more often than not, nonsharp in that there is a gradual transition between
being a member and not being a member of the collection. Second, classical mathematics does not have
means for description of such collections in a natural way. To overcome this difficulty, Zadeh proposed
the concept of a fuzzy set as a formal model of a collection with gradual transition from non-membership
to membership. The main idea is that, in addition to ”fully belong” (truth value 1) and ”fully not belong”
(truth value 0), there can also be other cases (other truth values) of belonging of an element to a fuzzy set;
being a member of a fuzzy set is thus a graded property. This is in contrary with the principle of bivalence
stating that a property either applies to an element or not. A fuzzy set is specified by a rule assigning
to each element of a given universe set its membership degree, i.e. the degree to which the element
belongs to the fuzzy set. Formally, fuzzy sets are just those rules: a fuzzy setA in a given universeX is a
mapping of X into L, where L is a suitable set of membership degrees; A(x), the element of L assigned
to x by A, is called the membership degree of x in A. A(x) can be thought as the truth degree (truth
value) of the proposition ”x belongs to A”. Note that in the above quoted paper, Zadeh distinguishes
a fuzzy set A from its membership function fA (the membership degree of x in A is then fA(x), not
A(x)); some authors proceed this way, we will not. Assigning (possibly intermediate) truth degrees to
elementary propositions like ”an element belongs to a fuzzy set” is a particular case of a more general
one. In general, propositions may be composed out of elementary propositions using logical connectives
and quantifiers and possible other connectives. In this way, one obtains propositions like ”for all x and
y, if x is big and if x and y do not differ much, then y is also big” containing elementary propositions
that concern possibly non-sharp collections or relationship.

Intuitively, truth degrees can be compared, and 0 (degree corresponding to full falsity) and 1 (degree
corresponding to full truth) are the least and the greatest truth degrees, respectively. Thus, L is a partially
ordered set and bounded by 0 and 1. The most appealing set of truth degrees is the interval [0, 1] (or
some of its subsets containing 0 and 1) with its natural ordering.

The approach to modeling where acknowledges are gradual transitions from non-being a member to
being a member of a collection, from not having to having a relationship, from not being true to being
true, etc., and that uses the concept of a truth degree with the understanding that there are intermedi-
ate truth degrees (between 0 and 1) is called fuzzy approach or, perhaps more succinctly, graded truth
approach.
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Fuzzy approach seems to be most natural in modeling of human reasoning and human description
of the outer world. For example, consider the term tall man. Using fuzzy approach, the collection of
tall men can be modeled by a fuzzy set A to which a man 5 feet tall belongs with membership degree 0
(is not tall at all), a man 6 feet tall belongs with membership degree 0.8 and a man 6 feet 5 inches tall
belongs with membership degree 1 (is absolutely tall). If we were to model the collection of tall men by
an ordinary set B, one would have to pick up a particular height x (say 6 feet) and define B to be the
set of those men whose height is at least x. This yields problems: First, why just x? Second and more
important, a man whose height is just a little bit under 6 feet is not considered tall while a man who is 6
feet tall is - this is very counterintuitive.

Using graded truth approach, the sorites paradox can be resolved. Being a small heap is clearly
a graded property and thus, S(x) can take more truth values that just 0 or 1, heaps with less grains
are ”more small” than heaps with more grains. Take the real interval [0, 1] for the set of truth values.
Consider the axioms (S(1) and S(x)⇒ S(x+ 1)). There is no doubt that a heap consisting of one grain
is small, i.e. we can accept S(1) with the truth degree 1. On the other hand, it is intuitively appealing
that S(x) ⇒ S(x + 1) should be accepted with a high truth degree which is, however, (strictly) less
than 1, say 0.999 (the exact value does not matter for the argument). A direct generalization of modus
ponens gives the following: if the truth degree of ϕ is (at least) a and the truth degree of ϕ ⇒ ψ is (at
least) b, then the truth degree of ψ is (at least) the truth degree of ϕ&(ϕ ⇒ ψ). Then if ⊗ defined by
a⊗ b = max(0, a+ b− 1) is the operation corresponding to the connective & (we will see later that this
is a reasonable choice, but we will also see that there are other reasonable choices), the truth degree of
ϕ&(ϕ⇒ ψ) is (at least) a⊗ b.

But now, there is no paradox any more. Indeed, let ‖ ϕ ‖ denote the truth degree of ϕ. Then
from ‖ S(1) ‖= 1 and ‖ S(1) ⇒ S(2) ‖= 0.999 we get ‖ S(2) ‖≥ 0.999 which together with
‖ S(2)⇒ S(3) ‖= 0.999 gives ‖ S(3) ‖≥ 0.9992 which ... together with ‖ S(n−1)⇒ S(n) ‖= 0.999
gives ‖ S(n) ‖≥ 0.999n−1 (the power is taken w.r.t ⊗, so 0.9993 is 0.999 ⊗ 0.999 ⊗ 0.999). So,
for example, we can deduce that the truth degree of ”a heap with 11 grains of sand is small” is (at
least) 0.99910 = 0.99, that the truth degree of ”a heap with 201 grains of sand is small” is (at least)
0.999200 = 0.8 etc (one may change 0.999 to get intuitively more acceptable results).

The graded truth approach also helps to resolve the paradox “any two colors are not much different”.
The point to be rejected is the assumption that the relation “not much different” is a bivalent one (i.e.
two colors either are much different or are not much different). We should rather construct the relation
≈ as admitting graded truth which is quite a natural assumption. For example, take colors A, B and C
with wave-lengths x, y and z, respectively, and suppose, moreover, x < y < z and ‖x− y‖ < ‖y − z‖.
Then A is closer to B than B is to C, and thus the truth value of A ≈ B is greater that the truth
value of B ≈ C. Starting from the (intuitively acceptable) assumption that the formula “if A ≈ B and
B ≈ C then A ≈ C” (transitivity of ≈) should be true and taking again [0, 1] as the set of truth grades
and product the operation corresponding to conjunction (we stress again that it is only one particular
choice of many others possible), graded approach to ≈ translates the assumption into the condition
‖ A ≈ B ‖ · ‖ B ≈ C ‖≤‖ A ≈ C ‖ (‖ X ‖ denotes the truth value of X). Thus, if, for instance, the
truth values of “A and B are not much different” and “B and C are not much different” are 0.8 and 0.5,
respectively, then the restriction imposed on A and C by “if A ≈ B and B ≈ C then A ≈ C” is the truth
degree of “A and C are not much different” is at least ‖ A ≈ B ‖ · ‖ B ≈ C ‖= 0.8 · 0.5 = 0.4 which
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is intuitively satisfactory.

As demonstrated, replacing bivalence with graded truth approach extends the scope of modeling ca-
pabilities of logic beyond the original limits forced by bivalence. Ignoring fuzzy approach in applications
does not necessarily have to lead to a “disaster” like in the case of the paradoxes. It may, however, imply
a significant loss compared to the situation when fuzzy approach is used. In this sense, the paradoxes are
extreme examples showing the usefulness of fuzzy approach.

1.2 Fuzzy logic: formal foundations of fuzzy approach

Multiple-valued logic and fuzzy logic are the main tools to deal with vague knowledge modelized by
means of fuzzy sets. These logics allow to handle propositions involving vague predicates. In multiple-
valued logics, we assume that all the informations are complete, while in the fuzzy logic we assume that
available information is imprecise or vague. In this thesis we will deal with multiple-valued logic, but
sometimes we will not make the difference between multiple-valued logic and fuzzy logic, i.e. we will
just consider them tools for dealing with vague predicates.

These days, the term fuzzy logic is used basically in two ways. In the broad sense, fuzzy logic is
understood to cover any kind of methods and applications inspired by fuzzy approach. In the narrow
sense, fuzzy logic refers to logical calculi that admit propositions to take intermediate truth values (be-
tween 0 and 1) which are interpreted as truth degrees; these calculi aim at formalization of reasoning in
the presence of vagueness.

The main concern of fuzzy logic in the broad sense is to provide tools enabling us to deal with and
utilize fuzziness. Inspiration for this is the kind of approximate reasoning people perform when reasoning
with “fuzzy data” in everyday life.

Formal rules of reasoning are the subject of logic. If we allow fuzziness, i.e. more truth degrees, we
get to fuzzy logic (in the narrow sense). This is the way fuzzy logic in the broad and narrow senses are
connected: fuzzy logic in the narrow sense offers foundations for fuzzy logic in the broad sense.

Among other things, fuzzy logic in the narrow sense tells us: how to express formally propositions
formulated in natural language (mathematically: what is the language of fuzzy logic, what are formulas),
how to formally describe the (part of a) real world the propositions refer to (mathematically: what are
structures in which formulas are evaluated), how to interpret natural language connectives (like “...or...”,
“...and...”, “if...then...”) and quantifiers (like “for all...”, “for some...”) that apply to propositions with
possibly intermediate truth values (mathematically: what is the semantics of connectives and quantifiers
in fuzzy setting), how to evaluate truth degrees of propositions, how propositions follow from other
propositions that are possibly valid to only a certain degree and how to formalize approximate inference
(that is: what is deduction, provability etc. in fuzzy logic), what are the properties of approximate
inference (that is: what about classical properties like syntactic-semantical completeness etc).

1.3 Basic systems of Many-Valued Logics

If one looks systematically for many-valued logics which have been designed for quite different
applications, one finds four main types of systems:
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• the Gödel logics Gk from [11]

• the Łukasiewicz logics Łk as explained in [16]

• the Product logic
∏

studied in [14]

• the Post logics Pm, for 2 ≤ m ∈ N, from [18]

The first two types of many-valued logics each offer a uniformly defined family of systems which
differ in their sets of truth degrees and comprise finitely valued logics for each one of the truth degree sets
together with an infinite valued system with truth degree set, which formally is indicated by choosing
k ∈ {n ∈ N | n ≥ 2} ∪∞. For the fourth type an infinite valued version is lacking.

In their original presentations, these logics look rather different, regarding their propositional parts.
For the first order extensions, however, there is a unique strategy: one adds a universal and an existential
quantifier such that quantified formulas get, respectively, as their truth degrees the infimum and the
supremum of all the particular cases in the range of the quantifiers.

1.3.1 The Gödel logics

The simplest one of these logics are the Gödel logics Gk which have a conjunction ∧ and a disjunc-
tion ∨ defined by the minimum and the maximum, respectively, of the truth degrees of the constituents:

u ∧ v = min(u, v) u ∨ v = max(u, v) (1)

These Gödel logics have also a negation ∼ and an implication →G defined by the truth degree
functions:

∼ u =

{
1, if u = 0;
0, if u > 0.

u→G v =

{
1, if u ≤ v;
v, if u > v.

This systems differ in their truth degree sets: for each 2 ≤ k ≤ ∞, the truth degree set of Gk is
Wk = { m

k−1 | 0 ≤ m ≤ k − 1}.

1.3.2 The Łukasiewicz logics

The Łukasiewicz logics Lk, again with 2 ≤ k ≤ ∞, have originally been designed in [16] with
only two primitive connectives, an implication →L and a negation ¬ characterized by the truth degree
functions:

¬u = 1− u u→L v = min{1, 1− u+ v}

The systems differ in their truth degree sets: for each 2 ≤ k ≤ ∞ the truth degree set of Lk is
Wk = { m

k−1 | 0 ≤ m ≤ k − 1}.

However, it is possible to define further connectives from these primitive ones. With

ϕ&ψ =df ¬(ϕ→L ¬ψ) ϕ∨ψ =df ¬ϕ→L ψ
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one gets a (strong) conjunction and a (strong) disjunction with truth degree functions

u&v = max{u+ v − 1, 0} u∨v = min{u+ v, 1} (2)

usually called the Łukasiewicz (arithmetical) conjunction and the Łukasiewicz (arithmetical) disjunction.
It should be mentioned that these connectives are linked together via a De Morgan law using the standard
negation of this system:

¬(u&v) = ¬u∨¬v.

With the additional definitions

ϕ ∧ ψ =df ϕ&(ϕ→L ψ) ϕ ∨ ψ =df (ϕ→L ψ)→L ψ

one gets another (weak) conjunction ∧ with the truth degree function min and a further (weak) disjunc-
tion ∨ with max as truth degree function, i.e. one has the conjunction and the disjunction of the Gödel
logics also available.

1.3.3 The Product logic

The product logic
∏

has a fundamental conjunction � with the ordinary product of reals as its truth
degree function, as well as an implication→∏ with truth degree function

u→∏ v =

{
1, if u ≤ v;
v
u , if u > v.

Additionally it has a truth degree constant 0 to denote the truth degree zero.

In this context, a negation and a further conjunction are defined as

∼ ϕ =df ϕ→∏ 0 ϕ ∧ ψ =df ϕ� (ϕ→∏ ψ).

Routine calculations show that both connectives coincide with the corresponding ones of the infinite
valued Gödel logic G∞. And also the disjunction ∨ of this Gödel logic becomes available via the
definition

ϕ ∨ ψ =df ((ϕ→∏ ψ)→∏ ψ) ∧ ((ψ →∏ ϕ)→∏ ϕ).

There is, however, no natural way to combine with this (infinite valued) product logic a whole family of
finite valued systems by simply restricting the set of truth degrees to some Wm as in the previous two
cases: besides W2 no such set is closed under the ordinary product, and for W2 the product coincides
with the minimum operation, where Wm = { k

m−1 | 0 ≤ k ≤ m− 1}.
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1.3.4 The Post logics

The Post system Pm, for m ≥ 2, has truth degree set Wm = { k
m−1 | 0 ≤ k ≤ m − 1}. These

propositional systems have been originally formulated uniformly in negation and disjunction as basic
connectives with the following truth degree functions:

∼ u =

{
1, if u = 0;
u− 1

m−1 , if u 6= 0
u ∨ v = max{u, v}.

Contrary to the previous systems, the definition of the negation here does not seem to be given in a
uniform way independent of the number of truth degrees. However, it is always just a cyclic permutation
of all truth degrees (in their natural order).

1.4 Graded truth and structures of truth values

From the previous discussion it is clear that the structure of the set of truth values deserves special at-
tention. The aim of this subsection is to show how certain natural logical assumptions reflect themselves
in corresponding properties of the structure of truth values.

The graded truth approach directly leads to the assumption that the set L of truth values is partially
ordered (we denote the partial order by ≤) with 0 and 1 being the least and the greatest element, respec-
tively. For every two truth values a and b there is a truth value greater than both a and b (one can take 1).
Moreover, one may require that there is the least truth value which is greater than both a and b. In this
way we come to the requirement of existence of suprema (and dually of infima) of two-element subsets
in L. Let {ϕi | i ∈ I} be a set of propositions. A generalization from the classical case of two-valued
logic leads to the assumption that the truth value of ”there exists i ∈ I such that ϕi” is the supremum of
the truth values of ϕ, i.e. ‖ ”there exists i ∈ I such that ϕi” ‖=

∨
i∈I ‖ ϕi ‖ (‖ ϕ ‖ is the truth value

of ϕ). Therefore, if one wants to evaluate such existential (and dually, universal) propositions, suprema
(and infima) of arbitrary subsets of L should exist. In this way one comes to the assumption that L should
be a complete lattice.

We now get to the question of operations on L which model logical connectives. The general prin-
ciple to which we adhere says that they should extend the classical operations in that restricting the
operations to ”classical truth values” 0 and 1, they coincide with classical operations. Furthermore, as
in the classical case we want the logic to be truth functional, i.e. the truth value of a compound formula
depends only on the truth values of its parts. We start by conjunction (we denote it by &). Denote the
operation which corresponds to & by ⊗, i.e. ⊗ is a binary operation on L. Since ⊗ should extend the
operation corresponding to classical conjunction, we require 1⊗ 1 = 1, 1⊗ 0 = 0× 1 = 0× 0 = 0. If
we want the truth value of ϕ&ψ to be the same as the truth value of ψ&ϕ, the truth functionality leads
to the requirement of commutativity of ⊗. Similarly, if the truth values of ϕ&(ψ&χ) and (ϕ&ψ)&χ are
to be the same, truth functionality leads to the associativity of ⊗. In this way we came to the assumption
that (L,⊗, 1) is a commutative monoid. Furthermore, it is intuitively appealing to require that ⊗ is non-
decreasing, i.e. that a1 ≤ a2 and b1 ≤ b2 imply a1 ⊗ b1 ≤ a2 ⊗ b2 (the bigger the truth degrees of two
propositions the bigger the truth degree of their conjunction).

Let us turn to implication. In classical logic, conjunction and implication play an important role
in the formulation of an inference rule called modus ponens. Modus ponens says that if ϕ is valid and
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ϕ⇒ ψ is valid (⇒ denote ”implies”) then (we may infer that) ψ is valid. Let us now reformulate a little
bit using validity degree. Let us say that ϕ is valid in degree 1 if ϕ is valid and that ϕ is valid in degree 0
if ϕ is not valid (we have no other degrees than 0 and 1 in bivalent logic). A moment’s reflection shows
that an equivalent formulation of modus ponens is the following one: if ϕ is valid in degree at least a,
and ϕ⇒ ψ is valid in degree at least b (a, b ∈ {0, 1}), then ψ is valid in degree at least a⊗2 b (⊗2 denote
the operation on {0, 1} that corresponds to classical conjunction). This rule is sound in the following
sense: if ϕ and ψ are formulas such that a ≤‖ ϕ ‖ and b ≤‖ ϕ⇒ ψ ‖, then a⊗2 b ≤‖ ψ ‖. This means
that when using modus ponens it cannot happen that ”we infer more than is actually true”, i.e. it cannot
happen that the actual truth degree of ψ is less than the degree inferred by modus ponens. Therefore, the
role of ⊗2 in modus ponens is to get the lower estimation of the validity of the inferred formula ψ from
the lower estimations of validities of ϕ and ϕ ⇒ ψ. It is easy to see that ⊗2 gives the highest possible
estimation under the condition that the inference rule still be sound.

This way of looking at modus ponens is suitable for generalization to graded-truth case. Knowing
that a ≤‖ ϕ ‖ and b ≤‖ ϕ ⇒ ψ ‖ (a, b ∈ L) we want to use ⊗ to (1) obtain the lower estimation of
validity of ψ. Moreover, we want (2) to obtain the highest possible lower estimation such that the rule
still be sound. Denote by→ the binary operation on L which corresponds to⇒. Condition (1) translates
then to: a ≤‖ ϕ ‖ and b ≤‖ ϕ ⇒ ψ ‖ implies a ⊗ b ≤‖ ψ ‖, i.e., by truth-functionality, a ≤‖ ϕ ‖ and
b ≤‖ ϕ ‖→‖ ψ ‖ implies a ⊗ b ≤‖ ψ ‖. Putting a =‖ ϕ ‖ and denoting c =‖ ψ ‖, we obtain a special
case of this implication, i.e. b ≤ a → c implies a ⊗ b ≤ c. Condition (2): we want the inference of
modus ponens to be as powerful as possible. From a =‖ ϕ ‖ and ‖ ϕ ⇒ ψ ‖ we get a lower estimation
a ⊗ ‖ ϕ ⇒ ψ ‖ of c =‖ ψ ‖, i.e. a ⊗ ‖ ϕ ⇒ ψ ‖≤ c. The rule is the more powerful the bigger the
estimated value a ⊗ ‖ ϕ ⇒ ψ ‖ (of course, under the condition that the rule is still sound, i.e. it really
gets the lower estimation of ‖ ψ ‖). Since a is given, a ⊗ ‖ ϕ ⇒ ψ ‖ depends on ‖ ϕ ⇒ ψ ‖. Since
⊗ is nondecreasing, bigger ‖ ϕ ⇒ ψ ‖ leads to bigger (or at least the same) a ⊗ ‖ ϕ ⇒ ψ ‖. Now,
as ‖ ϕ ⇒ ψ ‖=‖ ϕ ‖→‖ ψ ‖= a → c, the requirement that modus ponens be as powerful as possible
yields that a → c should be the largest possible value that leads to lower estimation of c. That is, we
want that whenever a ⊗ b ≤ c (i.e. whenever b is a possible candidate for ‖ ϕ ‖→‖ ψ ‖= a → c, b is
considered a possible candidate since it leads to lower estimation) then b ≤ a→ c (i.e. then a→ c is at
least as good as b since it leads to at least as good lower estimation of c).

Putting the conditions which derived from (1) and (2) together we get

a⊗ b ≤ c iff b ≤ a→ c.

This condition (one may check that it is true for ⊗2 and→2) will be called the adjointness property. We
just saw the assumptions from which it was derived.

Algebraic structures which satisfy the above conditions will be called residuated lattices. The logical
assumptions from which the algebraic conditions have been derived are relatively simple. Further logical
requirements can be taken into account by adding appropriate algebraic conditions. For example, one
may require idempotent conjunction (i.e. the truth value of ϕ&ϕ be the same as the truth value of ϕ)
and this leads to an additional condition x ⊗ x = x. In a similar way one can obtain MV-algebras (the
algebras of Łukasiewicz logic) as a special case of residuated lattices etc.

Definition 1.1. A residuated lattice is an algebra L = (L,∨,∧,⊗,→, 0, 1) where
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(i) (L,∨,∧, 0, 1) is a lattice with the least element 0 and the greatest element 1,

(ii) (L,⊗, 1) is a commutative monoid, i.e. ⊗ is associative, commutative, and the identity x⊗1 =
x holds,

(iii) the adjointness property, i.e.

x ≤ y → z iff x⊗ y ≤ z

holds for each x, y, z ∈ L (≤ denotes the lattice ordering).

A residuated lattice is called complete if (L,∨,∧, 0, 1) is a complete lattice.

Definition 1.2. A t-norm is a binary operation on [0, 1] which is associative, commutative, monotone
and with 1 acting as its unit element, i.e. ⊗ is a mapping ⊗ : [0, 1]× [0, 1]→ [0, 1] satisfying

· (x⊗ y)⊗ z = x⊗ (y ⊗ z)

· x⊗ y = y ⊗ x

· y1 ≤ y2 implies x⊗ y1 ≤ x⊗ y2

· x⊗ 1 = x

for any x, y, y1, y2 ∈ [0, 1].

Remark 1.1. Let ⊗ be a left-continuous t-norm (i.e. limn→∞(an ⊗ b) = (limn→∞ an) ⊗ b for any
increasing sequence {an ∈ [0, 1] | n = 1, 2, 3, . . .}). Put

a→ b = sup{c | a⊗ c ≤ b}.

Then ([0, 1],min,max,⊗,→, 0, 1) is a residuated lattice (a complete one).

T-norms have been used in the context of probabilistic metric spaces [15]. At the same time they are
considered natural candidates for truth degree functions of conjunction connectives. From such a t-norm
one is able to derive (essentially) all the other truth degree functions for further connectives.

The minimum operation u ∧ v from (1), the Łukasiewicz arithmetic conjunction u&v from (2) and
the ordinary product are the best known examples of t-norms. They are also examples of continuous
t-norms.
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2 Institutions

The theory of institutions introduced by Goguen and Burstall in [12] formalizes the intuitive notion
of logical system into a mathematical object, including syntax, semantics and the satisfaction between
them. The original goal for introducing the notion of an institution was to provide an abstract, logic-
independent framework for algebraic specifications of computer science systems. It is natural to develop
a theory of specification formalism in a way that is as much as possible independent of the choice of
the underlying system: this would not only bring a separation of different issues (details of a particular
logic and general concepts) but it would also allow to apply the abstract results of the theory to a certain
formalism well suited for a given task.

Since they were defined, institutions gained the position of major tool in the development of the
theory of specification and it became standard in the field to express the logical system underlying a
particular language or system in the language of the theory of institutions (see CASL[2], CafeOBJ[9]).

Besides its importance for algebraic specification, the theory of institutions provides an appropriate
framework for the development of abstract model theory, a model theory which do not have an underlying
logical system. Such a model theory based on institutions may be called ’institution-independent model
theory’. A monograph dedicated to this topic is [8] and further motivations for developing a model theory
without a commitment to any logical system can be found in [7].

Definition 2.1. An institution consists of

1. a category Sig, whose objects are called signatures,

2. a functor Sen : Sig → Set, providing for each signature Σ a set whose elements are called
(Σ-)sentences,

3. a functor Mod : Sig → Catop, providing for each signature Σ a category whose objects are
called (Σ-)models and whose arrows are called (Σ-)homomorphisms,

4. a relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sig|, called (Σ-)satisfaction,

such that for each morphism ϕ : Σ→ Σ′ in Sig, the satisfaction condition

M ′ |=Σ′ Sen(ϕ)(ρ) iff Mod(ϕ)(M ′) |=Σ ρ

holds for all M ′ ∈ |Mod(Σ′)| and ρ ∈ Sen(Σ).

Following the usual notational conventions, we sometimes let ( �ϕ) denote the reduct functor
Mod(ϕ) and let ϕ denote the sentence translation Sen(ϕ). When M = M ′ �ϕ, we say that M ′ is a
ϕ-expansion of M and that M is the ϕ-reduct of M ′ (similarly for model homomorphisms).

In the rest of this section we will provide some of the best well known examples of institutions.
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2.1 FOL - the institution of first order logic with equality

Signatures. Signatures are triples (S, F, P ), where S is a set (of sorts), F =
⋃
w∈S∗,s∈S Fw→s is the

set of operation symbols, organized by their arity w ∈ S∗ and their rank s ∈ S, and P =
⋃
w∈S∗ Pw is

the set of predicate symbols, also organized by arity. If w = λ, an element of Fw→s is called a constant
symbol or a constant.

A signature morphism ϕ : (S, F, P ) → (S′, F ′, P ′) is a triplet ϕ = (ϕst, ϕop, ϕrel), where ϕst :
S → S′, ϕop : F → F ′, ϕrel : P → P ′ such that ϕop(Fw→s) ⊆ F ′ϕst(w)→ϕst(s) and ϕrel(Pw) ⊆ P ′ϕst(w),
for all w ∈ S∗ and s ∈ S.

Models. A model M of a signature (S, F, P ) interprets sorts as sets, operation symbols as functions
such that if σ ∈ Fw→s, Mσ : Mw →Ms and predicate symbols π ∈ Pw as subsets Mπ ⊆Mw, where if
w = w1 . . . wn, then Mw = M1 × . . .×Mn.

A model homomorphism h : M → N is an S-sorted function {hs : Ms → Ns | s ∈ S} that
preserves both operation and predicate symbols: hs(Mσ(m1, . . . ,mn)) = Nσ(hs1(m1), . . . , hsn(mn)),
for any operation symbol σ ∈ Fs1...sn→s and any mi ∈ Msi , i = 1, . . . , n and hw(Mπ) ⊆ Nπ, for any
predicate symbol π ∈ Pw.

For each signature morphism ϕ : Σ → Σ′, the functor Mod(ϕ) = ( �ϕ) assigns to each Σ′-
model M ′ a Σ-model M such that Mx = M ′ϕ(x), where x stands for each sort, operation symbol or
predicate symbol, and to each Σ′-model homomorphism h′ : M ′ → N ′ the model homomorphism
h′ �ϕ: M ′ �ϕ→ N ′ �ϕ defined by (h′ �ϕ)s = h′ϕ(s).

Sentences. Given a signature (S, F, P ), we define the F -terms inductively: each σ ∈ F→s is a term
of sort s and for each σ ∈ Fw→s, σ(t1, . . . , tn) is a term of sort s if ti are terms of sort si. The atomic
formulas are either of the form t = t′ (equational), where t, t′ are terms of the same sort or π(t1, . . . , tn)
(relational), where ti is a term of sort si. The set of (S, F, P )-sentences is the least set that contains the
atoms and is closed under Boolean connectives and quantification. A universal quantified sentence by a
finite set of variables X is of the form (∀X)ρ, where ρ is a (S, F ]X,P )-sentence and we added to the
signature the variables X as new constants (the existential quantified sentences can be treated similarly).

The sentence translation along a signature morphism ϕ : (S, F, P ) → (S′, F ′, P ′) is defined induc-
tively on the structure of sentences by replacing the symbols from (S, F, P ) with their corresponding
symbols by ϕ in (S′, F ′, P ′). The only thing that requires attention is that when translating a constant
symbol of sort s, it becomes a constant symbol of sort ϕ(s).

Satisfaction. Each term t = σ(t1, . . . , tn) is interpreted in a model M as Mσ(Mt1 , . . . ,Mtn). The
satisfaction relation between models and sentences is defined inductively on the structure of sentences.
For a fixed signature (S, F, P ):

· M |= t = t′ if Mt = Mt′ ;

· M |= π(t1, . . . , tn) if (Mt1 , . . . ,Mtn) ∈Mπ;

· M |= ¬ρ if M |=/ ρ;

· M |= ρ1 ∧ ρ2 if M |= ρ1 and M |= ρ2, and similarly for all Boolean connectives;
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· M |= (∀X)ρ if M ′ |= ρ for each expansion M ′ of M along the signature inclusion (S, F, P ) ↪→
(S, F ] X,P ) (i.e. M is the reduct of M ′), where the signature (S, F ] X,P ) is obtained from
(S, F, P ) by adding the finite set X of variables as new constants;

· M |= (∃X)ρ if M |= ¬(∀X)¬ρ.

One can show that the satisfaction condition holds, which defines completely the institution of the
first order logic with equality.

2.2 HCL - the institution of Horn clauses logic

An universal Horn sentence for a FOL signature (S, F, P ) is a universal quantified conditional
atomic sentence of the form (∀X)H ⇒ c, where H is a finite conjunction of (relational or equational)
atoms and c is a (relational or equational) atom, and H ⇒ c is the implication of c by H . In the tradition
of logic programming, universal Horn sentences are known as Horn clauses. Thus HCL has the same
signatures and models as FOL, but only universal Horn sentences as sentences.

2.3 The institution of presentation Ipres over a base institution I

Given an institution I = (Sig,Sen,Mod, |=), a presentation is a pair (Σ, E), with Σ ∈ |Sig| and
E ⊆ Sen(Σ). A presentation morphism ϕ : (Σ, E) → (Σ′, E′) is a signature morphism ϕ : Σ → Σ′

such that E′ |= ϕ(E) (where we denote by |= the relation of semantical consequence between sets of
sentences - for any two sets of sentences E,E′ ∈ Sen(Σ), E |= E′ if and only if any Σ-model M of E
is also a model of E′). For a presentation (Σ, E), we let Mod(Σ, E) denote the category of all Σ-models
M such that M |=Σ E.

We define the institution of the presentations Ipres over the base institution as follows:

· Sigp is the category Pres of the presentations of I

· for each presentation (Σ, E), Modp(Σ, E) = Mod(Σ, E)

· for each presentation (Σ, E), Senp(Σ, E) = Sen(Σ)

· M |=p
(Σ,E) ρ if and only if M |=Σ ρ, for each (Σ, E)-model M and each (Σ, E)-sentence ρ.
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3 The institutions of multiple-valued logics with equality

In this section we will extend the institutions for multiple-valued logics developed in [1] by introduc-
ing function symbols in the signatures and also by considering equational atoms. As in [1], the sentences
will be pairs, but in our case, we will consider only one value from the truth algebra, instead of a set of
values. The satisfaction relation in this approach is an inequality instead of an equality as in [1].

As in [1], we will organize multiple-valued logics as families of institutions, each one being indexed
by a class of truth-value algebras.

3.1 Truth-value algebras

Let us consider TV a signature in FOL with only one sort V (for the set of truth-values) and function
and relation symbols. Let EQ be a set of axioms that the models of the signature TV must fulfill.

Therefore, a truth-value algebra L will be an object of the category of models of the presentation
(TV,EQ) in FOL.

We present an example of a presentation (TV,EQ) for residuated lattices.

Example 3.1. Let TV = (S, F, P ) be a signature, where S = {V }, F→V = {0, 1}, FV V→V =
{∨,∧,⊗,→} and PV V = {≤}.

Let EQ be the following set of axioms:

bounded lattice:
x ∨ y = y ∨ x
x ∧ y = y ∧ x
x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∧ (x ∨ y) = x

x ∨ (x ∧ y) = x

x ∨ x = x

x ∧ x = x

x ∧ 1 = x

x ∨ 0 = x

commutative monoid:
x⊗ (y ⊗ z) = (x⊗ y)⊗ z
x⊗ y = y ⊗ x
x⊗ 1 = x

order relation
x ≤ x
((x ≤ y) and (y ≤ z)) implies x ≤ z
(x ≤ y) or (y ≤ x)

adjointness property
(x ≤ y → z) implies (x⊗ y ≤ z)
(x⊗ y ≤ z) implies (x ≤ y → z)

In order to be able to introduce equational atoms on the institutions of multiple-valued logics, we
need to make some assumptions regarding the presentation (TV,EQ) that gives the truth-value algebras.
Therefore, we consider that in every presentation (TV,EQ) we have symbols and equations that models
the usual infimum in a lattice ∧, the lattice order ≤, 1 (the greatest value) and 0 (the smallest value). We
also consider that every truth algebra has arbitrary suprema and infima.

We recall the following notions from [3].
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Let L be a truth-value algebra and M a nonempty set. An L-set in M is a mapping A : M → L.
The set M is called the universe and A(x) is called the degree of membership of x in A. L-sets are also
called fuzzy sets.

If M = M1× . . .×Mn, then an L-set in M is called an (n-ary) L-relation (or fuzzy relation) on M .

For every truth-value algebra L and any set M , we define an L-equivalence on M as a binary fuzzy
relation ≈: M ×M → L satisfying the conditions:

· m ≈ m = 1, for any m ∈M (reflexivity);

· m ≈ m′ = m′ ≈ m, for any m,m′ ∈M (symmetry);

· (m ≈ m′) ∧ (m′ ≈ m′′) ≤ (m ≈ m′′), for any m,m′,m′′ ∈M (transitivity).

An L-equivalence is an L-equality if it also satisfies the condition: if m ≈ m′ = 1, then m = m′,
for any m,m′ ∈M .

If ≈i is an L-equivalence on Mi (i = 1, . . . , n), an L-relation R on M1 × . . . ×Mn is said to be
compatible with ≈1, . . . ,≈n if

(x1 ≈1 y1) ∧ . . . ∧ (xn ≈n yn) ∧R(x1, . . . , xn) ≤ R(y1, . . . , yn),

for any xi, yi ∈ Xi, i = 1, . . . , n.

If ≈i and ≈ are L-equivalences on Mi (i = 1, . . . , n) and M , respectively, a function
f : M1 × . . .×Mn →M is said to be compatible with ≈1, . . . ,≈n,≈ if

(x1 ≈1 y1) ∧ . . . ∧ (xn ≈n yn) ≤ (f(x1, . . . , xn) ≈ f(y1, . . . , yn)),

for any xi, yi ∈ Xi, i = 1, . . . , n.

From now on, L will stand for an object in the category of models of the presentation (TV,EQ). By
abuse of notation, we will denote the carrier of L also by L.

We assume that we have a set C of logical connective symbols, along with their arity and a function
con from C to the set of operations symbols of the signature TV, that maintains the arities for all logical
connective symbols.

3.2 MVL(L) - the institution of multiple-valued logic

For each truth-value algebra L of Mod(TV,EQ) and each set C of logical connective symbols, we
are going to describe the L-Multiple-Valued Logic institution MVLC(L) = (SigL,SenL,ModL, |=L).
In the rest of this thesis we will not concern with the set of logical connective symbols, therefore we will
simply denote the L-Multiple-Valued Logic institution by MVL(L) = (SigL,SenL,ModL, |=L).

3.3 Signatures

The category of signatures of MVL(L) is just the category of signatures of FOL.

Remark 3.1. All the properties known for SigFOL hold also for SigL.
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3.4 Models

Given a signature (S, F,R), an (S, F,R)-model M consists of:

· each sort s ∈ S is interpreted as a pair (Ms,≈Ms ), where Ms is a set and ≈Ms is an L-equality on
Ms;

· each operation symbol f ∈ Fs1...sn→s is interpreted as a functionMf : Ms1...sn →Ms compatible
with ≈Ms1 , . . . ,≈

M
sn ,≈

M
s , i.e.

(x1 ≈Ms1 y1) ∧ . . . ∧ (xn ≈Msn yn) ≤ (Mf (x1, . . . , xn) ≈Ms Mf (y1, . . . , yn)),

for each xi, yi ∈Msi ;

· each relation symbol r ∈ Rs1...sn is interpreted as a fuzzy relation Mr : Ms1...sn → L compatible
with ≈Ms1 , . . . ,≈

M
sn , i.e.

(x1 ≈Ms1 y1) ∧ . . . ∧ (xn ≈Msn yn) ∧Mr(x1, . . . , xn) ≤Mr(y1, . . . , yn),

for each xi, yi ∈Msi .

Given two (S, F,R)-models M and M ′, an (S, F,R)-model homomorphism h : M → M ′ is an
indexed family of functions {hs : Ms →M ′s}s∈S such that:

· (m ≈Ms m′) ≤ (hs(m) ≈M ′s hs(m′)), for any s ∈ S and m,m′ ∈Ms;

· hs(Mf (m)) = M ′f (hw(m)), for any f ∈ Fw→s and m ∈Mw;

· Mr(m) ≤M ′r(hw(m)), for any r ∈ Rw and m ∈Mw.

Fact 3.1. For any signature (S, F,R), the (S, F,R)-models and (S, F,R)-model homomorphisms form
a category, ModL(S, F,R), where the composition of homomorphisms is made component-wise as many
sorted functions.

For any signature morphism ϕ : (S, F,R)→ (S′, F ′, R′) and any (S′, F ′, R′)-model M ′, we define
ModL(ϕ)(M ′) = M ′ �ϕ by:

· for any s ∈ S, (M ′ �ϕ)s = M ′ϕst(s) and ≈M
′�ϕ

s = ≈M ′ϕst(s);

· for each operation symbol f ∈ Fw→s, (M ′ �ϕ)f = M ′
ϕopw→s(f)

;

· for each relation symbol r ∈ Rw, (M ′ �ϕ)r = M ′
ϕrelw (r)

.

Each (S′, F ′, R′)-model homomorphism h′ : M ′ → N ′ is mapped into ModL(ϕ)(h′) = h′ �ϕ,
where h′ �ϕ: M ′ �ϕ→ N ′ �ϕ is defined by (h′ �ϕ)s = h′ϕst(s), for each sort s ∈ S.
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Fact 3.2. For each signature morphism ϕ : (S, F,R) → (S′, F ′, R′), ModL(ϕ) : ModL(S′, F ′, R′) →
ModL(S, F,R) is a functor. Moreover, ModL : SigL → Catop is a functor.

3.5 Sentences

Let (S, F,R) be a signature. An F -term of sort s is a syntactic structure f(t1, . . . , tn), where f ∈
Fs1...sn→s is an operation symbol and t1, . . . , tn are F -terms of sorts s1, . . . , sn. Let us denote by TF
the set of all F -terms.

For any signature morphism ϕ : (S, F,R)→ (S′, F ′, R′), we define ϕtm : TF → TF ′ by

ϕtm(f(t1, . . . , tn)) = ϕop(f)(ϕtm(t1), . . . , ϕtm(tn)).

First, let us define the set Sen(S, F,R) as being the least set containing the followings:

· t = t′ is in Sen(S, F,R), for any F -terms t and t′ of the same sort;

· r(t1, . . . , tn) is in Sen(S, F,R), for any r ∈ Rw and (t1, . . . , tn) ∈ (TF )w;

· c(ρ1, . . . , ρn) is in Sen(S, F,R), for any logical connective c ∈ C with arity n and ρ1, . . . , ρn
from Sen(S, F,R)

· (∀X)ρ, (∃X)ρ are in Sen(S, F,R), for any ρ from Sen(S, F]X,R). The signature (S, F]X,R)
is obtained from the signature (S, F,R) by adding the variables from X as new constant symbols.

For any signature morphism ϕ : (S, F,R) → (S′, F ′, R′), we define Sen(ϕ) : Sen(S, F,R) →
Sen(S′, F ′, R′) by:

· Sen(ϕ)(t = t′) = (ϕtm(t) = ϕtm(t′));

· Sen(ϕ)(r(t)) = ϕrl(r)(ϕtm(t));

· Sen(ϕ)(c(ρ1, . . . , ρn)) = c(Sen(ϕ)(ρ1), . . . , Sen(ϕ)(ρn))

· Sen(ϕ)((∀X)ρ) = (∀Xϕ)Sen(ϕ′)(ρ)

· Sen(ϕ)((∃X)ρ) = (∃Xϕ)Sen(ϕ′)(ρ)

where Xϕ = {(x : ϕst(s)) | (x : s) ∈ X} and ϕ′ : (S, F ] X,R) → (S′, F ′ ] Xϕ, R′) extends ϕ
canonically.

We will often denote Sen(ϕ)(ρ) by ϕ(ρ).

Now we define the functor SenL : SigL → Set by:

· SenL(S, F,R) = Sen(S, F,R)× L, for any signature (S, F,R) from SigL;
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· SenL(ϕ) = (Sen(ϕ), Id), for any signature morphism ϕ : (S, F,R) → (S′, F ′, R′), where Id is
the identity function on L.

Also, we will often denote SenL(ϕ)(ρ) by ϕ(ρ).

Remark 3.2. For a signature (S, F,R), the equational atoms are of the form [t = t′, x], where t, t′ are
F -terms of the same sort and x ∈ L, and the relational atoms are of the form [r(t), x], where r ∈ Rw,
t ∈ (TF )w and x ∈ L.

3.6 Satisfaction

Let (S, F,R) be a signature. Let us first notice that any F -term t is interpreted in any (S, F,R)-
model M as

Mf(t1,...,tn) = Mf (Mt1 , . . . ,Mtn).

Fact 3.3. Let h : M → N be a model homomorphism. Then h(Mt) = Nt, for any term t.

Proof:
We prove this by induction on the structure of terms: h(Mf(t1,...,tn)) = h(Mf (Mt1 , . . . ,Mtn)) =
Nf (h(Mt1), . . . , h(Mtn)) = Nf (Nt1 , . . . , Ntn) = Nf(t1,...,tn). ut

We define the satisfaction degree d : |ModL(S, F,R)| × Sen(S, F,R)→ L by:

· d(M, t = t′) = (Mt ≈M Mt′);

· d(M, r(t)) = (Mr(Mt));

· d(M, c(ρ1, . . . , ρn)) = con(c)(d(M,ρ1), . . . , d(M,ρn));

· d(M, (∀X)ρ) =
∧
M ′�(S,F,R)=M

d(M ′, ρ);

· d(M, (∃X)ρ) =
∨
M ′�(S,F,R)=M

d(M ′, ρ) .

The satisfaction relation between an (S, F,R)-model M and an (S, F,R)-sentence ρ in MVL(L) is
defined by:

M |=L [ρ, x] if and only if d(M,ρ) ≥ x.
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3.7 The satisfaction condition

Proposition 3.1. For any signature morphism ϕ : (S, F,R) → (S′, F ′, R′), any (S′, F ′, R′)-model M ′

and any (S, F,R)-sentence [ρ, x] in MVL(L),

M ′ �ϕ |=L [ρ, x] iff M ′ |=L SenL(ϕ)([ρ, x]).

Proof:

First, notice that for any (S, F,R)-term t we have (M ′�ϕ)t = M ′ϕtm(t):

(M ′�ϕ)f(t1,...,tn) = (M ′�ϕ)f ((M ′�ϕ)t1 , . . . , (M
′�ϕ)tn) = M ′ϕop(f)(M

′
ϕtm(t1), . . . ,M

′
ϕtm(tn))

= M ′ϕop(f)(ϕtm(t1),...,ϕtm(tn)) = M ′ϕtm(f(t1,...,tn)).

We can easily show by induction on the structure of sentences that d(M ′�ϕ, ρ) = d(M ′, ϕ(ρ)):

· d(M ′�ϕ, t = t′) = ((M ′�ϕ)t ≈
M ′�ϕ
s (M ′�ϕ)t′) = (M ′ϕtm(t) ≈

M ′

ϕst(s) M
′
ϕtm(t′))

= d(M ′, ϕtm(t) = ϕtm(t′)) = d(M ′, ϕ(t = t′))

· d(M ′�ϕ, r(t)) = (M ′�ϕ)r((M ′�ϕ)t) = M ′
ϕrl(r)

(M ′ϕtm(t)) = d(M ′, ϕrl(r)(ϕtm(t)))
= d(M ′, ϕ(r(t)))

· d(M ′�ϕ, c(ρ1, . . . , ρn)) = con(c)(d(M ′�ϕ, ρ1), . . . , d(M ′�ϕ, ρn))
= con(c)(d(M ′, ϕ(ρ1)), . . . , d(M ′, ϕ(ρn))) = d(M ′, c(ϕ(ρ1), . . . , ϕ(ρn))) =
d(M ′, ϕ(c(ρ1, . . . , ρn)))

· In the case of quantified sentences, the conclusion follows by noticing that there is a canonical
bijection between the expansionsN ofM ′�ϕ to (S, F ]X,R) and the expansionsM ′′ ofM ′ to (S′, F ′]
Xϕ, R′) given by N = M ′′�ϕ′ .

(S, F ]X,R) (S′, F ′ ]Xϕ, R′)

(S, F,R) (S′, F ′, R′)-

-
? ?

ϕ

ϕ′
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Therefore, for the universal quantifier we have:

d(M ′�ϕ, (∀X)ρ) =
∧

N�(S,F,R)=M
′�ϕ

d(N, ρ)

=
∧

M′′�(S′,F ′,R′)=M′

(M′′�ϕ′ )�(S,F,R)=M′�ϕ

d(M ′′�ϕ′ , ρ)

=
∧

M′′�(S′,F ′,R′)=M′

(M′′�ϕ′ )�(S,F,R)=M′�ϕ

d(M ′′, ϕ′(ρ))

=
∧

M′′�(S′,F ′,R′)=M′

(M′′�(S′,F ′,R′))�ϕ=M′�ϕ

d(M ′′, ϕ′(ρ))

=
∧

M ′′�(S′,F ′,R′)=M
′

d(M ′′, ϕ′(ρ))

= d(M ′, (∀Xϕ)ϕ′(ρ)) = d(M ′, ϕ((∀X)ρ)).

The case of the existential quantifier can be treated similarly.

Now we can finish the proof:

M ′�ϕ|=L [ρ, x] iff d(M ′�ϕ, ρ) ≥ x iff d(M ′, ϕ(ρ)) ≥ x iff M ′ |=L [ϕ(ρ), x]. ut
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4 Morphisms and comorphisms

4.1 Institution comorphisms

The embedding relationship between institutions is formalized by the concept of institution comorphism
[13].

Definition 4.1. Given two institutions, I = (Sig,Sen,Mod, |=) and I ′ = (Sig′,Sen′,Mod′, |=′), an
institution comorphism (Φ, α, β) : I → I ′ consists of:

1) a functor Φ : Sig → Sig′,

2) a natural transformation α : Sen⇒ Φ; Sen′, and

3) a natural transformation β : Φop; Mod′ ⇒ Mod

such that the following satisfaction condition holds:

M ′ |=′Φ(Σ) αΣ(e) if and only if βΣ(M ′) |=Σ e,

for any signature Σ ∈ |Sig|, for any Φ(Σ)-model M ′ and any Σ-sentence e.

Let us consider the subinstitution FOL∗ of FOL which restricts the sentences only to those without
negation. Thus FOL∗ has the same sentences and models as FOL. Let us consider (TV,EQ) a presen-
tation such that Mod(TV,EQ) is the class of all Gödel-algebras (the algebras corresponding to Gödel
logics). Let L be a model for this presentation. In this settings we can define the comorphism:

(Φ, α, β) : FOL∗ → MVL(L)

1) Φ : SigFOL∗ → SigL is the identity functor, i.e. Φ((S, F,R)) = (S, F,R).

2) Let (S, F,R) be a signature in FOL∗. Because Φ is the identity functor, we must define α(S,F,R) :
SenFOL∗(S, F,R)→ SenL(S, F,R).

We define α(S,F,R)(ρ) = [ρ, 1], for any ρ ∈ SenFOL∗(S,F,R). It is easy to observe that the
following diagram is commutative:

(S, F,R)

(S′, F ′, R′)
?

ϕ

SenFOL∗(S, F,R)

SenFOL∗(S′, F ′, R′)
?

SenFOL∗(ϕ)

SenL(S, F,R)

SenL(S′, F ′, R′)
?

SenL(ϕ)

-

-

α(S,F,R)

α(S′,F ′,R′)

3) Let (S, F,R) be a signature in FOL∗. We must define β(S,F,R) : ModL(S, F,R) →
ModFOL∗(S, F,R).
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We define β(S,F,R)(({Ms,≈s}s∈S , {Mf}f∈F , {Mr}r∈R)) = ({Ms}s∈S , {Mf}f∈F , {Mr}r∈R),
where Mr = {m ∈Mw |Mr(m) = 1}, for any r ∈ R.

We can easily check that the following diagram commutes:

(S, F,R)

(S′, F ′, R′)
?

ϕ

ModL(S, F,R)

ModL(S′, F ′, R′)

6

( �ϕ)L

ModFOL∗(S, F,R)

ModFOL∗(S′, F ′, R′)

6

( �ϕ)FOL∗

-

-

β(S,F,R)

β(S′,F ′,R′)

We must also prove the satisfaction condition. Let (S, F,R) be a FOL∗-signature, M ′ an (S, F,R)-
model in MVL(L) and ρ ∈ SenFOL∗(S, F,R). We must check that

β(S,F,R)(M ′) |=FOL∗ ρ iff M ′ |=L α(S,F,R)(ρ).

The proof is by induction on the structure of ρ:

- Equational atoms:

β(S,F,R)(M ′) |=FOL∗ t = t′ iff β(S,F,R)(M ′)t = β(S,F,R)(M ′)t′ iff M ′t = M ′t′

iff (M ′t ≈M
′
M ′t′) = 1 iff M ′ |=L [t = t′, 1] iff M ′ |=L α(S,F,R)(t = t′).

- Relational atoms:

β(S,F,R)(M ′) |=FOL∗ r(t) iff β(S,F,R)(M ′)t ∈ β(S,F,R)(M ′)r iff M ′r(M
′
t) = 1

iff M ′ |=L [r(t), 1] iff M ′ |=L α(S,F,R)(r(t)).

- Conjunction:

β(S,F,R)(M ′) |=FOL∗ ρ1 ∧ ρ2 iff β(S,F,R)(M ′) |=FOL∗ ρi, i = 1, 2 iff M ′ |=L α(S,F,R)(ρi), i = 1, 2 iff
M ′ |=L [ρi, 1], i = 1, 2 iff d(M ′, ρi) = 1, i = 1, 2 iff d(M ′, ρ1)∧d(M ′, ρ2) = 1 iff d(M ′, ρ1∧ρ2) ≥ 1
iff M ′ |=L [ρ1 ∧ ρ2, 1] iff M ′ |= α(S,F,R)(ρ1 ∧ ρ2).

- Disjunction:

β(S,F,R)(M ′) |=FOL∗ ρ1 ∨ ρ2 iff β(S,F,R)(M ′) |=FOL∗ ρ1 or β(S,F,R)(M ′) |=FOL∗ ρ2 iff M ′ |=L

[ρ1, 1] or M ′ |=L [ρ2, 1] iff d(M ′, ρ1) = 1 or d(M ′, ρ2) = 1 iff d(M ′, ρ1) ∨ d(M ′, ρ2) = 1 iff
d(M ′, ρ1 ∨ ρ2) ≥ 1 iff M ′ |=L [ρ1 ∨ ρ2, 1].

- Implication:

Suppose β(S,F,R)(M ′) |=FOL∗ ρ1 → ρ2. Suppose β(S,F,R)(M ′) |=FOL∗ ρ1. Then
β(S,F,R)(M ′) |=FOL∗ ρ2. From induction hypothesis we get that M ′ |=L [ρi, 1], i = 1, 2, i.e.
d(M ′, ρ1) = d(M ′, ρ2) = 1. Therefore d(M ′, ρ1)→ d(M ′, ρ2) = 1, thus M ′ |= α(S,F,R)(ρ1 → ρ2).

Suppose M ′ |= α(S,F,R)(ρ1 → ρ2), thus d(M ′, ρ1) → d(M ′, ρ2) = 1. Therefore d(M ′, ρ1) ≤
d(M ′, ρ2) from the definition of → in a Gödel-algebra. Suppose β(S,F,R)(M ′) |=FOL∗ ρ1. Thus



24

M ′ |=L [ρ1, 1], i.e. d(M ′, ρ1) = 1. Therefore d(M ′, ρ2) = 1. Thus M ′ |=L [ρ2, 1] and from the
induction hypothesis it follows that β(S,F,R)(M ′) |=FOL∗ ρ2.

- Universal quantified formulas:

Let us first notice that N ′ is an expansion of M ′ to (S, F ] X,R) in MVL(L) if and only if
β(S,F]X,R)(N ′) is an expansion of β(S,F,R)(M ′) to (S, F ]X,R) in FOL∗ and that for any expansion
N of β(S,F,R)(M ′) to (S, F ] X,R) in FOL∗, there exists an expansion N ′ of M ′ to (S, F ] X,R)
such that β(S,F]X,R)(N ′) = N .

We have the following equivalences:

β(S,F,R)(M ′) |=FOL∗ (∀X)ρ iff M ′′ |=FOL∗ ρ, for any M ′′ expansion of βS,F,R(M ′) to (S, F ]X,R)

iff β(S,F]X,R)(N ′) |=FOL∗ ρ, for any β(S,F]X,R)(N ′) expansion of βS,F,R(M ′) to (S, F ]X,R)

iff N ′ |=L α(S,F]X,R)(ρ), for any N ′ expansion of M ′ to (S, F ]X,R) in MVL(L)

iff d(N ′, ρ) = 1, for any N ′ expansion of M ′ to (S, F ]X,R) in MVL(L)

iff
∧

N′∈ Mod(S,F]X,R)

N′�(S,F,R)=M′
d(N ′, ρ) = 1 iff M ′ |=L α(S,F,R)((∀X)ρ).

Remark 4.1.

1) We cannot define a comorphism (Φ, α, β) : FOL → MVL(L), because the satisfaction condi-
tions does not hold for sentences from FOL of the form ¬ρ.

Let (S, F,R) be a FOL signature,M ′ an (S, F,R)-model in MVL(L) and¬ρ ∈ SenFOL(S, F,R).

Suppose that β(S,F,R)(M ′) |=FOL ¬ρ. Then β(S,F,R)(M ′) |=FOL/ ρ. From the induction hypothesis
we get M ′ |=L/ α(S,F,R)(ρ), equivalent with M ′ |=L/ [ρ, 1], i.e. d(M ′, ρ) < 1.

In order to prove that M ′ |=L α(S,F,R)(¬ρ), it is enough to show that ¬d(M ′, ρ) = 1. In a Gödel
algebra, ¬d(M ′, ρ) = 1 if d(M ′, ρ) = 0, but we know only that d(M ′, ρ) < 1. Notice that we
have the same situation in all the algebras corresponding to the many-valued logics presented in
subsection 1.3.

But the other implication of the satisfaction condition holds. Suppose M ′ |=L α(S,F,R)(¬ρ). Then
¬d(M ′, ρ) = 1, thus d(M ′, ρ) = 0 < 1. Therefore M ′ |=L/ [ρ, 1]. By the induction hypothesis we
get β(S,F,R)(M ′) |=FOL/ ρ, therefore β(S,F,R)(M ′) |=FOL ¬ρ.

2) If we consider L = {0, 1}, then the satisfaction condition holds also for sentences of the form
¬ρ from FOL, because from d(M ′, ρ) < 1 we can infer that d(M ′, ρ) = 0. Thus we can define a
comorphism

(Φ, α, β) : FOL→ MVL(L)

which establish the relationship between FOL and MVL(L).
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4.2 Institution morphisms

Structure preserving mappings from a more complex to a simpler institution can be formalized by the
general concept of institution morphism [12].

Definition 4.2. Given two institutions, I ′ = (Sig′,Sen′,Mod′, |=′) and I = (Sig,Sen,Mod, |=), an
institution morphism (Φ, α, β) : I ′ → I consists of:

1) a functor Φ : Sig′ → Sig, called the signature functor,

2) a natural transformation α : Φ; Sen⇒ Sen′, called the sentence transformation,

3) a natural transformation β : Mod′ ⇒ Φop; Mod called the model transformation,

such that the following satisfaction condition holds:

M ′ |=′Σ′ αΣ′(e) if and only if βΣ′(M ′) |=Φ(Σ′) e,

for any signature Σ′ ∈ |Sig′|, for any Σ′-model M ′ and any Φ(Σ′)-sentence e.

By adjoint relationship, we can also define a morphism

(Φ′, α′, β′) : MVL(L)→ FOL∗

where Φ′ : SigL → SigFOL∗ is the identity functor, and α′ and β′ are defined in the same way as α and
β from the comorphism (Φ, α, β) : FOL∗ → MVL(L). We observe that the satisfaction condition can
be treated similarly.
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5 Model-theoretic properties

In this section we will investigate different model-theoretic properties developed at institutional level
for multiple-valued logics. This is one of the main motivations for the present work, i.e. to show how
one can obtain model-theory results for multiple-valued logics using the mechanism of institutions.

For the rest of this section, we fix L to be a truth-value algebra.

5.1 Signature (co)-limits

Because MVL(L) signatures are exactly FOL signatures and since the category of FOL signatures
has small (co)-limits [8], it follows that the category of MVL(L) signatures has small (co)-limits.

Corollary 5.1. The category of MVL(L) signatures has small (co)-limits.

5.2 Initial model for signatures

Proposition 5.1. For any signature in MVL(L) there exists an initial model.

Proof:
Let (S, F,R) a signature in MVL(L). We define the (S, F,R)-model 0(S,F,R) by:

· for each s ∈ S, (0(S,F,R))s = (TF )s and t ≈0(S,F,R) t′ =

{
1, if t = t′

0, otherwise

· for each f ∈ Fw→s, (0(S,F,R))f (t1, . . . , tn) = f(t1, . . . , tn)

· for each r ∈ Rw, (0(S,F,R))r(t1, . . . , tn) = 0

For any (S, F,R)-model M , we define the map h : 0(S,F,R) →M by

h(t) = Mt.

We check that h is an (S, F,R)-model homomorphism:

- Let t, t′ ∈ (TF )s. If t = t′, then t ≈0(S,F,R) t′ = 1 and hs(t) ≈M hs(t′) = 1. If t 6= t′, then
t ≈0(S,F,R) t′ = 0 and 0 ≤ x, for any x ∈ L. Therefore, t ≈0(S,F,R) t′ ≤ hs(t) ≈M hs(t′).

- h(f(t)) = Mf (h(t)) by definition.

- (0(S,F,R))r(t) = 0, therefore (0(S,F,R))r(t) ≤Mr(h(t)).

Hence, 0(S,F,R) is the initial model for the signature (S, F,R). ut
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5.3 Model amalgamation

Model amalgamation is the institutional property which is required by almost all institution-independent
model theoretic properties [20], [10].

Definition 5.1. In any institution, a commuting square of signatures

Σ2 Σ′

Σ Σ1
-

-
? ?

ϕ1

θ2

ϕ2 θ1

is an amalgamation square if for each Σ1-model M1 and each Σ2-model M2 such that M1�ϕ1= M2�ϕ2 ,
there exists an unique Σ′-model M ′, called the amalgamation of M1 and M2, such that M ′ �θi= Mi,
i ∈ {1, 2}.

If M ′ is not unique, we say that the square is a weak amalgamation square.

Definition 5.2. An institution has model amalgamation if every pushout of signatures is an amalgama-
tion square.

Proposition 5.2. MVL(L) has model amalgamation.

Proof:
Let us consider the following pushout of signatures in MVL(L):

(S2, F2, R2) (S′, F ′, R′)

(S, F,R) (S1, F1, R1)-

-
? ?

ϕ1

θ2

ϕ2 θ1

Let Mi be an (Si, Fi, Ri)-model, i = 1, 2, such that M1�ϕ1= M2�ϕ2 .

Let us notice that we can associate to any signature (S, F,R) from MVL(L) a signature from FOL,
(S, F,R) = (S ∪ {l}, F ∪R, ∅), where Fw→s = Fw→s, for any w ∈ S∗, s ∈ S, F ss→l = {≈}, for any
s ∈ S, F u→t = ∅, otherwise, and Rw→l = Rw, for any w ∈ S∗, Ru→t = ∅, otherwise.

Moreover, to any (S, F,R)-model M in MVL(L) we can associate an (S, F,R)-model in FOL M ,
where:

- M s = Ms

- M l = L

- Mf = Mf , for any f ∈ Fw→s, w ∈ S∗, s ∈ S
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- M r = Mr, for any r ∈ Rw→l, w ∈ S∗

- M≈ =≈Ms , for any ≈∈ F ss→l, s ∈ S.

Every signature morphism ϕ : (S, F,R) → (S′, F ′, R′) in MVL(L) can be extended to a signature
morphism ϕ : (S, F,R)→ (S′, F ′, R′) in FOL by:

- ϕst(s) = ϕst(s), for any s ∈ S,

- ϕst(l) = l,

- ϕop(f) = ϕop(f), for any f ∈ Fw→s, w ∈ S∗, s ∈ S,

- ϕop(r) = ϕrel(r), for any r ∈ Rw→l, w ∈ S∗,

- ϕop(≈ss→l) =≈ϕst(s)ϕst(s)→l, for any s ∈ S.

If ϕ : (S, F,R)→ (S′, F ′, R′) is a signature morphism in MVL(L) andM ′ is an (S′, F ′, R′)-model,
we can easily prove that M ′�ϕ = M ′�ϕ.

Therefore we have a pushout of signatures in FOL:

(S2, F2, R2) (S′, F ′, R′)

(S, F,R) (S1, F1, R1)-

-
? ?

ϕ1

θ2

ϕ2 θ1

and Mi model of (Si, Fi, Ri), i = 1, 2, such that M1�ϕ1= M2�ϕ2 .

Since FOL has model amalgamation [20], it follows that there exists a unique (S′, F ′, R′)-modelM ′

such that M ′�θi= Mi, i = 1, 2. We notice that L = (Mi)l = (M ′�θi)l = M ′
θi
st

(l)
= M ′l . Therefore, we

can define an (S′, F ′, R′)-model in MVL(L) N by Ns = M ′s, ≈Ns = M ′≈ss→l , Nf = M ′f and Nr = M ′r.

By the construction of M ′ and using the fact that (Mi)f and (Mi)r are compatible with ≈Mi , we
can prove that Nr and Nf are compatible with ≈N . Thus, N is a proper (S′, F ′, R′)-model in MVL(L).
Moreover N = M ′.

From M ′ �θi= Mi, it follows immediately that N �θi= Mi, i = 1, 2. Since M ′ was unique with
the property M ′�θi= Mi, i = 1, 2, we can easily prove that N is unique with the property N �θi= Mi,
i = 1, 2. ut

An institution has J-model amalgamation for a category J when all co-limits of all diagrams J →
Sig have model amalgamation.

Proposition 5.3. FOL has J-model amalgamation for all small categories J .

Corollary 5.2. MVL(L) has J-model amalgamation for all small categories J .
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Proof:
The proof can be treated in a similar way as the proof of Proposition 5.2 and using the fact that FOL

has J-model amalgamation. ut

5.4 Elementary diagrams

The institution-independent method of diagrams used here was developed in [5].

An institution I = (Sig,Sen,Mod, |=) has elementary diagrams if for each signature Σ and each
Σ-model M , there exists a signature morphism ιΣ(M) : Σ → ΣM , ”functorial” in Σ and M , and a
set EM of ΣM -sentences such that Mod(ΣM , EM ) and the comma category M/Mod(Σ) are naturally
isomorphic, i.e. the following diagram commutes by the isomorphism iΣ,M ”natural” in Σ and M :

Mod(ΣM , EM ) (M/Mod(Σ))

Mod(Σ)

-iΣ,M

?
forgetful

PPPPPPPPPPq
Mod(ιΣ(M))

The signature morphism ιΣ(M) : Σ→ ΣM is called the elementary extension of Σ viaM and the set
EM of ΣM -sentences is called the elementary diagram of the modelM . For each model homomorphism
h : M → N , let Nh denote i−1

Σ,M (h).

The ”functoriality” of ι means that for each signature morphism ϕ : Σ → Σ′ and each Σ-model ho-
momorphism h : M → M ′�ϕ, there exists a presentation morphism ιϕ(h) : (ΣM , EM )→ (Σ′M ′ , EM ′)
such that

Σ′ Σ′M ′

Σ ΣM
-

-
? ?

ιΣ(M)

ιΣ′ (M
′)

ϕ ιϕ(h)

commutes and ιϕ(h); ιϕ′(h′) = ιϕ;ϕ′(h;h′�ϕ) and ι1Σ(1M ) = 1ΣM .

The ”naturality” of i means that for each signature morphism ϕ : Σ → Σ′ and each Σ-model
homomorphism h : M →M ′�ϕ the following diagram commutes:

Mod(Σ′M ′ , EM ′) M ′/Mod(Σ′)

Mod(ΣM , EM ) M/Mod(Σ)-

-

6 6

iΣ,M

iΣ′,M′

Mod(ιϕ(h)) h/Mod(ϕ) = h; ( )�ϕ

Let Σ = (S, F,R) be an MVL(L) signature andM a Σ-model. We define ΣM = (S, FM , R), where
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· (FM )w→s = Fw→s;

· (FM )→s = F→s ∪Ms (the elements of M are added to the signature as constant symbols).

Let us consider ιΣ(M) : Σ→ ΣM the signature inclusion.

Let MM be the ΣM -model such that (MM ) �Σ= M and that interprets all the elements of M as
themselves, i.e. (MM )m = m, for any m ∈M . Notice that ≈MM=≈M .

Let EM be the set of all atoms (either equational or relational) satisfied by MM .

Proposition 5.4. EM is the elementary diagram of the model M .

Proof:
We show first that there exists an isomorphism of categories i,

iΣ,M : ModL(ΣM , EM )→ (M/ModL(Σ))

· The isomorphism iΣ,M maps each ΣM -model N satisfying EM to the Σ-model homomorphism
hN : M → N �Σ such that hN (m) = Nm, for any m ∈M .

Let us check that hN is indeed a Σ-model homomorphism:

− For each m,m′ ∈M , [m = m′,m ≈M m′] ∈ EM , because MM |=L [m = m′,m ≈M m′]
iff (MM )m ≈M (MM )m′ ≥ m ≈M m′ iffm ≈M m′ ≥ m ≈M m′ . ThereforeN |=L [m = m′,m ≈M
m′] which means thatNm ≈N Nm′ ≥ m ≈M m′, therefore we havem ≈M m′ ≤ hN (m) ≈N hN (m′).

− For each operation symbol f ∈ Fw→s and for each m ∈ Mw, [Mf (m) = f(m), 1] ∈ EM ,
therefore N |=L [Mf (m) = f(m), 1], equivalent to NMf (m) ≈N Nf (Nm) ≥ 1. Because ≈N is an
L-equality, we get that NMf (m) = Nf (Nm). By definition of hN , the last equality is equivalent to
hN (Mf (m)) = Nf (hN (m)).

− For each relation symbol r ∈ Rw and for each m ∈ Mw, [r(m),Mr(m)] ∈ EM , therefore
N |=L [r(m),Mr(m)], i.e. Nr(Nm) ≥Mr(m). By definition of hN we get Nr(hN (m)) ≥Mr(m).

If g : N → N ′ is an ΣM -model homomorphism, then iΣ,M maps g into g�Σ. We show that iΣ,M (g)
is an arrow in the category M/ModL(Σ), i.e. hN ; g�Σ= hN ′ .

M N �Σ

N ′�Σ

-

?

�
�

�
�=

hN

hN′ g�Σ

Let m ∈M . Then (g�Σ)(hN (m)) = (g�Σ)(Nm) = g(Nm) = N ′m = hN ′(m).

· The inverse isomorphism i−1
Σ,M maps any Σ-model homomorphism h : M → N to the ΣM -model

i−1
Σ,M (h) = Nh, where Nh�Σ= N and (Nh)m = h(m), for any m ∈M . We consider ≈Nh=≈N .

First, let us notice that h is also an ΣM -model homomorphism MM → Nh.

We must check that Nh |=L EM :
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− Let [t = t′, x] ∈ EM . From MM |=L EM , we get that (MM )t ≈MM (MM )t′ ≥ x. Because
h is also an ΣM -model homomorphism, it follows that x ≤ (MM )t ≈MM (MM )t′ ≤ h((MM )t) ≈Nh
h((MM )t′). Hence (Nh)t ≈Nh (Nh)t′ ≥ x, thus Nh |=L [t = t′, x].

− Let [r(t), x] ∈ EM . Thus (MM )r((MM )t) ≥ x. Since h is an ΣM -model homomorphism,
it follows that x ≤ (MM )r((MM )t) ≤ (Nh)r(h((MM )t)) = (Nh)r((Nh)t), thus Nh |=L [r(t), x].

If g is an arrow in M/ModL(Σ), g : (M h1→ N) → (M h2→ N ′), let i−1
Σ,M = g′, where g′ : Nh1 →

Nh2 such that g′(n) = g(n), for any n ∈ Nh1 .

M N

N ′

-

?

�
�

�
�=

h1

h2 g

We must check whether g′ is an ΣM -model homomorphism. By using the fact that g is a Σ-model
homomorphism, we must only show that g′((Nh1)m) = (Nh2)m, for any m ∈ M . But g′((Nh1)m) =
g(h1(m)) = h2(m) = (Nh2)m.

It is easy to see that iΣ,M is an isomorphism of categories.

”Functoriality” of ι:
Let Σ′ = (S′, F ′, R′) be an MVL(L) signature and ϕ : Σ → Σ′ be a signature morphism. Let M ′

be a Σ′-model and h : M →M ′�ϕ a Σ-model homomorphism. We define ιϕ(h) : ΣM → Σ′M ′ by
− for each sort s ∈ S, ιϕ(h)(s) = ϕ(s);
− for each constant symbol f ∈ F→s, ιϕ(h)(f) = ϕ(f), and for each constant symbol

m ∈Ms, ιϕ(h)(m) = h(m);
− for each operation symbol f ∈ Fw→s, ιϕ(h)(f) = ϕ(f);
− for each relation symbol r ∈ Rw, ιϕ(h)(r) = ϕ(r).

ιϕ(h) is an MVL(L)-signature morphism.
We can easily observe that the following diagram commutes:

ΣM Σ′M ′

Σ Σ′-

-
? ?

ϕ

ιϕ(h)

ιΣ(M) ιΣ′(M
′)

Let M h→M ′�ϕ and M ′ h
′
→M ′′�ϕ′ .

ΣM Σ′M ′

Σ Σ′ Σ′′

Σ′′M ′′

- -

- -
? ? ?

ϕ ϕ′

ιϕ(h) ιϕ′ (h
′)

ιΣ(M) ιΣ′ (M
′) ιΣ(M ′′)
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It follows immediately that ιϕ(h); ιϕ′(h′) = ιϕ;ϕ′(h;h′�ϕ) and ι1Σ(1M ) = 1ΣM .

We only have to check that ιϕ(h) is a presentation morphism. We will prove that MM |=L [ρ, x]
impliesM ′M ′ |=L SenL(ιϕ(h))[ρ, x], where ρ ∈ {t = t′, r(t) | t, t′ terms }. By the satisfaction condition,
this is equivalent to MM |=L [ρ, x] implies N |=L [ρ, x], where we denote N = (M ′M ′)�ιϕ(h).

We prove that Nt = h((MM )t), for any term t, by structural induction on terms:

− if t ∈ F→s, then Nt = (M ′M ′)ιϕ(h)(t) = (M ′M ′)ϕ(t) = M ′ϕ(t) = (M ′ �ϕ)t = h(Mt) =
h((MM )t).

− if t = m ∈Ms, then Nm = (M ′M ′)ιϕ(h)(m) = (M ′M ′)h(m) = h(m) = h((MM )m).

− if t = f(t1, . . . , tn), then Nf(t1,...,tn) = Nf (Nt1 , . . . , Ntn) =
(M ′M ′)ιϕ(h)(f)(h((MM )t1), . . . , h((MM )tn)) = (M ′M ′)ϕ(f)(h((MM )t1), . . . , h((MM )tn)) =
M ′ϕ(f)(h((MM )t1), . . . , h((MM )tn)) = (M ′�ϕ)f (h((MM )t1), . . . , h((MM )tn)) =
h(Mf ((MM )t1 , . . . , (MM )tn)) = h((MM )f ((MM )t1 , . . . , (MM )tn)) = h((MM )f(t1,...,tn)).

If MM |=L [t = t′, x], we have that (MM )t ≈MM (MM )t′ ≥ x. But h is also an ΣM -model
homomorphism, therefore x ≤ (MM )t ≈MM (MM )t′ ≤ h((MM )t) ≈N h((MM )t′) = Nt ≈N Nt′ ,
hence N |=L [t = t′, x].

If MM |=L [r(t), x], then (MM )r((MM )t) ≥ x. Using the fact that h is also an ΣM -model homo-
morphism, we get that (MM )r((MM )t) ≤ Nr(h(MM )t), therefore x ≤ Nr(Nt), i.e. N |=L [r(t), x].

”Naturality” of i:

Let Σ′ = (S′, F ′, R′) be an MVL(L) signature and ϕ : Σ→ Σ′ be a signature morphism. Let M ′ be
a Σ′-model and h : M →M ′�ϕ be a Σ-model homomorphism. We must check if the following diagram
commutes:

ModL(Σ′M ′ , EM ′) M ′/ModL(Σ′)

ModL(ΣM , EM ) M/ModL(Σ)-

-

6 6

iΣ,M

iΣ′,M′

ModL(ιϕ(h)) h; ( )�ϕ

− Let N ′ be a Σ′M ′-model such that N ′ |=L EM ′ . We have to verify if h; (hN ′�ϕ) = hN ′�ιϕ(h)
.

Notice that h; (hN ′ �ϕ) : M → N ′�ϕ;ιΣ′ (M
′) and hN ′�ιϕ(h)

: M → N ′�ιΣ(M);ιϕ(h). By the functoriality
condition, we have that the homomorphisms have the same domain and codomain.

Let m ∈ Ms. Then (h; (hN ′ �ϕ))(m) = (hN ′ �ϕ)(h(m)) = hN ′(h(m)) = N ′h(m) = N ′ιϕ(h)(m) =
(N ′�ιϕ(h))m = hN ′�ιϕ(h)

(m).

− Let g : N ′1 → N ′2 be a (Σ′M ′ , EM ′)-model homomorphism. We know that h; iΣ′,M ′(g)�ϕ=
h; (g �ιΣ′ (M ′)) �ϕ. On the other hand iΣ,M (g �ιϕ(h)) = (g �ιϕ(h)) �ιΣ(M). By using the functoriality
condition we obtain the conclusion.

ut
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5.5 Co-limits of models

In the presence of diagrams and model amalgamation, co-limits of models can be obtained from
corresponding co-limits of signatures. This is an important consequence of the existence of diagrams
because in the actual institutions co-limits of models are much more difficult to establish than co-limits
of signatures.

Let (S, F,R) be a signature in MVL(L), Γ a set of (S, F,R)-atomic sentences (equational and
relational) and M an (S, F,R)-model.

We define MΓ by:

· (MΓ)s = {[m] |m ∈Ms}, where [m] = {m′ ∈Ms | h(m) = h(m′), for any h : M → N |= Γ},
for m ∈Ms

· [m] ≈MΓ [m′] =
∧
h:M→N |=Γ h(m) ≈N h(m′)

· (MΓ)f ([m1], . . . , [mn]) = [Mf (m1, . . . ,mn)]

· (MΓ)r([m1], . . . , [mn]) =
∧
h:M→N |=ΓNr(h(m1), . . . , h(mn)).

Fact 5.1. The definition of MΓ is correct.

Proof:
Let m1 ∈ [m] and m′1 ∈ [m′]. Therefore h(m) = h(m1) and h(m′) = h(m′1), for any h : M →

N |= Γ. Thus [m] ≈MΓ [m′] =
∧
h:M→N |=Γ(h(m) ≈N h(m′)) =

∧
h:M→N |=Γ(h(m1) ≈N h(m′1)).

Let f ∈ Fs1...sn→s, [mi] ∈ (MΓ)si and m′i ∈ [mi], for any i ∈ {1, . . . , n}. Thus h(mi) = h(m′i),
for any h : M → N |= Γ. In order to show that (MΓ)f ([m1], . . . , [mn]) = [Mf (m′1, . . . ,m

′
n)],

it is enough to show that [Mf (m1, . . . ,mn)] = [Mf (m′1, . . . ,m
′
n)]. Let m ∈ [Mf (m1, . . . ,mn)].

Therefore h(m) = h(Mf (m1, . . . ,mn)), for any homomorphism h : M → N |= Γ. We have h(m) =
h(Mf (m1, . . . ,mn)) = Nf (h(m1), . . . , h(mn)) = Nf (h(m′1), . . . , h(m′n)) = h(Mf (m′1, . . . ,m

′
n)),

for any homorphism h : M → N |= Γ. Thus m ∈ [Mf (m′1, . . . ,m
′
n)].

Let r ∈ Rs1...sn , [mi] ∈ (MΓ)si and m′i ∈ [mi], for any i ∈ {1, . . . , n}. Thus h(mi) = h(m′i),
for any h : M → N |= Γ. We have (MΓ)r([m1], . . . , [mn]) =

∧
h:M→N |=ΓNr(h(m1), . . . , h(mn)) =∧

h:M→N |=ΓNr(h(m′1), . . . , h(m′n)). ut

Fact 5.2. MΓ is an (S, F,R)-model.

Proof:
We prove the followings:

· ≈MΓ is an L-equality:

We have [m] ≈MΓ [m] =
∧
h:M→N |=Γ(h(m) ≈N h(m)) = 1. Obviously, [m] ≈MΓ [m′] = [m′] ≈MΓ

[m]. Since ≈N is an L-equality for any h : M → N |= Γ we have ([m] ≈MΓ [m′]) ∧ ([m′] ≈MΓ
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[m′′]) =
∧
h:M→N |=Γ(h(m) ≈N h(m′)) ∧

∧
h:M→N |=Γ(h(m′) ≈N h(m′′)) =

∧
h:M→N |=Γ((h(m) ≈N

h(m′)) ∧ (h(m′) ≈N h(m′′))) ≤
∧
h:M→N |=Γ(h(m) ≈N h(m′′)) = [m] ≈MΓ [m′]. Finally, suppose

[m] ≈MΓ [m′] = 1. It follows that h(m) = h(m′), for any homomorphism h : M → N |= Γ. Suppose
n ∈ [m]. Thus h(m) = h(n), for any h : M → N |= Γ, therefore we obtain h(m′) = h(n), for any
h : M → N |= Γ. Hence n ∈ [m′].

· (MΓ)f compatible with ≈MΓ :

Let h : M → N |= Γ be a homomorphism. Then (h(m1) ≈N h(m′1)) ∧ . . . ∧ (h(mn) ≈N
h(m′n)) ≤ (Nf (h(m1), . . . , h(mn)) ≈N Nf (h(m′1), . . . , h(m′n))) = (h(Mf (m1, . . . ,mn)) ≈N
h(Mf (m′1, . . . ,m

′
n))). Since h is arbitrary, we obtain that ([m1] ≈MΓ [m′1])∧ . . .∧([mn] ≈MΓ [m′n]) ≤

((MΓ)f ([m1], . . . , [mn]) ≈Γ (MΓ)f ([m′1], . . . , [m′n])).

· (MΓ)r compatible with ≈MΓ :

Let h : M → N |= Γ be a homomorphism. Since Nr is compatible with ≈N , we have (h(m) ≈N
h(m′)) ∧ Nr(h(m)) ≤ Nr(h(m′)). As h is arbitrary, it follows that ([m] ≈MΓ [m′]) ∧ (MΓ)r([m]) ≤
(MΓ)r([m′]).

ut

We define qΓ : M →MΓ by qΓ(m) = [m].

Fact 5.3. qΓ is a surjective (S, F,R)-model homomorphism.

Proposition 5.5. (MΓ)t = [Mt], for any term t of (S, F,R).

Proof:
We prove this by induction on the structure of terms: (MΓ)f(t1,...,tn) =

(MΓ)f ((MΓ)t1 , . . . , (MΓ)tn) = (MΓ)f ([Mt1 ], . . . , [Mtn ]) = [Mf (Mt1 , . . . ,Mtn)] = [Mf(t1,...,tn)].
ut

Proposition 5.6. For each (S, F,R)-model homomorphism h : M → N such that N |= Γ, there exists
a unique model homomorphism hΓ : MΓ → N such that qΓ;hΓ = h.

M MΓ

N |= Γ

-qΓ

J
J
J
JĴ

h









�

hΓ

Proof:
We define hΓ : MΓ → N by hΓ([m]) = h(m).
Let m′ ∈ [m]. Since h : M → N |= Γ, it follows that h(m) = h(m′). Thus hΓ([m]) = h(m) =

h(m′) = hΓ([m′]). Therefore the definition of h is correct.
We have the followings relations:
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· [m] ≈MΓ [m′] =
∧
g:M→N |=Γ(g(m) ≈N g(m′)) ≤ h(m) ≈N h(m′)

· hΓ((MΓ)f ([m])) = hΓ([Mf (m)]) = h(Mf (m)) = Nf (h(m)) = Nf (hΓ([m]))

· (MΓ)r([m]) =
∧
g:M→N |=ΓNr(g(m)) ≤ Nr(h(m)) = Nr(hΓ([m])).

Therefore hΓ is an (S, F,R)-model homomorphism.
The uniqueness of hΓ follows from the fact that qΓ is surjective. ut

Proposition 5.7. MΓ |= Γ.

Proof:
Let C ∈ Γ. We have two cases:

1) C = [t = t′, x]

Let h : M → N |= Γ. Therefore N |= [t = t′, x], i.e. Nt ≈N Nt′ ≥ x. Since h(Mt) = Nt and
h(Mt′) = Nt′ , it follows that h(Mt) ≈N h(Mt′) ≥ x.

Since h was arbitrary chosen, we obtain
∧
h:M→N |=Γ h(Mt) ≈N h(Mt′) ≥ x.

Because
∧
h:M→N |=Γ(h(Mt) ≈N h(Mt′)) = ([Mt] ≈MΓ [Mt′ ]) = ((MΓ)t ≈MΓ (MΓ)t′), it

follows that MΓ |= [t = t′, x].

2) C = [r(t), x]

Let h : M → N |= Γ. Thus N |= [r(t), x], i.e. Nr(Nt) ≥ x, equivalent to Nr(h(Mt)) ≥ x.

Since h : M → N |= Γ was arbitrarily chosen, it follows
∧
h:M→N |=ΓNr(h(Mt)) ≥ x.

Because
∧
h:M→N |=ΓNr(h(Mt)) = (MΓ)r([Mt]) = (MΓ)r((MΓ)t), we get MΓ |= [r(t), x].

ut

Proposition 5.8. For any set Γ of atomic sentences, the model 0Γ = (0(S,F,R))Γ is the initial Γ-model,
i.e. initial model in Mod((S, F,R),Γ).

Proof:
By Proposition 5.7, it follows that 0Γ |= Γ.
Let N be a model in Mod((S, F,R),Γ). There exists a unique model-homomorphism αN :

0(S,F,R) → N .
By Proposition 5.6, there exists a unique arrow hN : 0Γ → N such that qΓ;hN = αN .

0(S,F,R) 0Γ

N |= Γ

-
qΓ

J
J
J
JĴ

αN









�

hN
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Suppose there exists another arrow g : 0Γ → N . Since αN is the unique arrow from 0(S,F,R) to N ,
we obtain qΓ; g = αN . Thus qΓ; g = qΓ;hN . Since qΓ is surjective, it follows that g = hN . ut

We recall the following result from [5]:

Theorem 5.1. Consider an institution with diagrams and initial models of presentations. If the cate-
gory Sig has J-co-limits and the institution has J-model amalgamation then, for each signature Σ, the
category of Σ-models has J-co-limits.

Corollary 5.3. The category of models of any MVL(L) signature has small co-limits.

Proof:
Since the elementary diagrams of MVL(L) consists only of atomic sentences, let us consider the sub-

institution AMVL(L) of MVL(L) which restricts the sentences only to atoms. Obviously, AMVL(L)
inherits the MVL(L) diagrams and has initial models for all its presentations by Proposition 5.8. By
Corollary 5.2, MVL(L) has J-model amalgamation for all small categories J . The category of signature
has small co-limits (Corollary 5.1), therefore by Theorem 5.1, the category of models of any signature
has small co-limits. ut

5.6 Limits of models

In this subsection we show that MVL(L) has finite limits of models by a direct construction of models.

Proposition 5.9. MVL(L) has products of models.

Proof:
Let (S, F,R) be an MVL(L) signature and let M1 and M2 be (S, F,R)-models. We define M , the

product of M1 and M2, by:

· Ms = M1
s ×M2

s ;

· ≈M : M ×M → L, (m1,m2) ≈M (n1, n2) = (m1 ≈M1 n1) ∧ (m2 ≈M2 n2);

· Mf : Ms1 × . . .Msn → M , Mf (m) = ( M1
f (m1

1, . . . ,m
1
n) , M2

f (m2
1, . . . ,m

2
n) ), where f ∈

Fs1...sn→s and m = ((m1
1,m

2
1), . . . , (m1

n,m
2
n));

· Mr : Ms1× . . .Msn → L,Mr(m) = M1
r (m1

1, . . . ,m
1
n) ∧ M2

r (m2
1, . . . ,m

2
n), where r ∈ Rs1...sn

and m = ((m1
1,m

2
1), . . . , (m1

n,m
2
n)).

M is an (S, F,R)-model:

− using the fact that ≈M1
and ≈M2

are L-equalities, we can show immediately that ≈M is an
L-equality.
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− Mf is compatible with ≈M :

((m1
1,m

2
1) ≈M (l11, l

2
1)) ∧ . . . ∧ ((m1

n,m
2
n) ≈M (l1n, l

2
n)) = (m1

1 ≈M1

l11) ∧ (m2
1 ≈M2 l21) ∧ . . . ∧ (m1

n ≈M1 l1n) ∧ (m2
n ≈M2 l2n) ≤

(M1
f (m1

1, . . . ,m
1
n) ≈M1 M1

f (l11, . . . , l
1
n)) ∧ (M2

f (m2
1, . . . ,m

2
n) ≈M2 M2

f (l21, . . . , l
2
n)) =

(M1
f (m1

1, . . . ,m
1
n),M2

f (m2
1, . . . ,m

2
n)) ≈M (M1

f (l11, . . . , l
1
n),M2

f (l21, . . . , l
2
n)) =

Mf ((m1
1,m

2
1), . . . , (m1

n,m
2
n)) ≈M Mf ((l11, l

2
1), . . . , (l1n, l

2
n)).

− Mr is compatible with ≈M :

((m1
1,m

2
1) ≈M (l11, l

2
1)) ∧ . . . ∧ ((m1

n,m
2
n) ≈M (l1n, l

2
n)) ∧Mr((m1

1,m
2
1), . . . , (m1

n,m
2
n)) =

(m1
1 ≈M1 l11) ∧ (m2

1 ≈M2 l21) ∧ . . . ∧ (m1
n ≈M1 l1n) ∧ (m2

n ≈M2 l2n) ∧M1
r (m1

1, . . . ,m
1
n) ∧

M2
r (m2

1, . . . ,m
2
n) ≤M1

r (l11, . . . , l
1
n) ∧M2

r (l21, . . . , l
2
n) = Mr((l11, l

2
1), . . . , (l1n, l

2
n)).

We define pj : M →Mj by pj(m1,m2) = mj , for any j = 1, 2. pj is a model homomorphism:

− (m1,m2) ≈M (n1, n2) = (m1 ≈M1
n1)∧(m2 ≈M2

n2) ≤ (mj ≈Mj
nj) = pj(m1,m2) ≈Mj

pj(n1, n2);

− pj(Mf (m)) = pj(M1
f (m1

1, . . . ,m
1
n),M2

f (m2
1, . . . ,m

2
n)) = M j

f (mj
1, . . . ,m

j
n) = M j

f (pj(m)),
where m = ((m1

1,m
2
1), . . . , (m1

n,m
2
n));

− Mr(m) = M1
r (m1

1, . . . ,m
1
n) ∧M2

r (m2
1, . . . ,m

2
n) ≤ M j

r (mj
1, . . . ,m

j
n) = M j

r (pj(m)), where
m = ((m1

1,m
2
1), . . . , (m1

n,m
2
n)).

Let N be an (S, F,R)-model and let hj : N → M j , j = 1, 2. We define h : N → M by
h(n) = (h1(n), h2(n)), for any n ∈ N . We can immediately show that h is a model homomorphism
and that h; pj = hj , for any j = 1, 2. Moreover, h is unique with the property h; pj = hj . Therefore M
is indeed the product of M1 and M2.

ut

Since L has arbitrary infima, we can generalize the construction from the proof of Proposition 5.9
for any finite set of models.

Proposition 5.10. MVL(L) has equalizers of models.

Proof:

Let (S, F,R) be a signature and M
h−→
−→
g
N be model homomorphisms. Let us consider X = {x ∈

M | h(x) = g(x)}. We define:

· x ≈X y = x ≈M y, for any x, y ∈ X;

· Xf (x) = Mf (x), for any x ∈ X;

· Xr(x) = Mr(x), for any x ∈ X .
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It is obvious that X is an (S, F,R)-model.

Let h′ : N ′ → M be an (S, F,R)-model homomorphism such that h′;h = h′; g. Since h(h′(n′)) =
g(h′(n′)), for any n′ ∈ N ′, it follows that h′(n′) ∈ X . Thus we can consider the model homomorphism
h′ : N ′ → X . ut

We recall the following result from [17]:

Proposition 5.11. A category has all finite limits if and only if it has finite products and equalizers.

Corollary 5.4. MVL(L) has all finite limits of models.

5.7 Initial models for presentations

Definition 5.3. < I,E > is an inclusion system for a category C if I and E are two sub-categories with
|I| = |E| = |C| such that

1. I is a partial order, and

2. every arrow f in C can be factored uniquely as f = ef ; if with ef ∈ E and if ∈ I .

In any inclusion system < I,E > for a category C, the arrows of I are called abstract inclusions
and the arrows of E are called abstract surjections.

The abstract surjections of some inclusion systems need not necessarily be surjective in the ordinary
set-theoretic sense. Consider for example the trivial inclusion system for Set where each function is an
abstract surjection and the abstract inclusions are just the identities. An inclusion system < I,E > is
epic when all the abstract surjections are epis.

Definition 5.4. In any category C with an inclusion system < I,E >, an object B is a E-quotient
representation of A if there exists an abstract surjection A→ B. An E-quotient of A is an isomorphism
class of E-quotient representions.

Definition 5.5. [19] If E is a class of morphisms from a category C, then C is E-co-well-powered if for
any object B and for any class of morphisms from E having domain B, let us say {ej | j ∈ J}, there is
a subset M of J such that for any j in J there is some m ∈ M such that ej and em are isomorphic, i.e.
there is an isomorphism α with ej = em;α.

Definition 5.6. An inclusion system < I,E > for a category C is co-well-powered if the category C is
E-co-well powered, i.e. the class of E-quotients of each object is a set.
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Definition 5.7. In any category C with an inclusion system < I,E >, we say that an object A is an
I-subobject of another object B if there exists an abstract inclusion A→ B ∈ I .

Definition 5.8. In any category C with an inclusion system < I,E >, an object A of C is I-reachable
if and only if it has no I-subobjects which are different from A.

Fact 5.4. In any category C with a given inclusion system and which has an initial object 0C

− each object A is reachable if and only if the unique arrow 0C → A is an abstract surjection, and

− each object has exactly one reachable subobject.

Inclusion system for MVL(L) models
Let (S, F,R) be a signature in MVL(L) and let h : M → M ′ be an (S, F,R)-homomorphism. We

will factor the homomorphism h by:

M M ′-h

h(M)

S
S
S
Sw �

�
�
�7

e i

where we define e(m) = h(m), for any m ∈M , and i(m′) = m′, for any m′ ∈ h(M).

Notice that h(M) is defined by:

· h(M)s = hs(Ms)

· ≈h(M)=≈M ′

· h(M)f = M ′f

· h(M)r = M ′r

Let f ∈ Fw→s and let m′ ∈ h(M)w. Thus there exists n ∈ Mw such that h(n) = m′. We have
h(M)f (m′) = M ′f (m′) = M ′f (h(n)) = h(Mf (n)). Therefore there exists Mf (n) ∈ Ms such that
h(M)f (m′) = h(Mf (n)), i.e. h(M)f (m′) ∈ h(M)s. Since M ′f and M ′r are compatible with ≈M ′ , it
follows that h(M)f and h(M)r are compatible with≈h(M). In conclusion, h(M) is an (S, F,R)-model.

It is obvious that e is a surjection. We check if e and i are model homomorphisms:

· Since≈h(M)=≈M ′ , it follows that m′1 ≈h(M) m′2 ≤ i(m′1) ≈M ′ i(m′2), for any m′1,m
′
2 ∈ h(M).

Let m1,m2 ∈ M . We have (e(m1) ≈h(M) e(m2)) = (h(m1) ≈h(M) h(m2)) = (h(m1) ≈M ′

h(m2)) ≥ m1 ≈M m2.
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· Let f ∈ Fw→s. For any m′ ∈ h(M)w, i(h(M)f (m′)) = h(M)f (m′) = M ′f (m′) = M ′f (i(m′)).
For any m ∈ Mw, we have e(Mf (m)) = h(Mf (m)) = M ′f (h(m)) = h(M)f (h(m)) =
h(M)f (e(m)).

· Let r ∈ Rw. Since h(M)r = M ′r, it follows that h(M)r(m′) ≤ M ′r(i(m
′)), for any m′ ∈ h(M).

Let m ∈M . We have Mr(m) ≤M ′r(h(m)) = h(M)r(h(m)) = h(M)r(e(m)).

Definition 5.9. For any MVL(L) signature (S, F,R) and any (S, F,R)-model homomorphismM → N
which is a set inclusion for each s ∈ S such that

· (m ≈M m′) = (m ≈N m′), for any m,m′ ∈M , and

· Mr(m) = Nr(m), for any m ∈M ,

we say that M is a submodel of N .

Fact 5.5. Let (S, F,R) be an MVL(L) signature and let M → N be an (S, F,R)-submodel. Then
Mf (m) = Nf (m), for any m ∈M and Mt = Nt, for any (S, F,R)-term t.

Fact 5.6. For any MVL(L) signature (S, F,R), the category of (S, F,R)-models admits the following
inclusion system:

abstract surjection abstract inclusions

surjective homomorphisms submodels

Fact 5.7. Let (S, F,R) be a signature in MVL(L). The above inclusion system for the category of
(S, F,R)-models is co-well-powered.

Proof:
Let E be the class of all surjective (S, F,R)-homomorphisms. We must show that the category of

(S, F,R)-models is E-co-well-powered.

Let M be an (S, F,R)-model and let X = {e | e : M → N, e surjective homomorphism } be a class
of arrows from E having domain M .

Let us denote by [e] = {e′ ∈ X | e′ : M → N ′ and there exists an isomorphism g : N → N ′, g
homomorphism, such that e; g = e′}, for any e : M → N ∈ X . We will show that {[e]| e ∈ X} is a set.

For every [e], where e : M → N ∈ X , we can define an equivalence relation ∼e on M by m ∼e m′
if and only if e(m) = e(m′). Let e′ ∈ [e], e′ : M → N ′ and letm,m′ ∈M such that e(m) = e(m′). We
have e′(m) = (e; g)(m) = (e; g)(m′) = e′(m′), where g : N → N ′ is isomorphism such that e; g = e′.
Thus, the definition of ∼e is correct. We can easily observe that for any f ∈ Fw→s, if m ∼e m′, for any
m,m′ ∈Mw, then Mf (m) ∼e Mf (m′).
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If e′ ∈ [e], then∼e=∼e′ . Therefore we cannot have more classes [e], where e ∈ X , than equivalence
relations on M . Since the equivalence relations on a set form a set, it follows that {[e]| e ∈ X} is a set.

Finally, we can find a subset Y of the class X by choosing one surjective homomorphism e′ from
each [e] (an representative arrow from each class). Obviously, for each arrow e from X we can find an
arrow e′ in Y which is isomorphic with e.

ut

Definition 5.10. In any category C with a given inclusion system and with small products, a class of
objects of C closed under isomorphisms is a quasi-variety if it is closed under small products and subo-
jects.

The existence of initial models of quasi-varieties can be obtained at the very general level of abstract
categories with inclusion systems.

Proposition 5.12. Consider a category C with an initial object 0C, small products, and with a co-well-
powered epic inclusion system. Each quasi-variety Q of C has a reachable initial object.

Corollary 5.5. For any MVL(L) signature (S, F,R), any set of (S, F,R)-sentences of the form
[(∀X)t = t′, x] or [(∀X)r(t), x] has an initial model.

Proof:
Let (S, F,R) be an MVL(L)-signature and let Γ be a set of (S, F,R)-sentences of the form [(∀X)t =

t′, x] or [(∀X)r(t), x].

Since by Proposition 5.1 there exists the initial (S, F,R)-model, the category of (S, F,R)-models
admits a co-well-powered epic inclusion system and has small products, by Proposition 5.12 it is enough
to show that Γ∗ is a quasi-variety, where Γ∗ = {A ∈ |Mod(S, F,R)| | A |= Γ}.

· Closed under small products

Let (Ai)i∈I be a family of (S, F,R)-models satisfying Γ. We have to prove that the product
∏
i∈I Ai

satisfies each sentence ρ of Γ.

Let [(∀X)t = t′, x] in Γ. Let A′ be any (S, F ] X,R)-expansion of
∏
i∈I Ai. Each projection pi :∏

i∈I Ai → Ai lifts uniquely to p′i : A′ → A′i and (p′i)i∈I is a product cone. Moreover A′ =
∏
i∈I A

′
i.

By definition of
∏
i∈I A

′
i, we haveA′t ≈A

′
A′t′ =

∧
i∈I p

′
i(A
′
t) ≈A

′
i p′i(A

′
t′). SinceAi |= [(∀X)t = t′, x],

we get (A′i)t ≈A
′
i (A′i)t′ ≥ x, for every (S, F ] X,R)-expansion A′i of Ai. From pi(A′t) = (A′i)t, it

follows that
∧
i∈I p

′
i(A
′
t) ≈A

′
i p′i(A

′
t′) ≥ x, thus d(A′, t = t′) ≥ x. Therefore

∏
i∈I Ai |= [(∀X)t =

t′, x].

Let [(∀X)r(t), x] ∈ Γ. We can prove in a similar way that
∏
i∈I Ai |= [(∀X)r(t), x], since for any

(S, F ]X,R)-expansion A′ of
∏
i∈I Ai, A

′
r(A

′
t) =

∧
i∈I(A

′
i)r(p

′
i(A
′
t)). From Ai |= [(∀X)r(t), x], we

get (A′i)r((A
′
i)t) ≥ x, thus

∧
i∈I(A

′
i)r(p

′
i(A
′
t)) ≥ x.
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· Closed under subobjects

Let B ↪→ A be a submodel of A, where A satisfies Γ.

Let [(∀X)t = t′, x] ∈ Γ. Let B′ be an (S, F ]X,R)-expansion of B and let A′ be the (S, F ]X,R)-
expansion ofA such thatA′x = B′x, for each x ∈ X . ThereforeB′ ↪→ A′ is a submodel for (S, F]X,R).
FromA |= Γ, it follows thatA′t ≈A

′
A′t′ ≥ x. SinceB′ is a submodel, we have≈B′=≈A′ andB′u = A′u,

for any term u. ThusB′t ≈B
′
B′t′ ≥ x. AsB′ was chosen arbitrarily, it follows thatB |= [(∀X)t = t′, x].

The case [(∀X)r(t), x] ∈ Γ can be treated similarly by noticing that B′r = A′r, for any submodel
B′ ↪→ A′.

ut

5.8 Epic basic sentences

In any institution, a set E of Σ-sentences is basic [4] if there exists a Σ-models ME such that for
each Σ-model M ,

M |=Σ E if and only if there exists a model homomorphism ME →M .

For a basic set E of sentences, when for each model M |= E the model homomorphism ME → M
is unique, we say that E is epic basic.

Proposition 5.13. Each set of atomic sentences from MVL(L) is epic basic.

Proof:
Let (S, F,R) be a signature in MVL(L) and let E be a set of atomic (S, F,R)-sentences.
We consider ME to be 0E , the initial model for E (Proposition 5.8).
Let M be an (S, F,R)-model. If M |= E, obviously, there exits a unique model homomorphism

0E →M .
Suppose that there exists an unique model homomorphism hM : 0E → M and let us prove that

M |= E. Let ρ ∈ E. We have two cases:

· ρ = [t = t′, x]

Since 0E |= E, it follows that (0E)t ≈0E (0E)t′ ≥ x. Since hM is a model homomorphism,
a ≈0E a′ ≤ hM (a) ≈M hM (a′), for any a, a′ ∈ 0E . Therefore x ≤ (0E)t ≈0E (0E)t′ ≤
hM ((0E)t) ≈M hM ((0E)t′) = Mt ≈M Mt′ . Thus M |= [t = t′, x].

· ρ = [r(t), x]

From 0E |= [r(t), x], we obtain (0E)r((0E)t) ≥ x. Since hM is a model homomorphism,
(0E)r(a) ≤ Mr(hM (a)), for any a ∈ 0E . Therefore x ≤ (0E)r((0E)t) ≤ Mr(hM ((0E)t)) =
Mr(Mt). Thus M |= [r(t), x].

ut
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5.9 Representable signature morphisms

The institutional notion of representable signature morphisms is an abstract concept meant to capture
the phenomena of quantification over (sets of) first-order variables. The notion starts from the fact
that semantics of quantification in first-order-like logics can be given in terms of signature extensions:
M |=(S,F,P ) (∀X)ρ if and only if M ′ |=(S,F]X,P ) ρ, for each (S, F ]X,P )-expansion M ′ of M (and
similarly for existential quantification). Thus, in order to reach first-order quantification institutionally,
one needs to define somehow what ”injective signature morphism that only adds constant symbols” (such
as (S, F, P ) ↪→ (S, F ]X,P )) means.

In any institution, a signature morphism χ : Σ → Σ′ is quasi-representable [4] when for each
Σ′-model M ′, the canonical functor determined by the reduct functor Mod(χ) is an isomorphism:

M ′/Mod(Σ′) ∼= (M ′�χ)/Mod(Σ).

This means that each Σ-model homomorphism h : M ′�χ→ N admits a unique χ-expansion h′ : M ′ →
N ′.

A signature morphism χ : Σ→ Σ′ is representable if and only if there exists a Σ-model Mχ (called
the representation of χ) and an isomorphism iχ of categories such that the following diagram commutes:

Mod(Σ′) (Mχ/Mod(Σ))

Mod(Σ)

-iχ

?
forgetful

PPPPPPPPPq
Mod(χ)

Fact 5.8. A signature morphism χ : Σ→ Σ′ is representable if and only if it is quasi-representable and
Mod(Σ′) has initial model.

Proposition 5.14. In MVL(L), all signature extension with constant symbols are quasi-representable.

Proof:
Let ϕ : (S, F,R)→ (S, F ]X,R) be a signature extension with constant symbols and let M ′ be an

(S, F ]X,R)-model. We denote M = M ′�ϕ.
We must define an isomorphism of categories between M ′/Mod(S, F ] X,R) and

M/Mod(S, F,R).
Let iM ′,(S,F,R) : M ′/Mod(S, F ]X,R)→M/Mod(S, F,R) be the following functor:

· for any object h′ : M ′ → N ′, we define iM ′,(S,F,R) = h′�ϕ;

· for any arrow g′ : (h′1 : M ′ → N ′1)→ (h′2 : M ′ → N ′2), we define iM ′,(S,F,R) = g′�ϕ.

Let i−1
M ′,(S,F,R) : M/Mod(S, F,R)→M ′/Mod(S, F ]X,R) be the following functor:
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· for any object h : M → N , we define i−1
M ′,(S,F,R) = M ′

h′→ N ′, where N ′ �ϕ= N and N ′x =
h(M ′x), for any x ∈ X and h′(m′) = h(m′), for any m′ ∈ M ′. We notice that h′ is a model
homomorphism between M ′ and N ′ because h is a model homomorphism and the definition of
N ′ on the constants from X .

· for any arrow g : (h1 : M → N1) → (h2 : M → N2), we define i−1
M ′,(S,F,R)(g) = g′ : (h′1 :

M ′ → N ′1)→ (h′2 : M ′ → N ′2) by g′(n′) = g(n), for any n′ ∈ N ′1.

It is sufficient to prove the homomorphism condition for the constants symbols from X:

g′((N ′1)x) = g′(h1(M ′x)) = g(h1(M ′x)) = h2(M ′x) = (N ′2)x.

It is easy to check that iM ′,(S,F,R) is an isomorphism of categories. ut

Corollary 5.6. In MVL(L), all signature extensions with constant symbols are representable.

Proof:

We know that MVL(L) has initial models of signatures and signature extensions with constant sym-
bols are quasi-representable, therefore they are representable. ut

Given a set X of new constants for an MVL(L) signature (S, F,R), the representation of the signa-
ture inclusion (S, F,R)→ (S, F ]X,R) is given by the model of the (F ]X)-terms TF (X), which is
the free (S, F,R)-model over X. This is due to the fact that (S, F ]X,R)-modelsM are in canonical bi-
jection with evaluations of variables fromX to the carrier sets ofM . By the freeness property of TF (X),
these evaluations are in canonical bijection with (S, F,R)-model homomorphisms TF (X)→M .

5.10 System of proof rules for AMVL(L)

For this subsection, we suppose that L is finite and any two elements from L are comparable. We
recall that AMVL(L) is the sub-institution of MVL(L) which restricts the sentences only to atoms.

Definition 5.11. A system of proof rules (Sig,Sen,Rl, h, c) consists of

· a category of signatures Sig,

· a sentence functor Sen : Sig → Set,

· a proof rule functor Rl : Sig → Set and

· two natural transformations h, c : Rl⇒ Sen;P , where P : Set→ Set is the power-set function.
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For each signature Σ, Rl(Σ) gives the set of the Σ-proof rules, hΣ : Rl(Σ) → P(Sen(Σ)) gives
the hypotheses of the rules, and cΣ : Rl(Σ) → P(Sen(Σ)) gives the conclusion. A Σ-rule r can be
therefore written as hΣ(r) r→ cΣ(r). The functoriality of Rl and the naturality of the hypotheses h
and of the conclusions c say that the translation of rules along signature morphisms is coherent with the
translation of the sentences. When there is no danger of confusion, we identify a system of proof rules
(Sig,Sen,Rl, h, c) with Rl.

For each set Γ of Σ-sentences, we define Γ =
⋃
n∈N Γn, where:

Γ0 = Γ,

Γn+1 = Γn ∪ {e | E1

E2
∈ Rl(Σ), E1 ⊆ Γn, e ∈ E2}.

We say that Γ infer e and we denote Γ `Σ e if e ∈ Γ.

Notice that `= (`Σ)Σ∈|Sig| has the following properties:

1. reflexivity: {e} `Σ e, for each e ∈ Sen(Σ),

2. transitivity: ifE `Σ e′, for each e′ ∈ E′, andE∪E′ `Σ e, thenE `Σ e, for eachE,E′ ⊆ Sen(Σ)
and each e ∈ Sen(Σ);

3. monotonicity: if E ⊆ E′ and E `Σ e, then E′ `Σ e;

4. translation: if E `Σ e′ and ϕ : Σ→ Σ′, then Sen(ϕ)(E) `Σ′ Sen(ϕ)(e).

When there is no danger of confusion we omit the subscript of `Σ. We say that (Sig,Sen,`) is the
entailment system freely generated by the system of proof rules (Sig,Sen,Rl, h, c).

A system of proof rules (Sig,Sen,Rl, h, c) is sound (complete) for an institution I =
(Sig,Sen,Mod, |=) whenever the entailment system freely generated by Rl, (Sig,Sen,`), is sound
(complete) for I, i.e. `⊆|= (|=⊆`).

The following result is proved in [6].

Proposition 5.15. A system of proof rules (Sig,Sen,Rl, h, c) is sound for an institution I =
(Sig,Sen,Mod, |=) if for each signature Σ, Rl(Σ) ⊆|=Σ.

The system of proof rules for AMVL(L) is given by the following set of rules for any AMVL(L)
signature (S, F,R):

(R) ∅ ` [t = t, 1], where t ∈ TF ;

(S) [t = t′, x] ` [t′ = t, x], where t, t′ ∈ TF , x ∈ L;

(T) {[t = t′, x], [t′ = t′′, y]} ` [t = t′′, x ∧ y], where t, t′, t′′ ∈ TF , x, y ∈ L;

(EQF) ∅ ` [t = t′, 0], where t, t′ ∈ TF ;
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(RELF) ∅ ` [r(t), 0], where t ∈ TF , r ∈ R;

(DESC-EQ) [t = t′, x] ` [t = t′, y], where t, t′ ∈ TF , x, y ∈ L such that x ≥ y;

(DESC-REL) [r(t), x] ` [r(t), y], where t ∈ TF , r ∈ R, x, y ∈ L such that x ≥ y;

(OP) {[ti = t′i, xi] | 1 ≤ i ≤ n} ` [f(t1,. . ., tn) = f(t′1,. . ., t
′
n), x1∧. . .∧xn], where f ∈ F ;

(REL) {[ti = t′i, xi] | 1 ≤ i ≤ n} ∪ {[r(t1,. . ., tn), y]} ` [r(t′1,. . ., t
′
n), x1∧. . .∧xn ∧ y], where

r ∈ R.

Proposition 5.16. AMVL(L) with the above system of proof rules is sound.

Proof:
By Proposition 5.15, it is enough to show that for each MVL(L)-signature (S, F,R),

Rl(S, F,R) ⊆|=(S,F,R).

Let (S, F,R) be an MVL(L)-signature.

(R) Let M be an (S, F,R)-model. Since ≈M is an L-equality, it follows that Mt ≈M Mt = 1,
thus M |= [t = t, 1].

(S) Let M be an (S, F,R)-model such that M |= [t = t′, x]. Therefore Mt ≈M Mt′ ≥ x. Since
≈M is an L-equality, we have Mt′ ≈M Mt = Mt ≈M Mt′ ≥ x, thus M |= [t′ = t, x].

(T) Let M be an (S, F,R)-model such that M |= [t = t′, x] and M |= [t′ = t′′, y]. Therefore
Mt ≈M Mt′ ≥ x and Mt′ ≈M Mt′′ ≥ y. Since x ≥ x ∧ y and y ≥ x ∧ y, it follows that
Mt ≈M Mt′ ≥ x ∧ y and Mt′ ≈M Mt′′ ≥ x ∧ y. We obtain (Mt ≈M Mt′) ∧ (Mt′ ≈M Mt′′) ≥
(x∧y)∧ (x∧y) = x∧y. Since≈M is an L-equality, we have (Mt ≈M Mt′)∧ (Mt′ ≈M Mt′′) ≤
Mt ≈M Mt′′ , therefore Mt ≈M Mt′′ ≥ x ∧ y. Thus M |= [t = t′′, x ∧ y].

(EQF) Let M be an (S, F,R)-model. It is obvious that Mt ≈M Mt′ ≥ 0, since 0 ≤ x, for any
x ∈ L. Thus M |= [t = t′, 0].

(RELF) Let M be an (S, F,R)-model. As 0 ≤ x, for any x ∈ L, it follows that Mr(Mt) ≥ 0,
hence M |= [r(t), 0].

(DESC-EQ) Let M be an (S, F,R)-model such that M |= [t = t′, x]. Therefore Mt ≈M Mt′ ≥
x ≥ y, thus M |= [t = t′, y].

(DESC-REL) Let M be an (S, F,R)-model such that M |= [r(t), x]. We have Mr(Mt) ≥ x ≥ y,
therefore M |= [r(t), y].
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(OP) Let M an (S, F,R)-model such that M |= [ti = t′i, xi], for all 1 ≤ i ≤ n. Thus
Mti ≈M Mt′i

≥ xi, therefore we have x1 ∧ . . . ∧ xn ≤ (Mt1 ≈M Mt′1
) ∧ . . . ∧ (Mtn ≈M

Mt′n) ≤ (Mf (Mt1 , . . . ,Mtn) ≈M Mf (Mt′1
, . . . ,Mt′n)), for any f ∈ F , since Mf is compatible

with ≈M . By the definition of the satisfaction relation, we obtain that M |= [f(t1, . . . , tn) =
f(t′1, . . . , t

′
n), x1 ∧ . . . ∧ xn].

(REL) Let M be an (S, F,R)-model such that M |= [ti = t′i, xi], for all 1 ≤ i ≤ n, and
M |= [r(t1, . . . , tn), y]. Therefore we have Mti ≈M Mt′i

≥ xi, for all 1 ≤ i ≤ n, and
Mr(Mt1 , . . . ,Mtn) ≥ y. We obtain x1∧ . . .∧xn∧y ≤ (Mt1 ≈M Mt′1

)∧ . . .∧ (Mtn ≈M Mt′n)∧
Mr(Mt1 , . . . ,Mtn). Since Mr is compatible with≈M , we have (Mt1 ≈M Mt′1

)∧ . . .∧ (Mtn ≈M
Mt′n) ∧Mr(Mt1 , . . . ,Mtn) ≤Mr(Mt′1

, . . . ,Mt′n), thus Mr(Mt′1
, . . . ,Mt′n) ≥ x1 ∧ . . . ∧ xn ∧ y.

Hence M |= [r(t′1, . . . , t
′
n), x1 ∧ . . . ∧ xn ∧ y].

ut

In order to prove that AMVL(L) with the above system of proof rules is also complete, let us first
define, for any signature (S, F,R) and any set E of (S, F,R)-sentences from AMVL(L), PE by:

· (PE)s = {[t] | t ∈ (TF )s}, where [t] = {t′ ∈ (TF )s | E ` [t = t′, 1]};

· [t] ≈PE [t′] =
∨
{y ∈ L | E ` [t = t′, y]}, for any [t], [t′] ∈ PE ;

· (PE)f ([t1], . . . , [tn]) = [f(t1, . . . , tn)], for any f ∈ Fs1...sn→s and [ti] ∈ (PE)si ;

· (PE)r([t1], . . . , [tn]) =
∨
{y ∈ L | E ` [r(t1, . . . , tn, y)]}, for any r ∈ Rs1...sn and [ti] ∈ (PE)si .

Fact 5.9. The definition of PE is correct.

Proof:
The proof follows by simple calculation.

· [t] ≈PE [t′] =
∨
{y | E ` [t = t′, y]}

Let t1 ∈ [t] and t′1 ∈ [t′]. Then E ` [t = t1, 1] and E ` [t′ = t′1, 1]. Suppose E ` [t = t′, y].
From E ` [t = t1, 1], using (S), we obtain E ` [t1 = t, 1]. We can apply (T) and we obtain
E ` [t1 = t′, y]. We apply again (T) and it follows that E ` [t1 = t′1, y].

· (PE)f ([t1], . . . , [tn]) = [f(t1, . . . , tn)]

Let t′i ∈ [ti], for all 1 ≤ i ≤ n. Then E ` [ti = t′i, 1], for all 1 ≤ i ≤ n. By rule (OP) we get
E ` [f(t1, . . . , tn) = f(t′1, . . . , t

′
n), 1], thus f(t′1, . . . , t

′
n) ∈ [f(t1, . . . , tn)].

· (PE)r([t1], . . . , [tn]) =
∨
{y | E ` [r(t1, . . . , tn), y]}

Let t′i ∈ [ti], for all 1 ≤ i ≤ n. Then E ` [ti = t′i, 1], for all 1 ≤ i ≤ n. Suppose E `
[r(t1, . . . , tn), y]. By rule (REL) we get E ` [r(t′1, . . . , t

′
n), y].

ut
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Proposition 5.17. PE is an (S, F,R)-model in AMVL(L).

Proof:
For PE to be an (S, F,R)-model we must check the followings:

− ≈PE is an L-equality:

By rule (R), we obtain E ` [t = t, 1], thus [t] ≈PE [t] = 1.

Using rule (S), we can immediately show that [t] ≈PE [t′] = [t′] ≈PE [t].

Let [t] ≈PE [t′] = z =
∨
{y | E ` [t = t′, y]} and [t′] ≈PE [t′′] = z′ =

∨
{y | E ` [t′ = t′′, y]}.

Since any two elements from L are comparable, we have that E ` [t = t′, z] and E ` [t′ = t′′, z′].
By rule (T) we get E ` [t = t′′, z ∧ z′]. Thus [t] ≈PE [t′′] =

∨
{y | E ` [t = t′′, y]} ≥ z ∧ z′ =

[t] ≈PE [t′] ∧ [t′] ≈PE [t′′].

Suppose [t] ≈PE [t′] = 1. Thus E ` [t = t′, 1]. Let t1 ∈ [t]. Then E ` [t = t1, 1]. By rule (S)
we obtain E ` [t1 = t, 1] and by rule (T) we get E ` [t1 = t′, 1]. We apply (S) again and we get
E ` [t′ = t1, 1]. Thus t1 ∈ [t′]. Similarly, we can prove that if t1 ∈ [t′], then t1 ∈ [t]. Therefore
[t] = [t′].

− (PE)f is compatible with ≈PE :

Let [ti] ≈PE [t′i] = zi, where zi =
∨
{y | E ` [ti = t′i, y]}, for any 1 ≤ i ≤ n. Since in L

any two elements are comparable, it follows that E ` [ti = t′i, zi], for any 1 ≤ i ≤ n. Using
rule (OP) we get that E ` [f(t1, . . . , tn) = f(t′1, . . . , t

′
n), z1 ∧ . . . ∧ zn]. We have the followings

((PE)f ([t1], . . . , [tn]) ≈PE (PE)f ([t′1], . . . , [t′n])) = ([f(t1, . . . , tn)] ≈PE [f(t′1, . . . , t
′
n)]) =∨

{y | E ` [f(t1, . . . , tn) = f(t′1, . . . , t
′
n), y]} ≥ z1∧ . . .∧ zn = ([t1] ≈PE [t′1])∧ . . .∧ ([tn] ≈PE

[t′n]).

− (PE)r is compatible with ≈PE :

Let [ti] ≈PE [t′i] = zi, where zi =
∨
{y | E ` [ti = t′i, y]}, for any 1 ≤ i ≤ n. Thus E ` [ti =

t′i, zi], for any 1 ≤ i ≤ n. Suppose (PE)r([t1], . . . , [tn]) = z =
∨
{y | E ` [r(t1, . . . , tn), y]}.

Since in L any two elements are comparable, we have E ` [r(t1, . . . , tn), z]. We apply rule
(REL) and we obtain E ` [r(t′1, . . . , t

′
n), z1 ∧ . . . ∧ zn ∧ z]. We have (PE)r([t′1], . . . , [t′n]) =∨

{y | E ` [r(t′1, . . . , t
′
n), y]} ≥ z1 ∧ . . . ∧ zn ∧ z = ([t1] ≈PE [t′1]) ∧ . . . ∧ ([tn] ≈PE ][t′n]) ∧

(PE)r([t1], . . . , [tn]).
ut

Fact 5.10. (PE)t = [t], for any (S, F,R)-term t.

Proof:
We proof by induction on the structure of terms:

(PE)f(t1,...,tn) = (PE)f ((PE)t1 , . . . , (PE)tn) = (PE)f ([t1], . . . , [tn]) = [f(t1, . . . , tn)]. ut
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Proposition 5.18. PE |= E

Proof:
Let [t = t′, x] ∈ E. Therefore E ` [t = t′, x]. Since (PE)t ≈PE (PE)t′ =

∨
{y | E ` [t = t′, y]},

we obtain that (PE)t ≈PE (PE)t′ ≥ x, thus PE |= [t = t′, x].

Let [r(t), x] ∈ E. It follows that E ` [r(t), x]. By definition, (PE)r((PE)t) =
∨
{y | E ` [r(t), y]},

therefore (PE)r((PE)t) ≥ x, thus PE |= [r(t), x].
ut

Proposition 5.19. If PE |= e, then E ` e, for any (S, F,R)-sentence e in AMVL(L).

Proof:
Let e = [t = t′, x]. Since PE |= [t = t′, x], we have (PE)t ≈PE (PE)t′ ≥ x. From (PE)t ≈PE

(PE)t′ = z =
∨
{y | E ` [t = t′, y]}, we get E ` [t = t′, z], since any two elements from L are

comparable. Since z ≥ x, using rule (DESC-EQ) we obtain E ` [t = t′, x].

Let e = [r(t1, . . . , tn), x]. From PE |= [r(t1, . . . , tn), x], we get (PE)r((PE)t1 , . . . , (PE)tn) ≥ x.
Since (PE)r((PE)t1 , . . . , (PE)tn) = z =

∨
{y | E ` [r(t1, . . . , tn), y]} and any two elements of L are

comparable, we obtain E ` [r(t1, . . . , tn), z]. We have that z ≥ x, thus we can apply rule (DESC-REL)
and we obtain E ` [r(t1, . . . , tn), x]. ut

Proposition 5.20. AMVL(L) with the above proof rules is complete.

Proof:
Let E be a set of atomic sentences for any signature (S, F,R). Suppose E |= e, where e is an atomic

sentence for (S, F,R). By Proposition 5.18 we obtain that PE |= e. Finally, by Proposition 5.19, we get
E ` e.

ut
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