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Chapter 1

The Vazquez Maximum Principle

and Applications

1.1 Introduction

In this first chapter we study a deep maximum principle for elliptic equations due to Professor Juan
Luis Vazquez, together with some of its applications. This maximum principle is a result very useful
in dealing with nonlinearities of type up. It uses a condition very close to that of Keller-Osserman
type(see chapter 3) and it is an important improvement of the classical maximum principle.
The proof has a very elementary character, using essentially techniques of ordinary differential
equations and the method of sub- and supersolutions. It also has many applications, and we will
present here a theorem of Diaz and Saa, which is in fact an adaptation for the p-Laplace operator
of the famous result of Brezis-Oswald.
We state here for convenience the main results of the method of sub- and supersolutions.
Let Ω be a smooth bounded domain in RN and consider a Caratheodory function f(x, u) : Ω×R → R
such that f is of class C1 with respect to u. Consider the general problem:

−∆u = f(x, u) in Ω

u = 0 on ∂Ω

We look for classical solutions, i.e. solutions u which belongs to C2(Ω) ∩ CΩ.

Definition 1. A function U is said to be a subsolution of the problem above if

−∆U ≤ f(x,U) in Ω

U ≤ 0 on ∂Ω

A similar definition, by reversing the signs, holds for the notion of supersolution.

The main result of the method of sub- and supersolutions is the following:
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6 CHAPTER 1. THE VAZQUEZ MAXIMUM PRINCIPLE AND APPLICATIONS

Theorem 1. Let U (respectively U) be a subsolution (respectively a supersolution) to the problem
above, such that U ≤ U in Ω. Then the following hold:
(i) there exists a solution u such that U ≤ u ≤ U in Ω;
(ii) there exists a minimal and a maximal solution u and u of our problem with respect to the interval
[U,U ].

We will not prove this result. For a proof and for many extensions and applications the reader
may consult [Rad].
The structure of this chapter is the following: we start with proving the version of the Vazquez
maximum principle for the Laplacian and for the p-Laplacian, in order to show how a proof for the
Laplace operator can be adapted for the p-Laplace. In section 1.3 we derive the theorem of Diaz
and Saa and we present the slight simplifications we can do in the proof for the case of the usual
Laplace operator.

1.2 The Vazquez Maximum Principle

In this section we state and prove the Vazquez maximum principle in its both variants, for the
Laplace and for the p-Laplace operator. This result has appeared in the paper [Va84]

Theorem 2. (The Vazquez Maximum Principle) Let Ω ⊂ Rn be a bounded domain, where N ≥ 3.
Let u be a real function on Ω such that u ∈ C2(Ω) ∩ C(Ω), u ≥ 0 in Ω and

∆u ≤ f(u) in Ω (1.1)

where f : [0,∞) → R is a continuous and nondecreasing function such that f(0) = 0 and it satisfies
the following integral condition:

1∫
0

dt√
F (t)

= +∞ (1.2)

where F (t) :=
t∫
0

f(s)ds.

Then the following alternative holds: either u > 0 in Ω or u ≡ 0 in Ω.

Remark. Typical examples of functions satisfying the condition (1.2) are f(t) = tp with p ≥ 1 or
f(t) = tplog(1 + t) for p ≥ 2.

For the proof we use the following

Lemma 1. We consider the 1-dimensional Dirichlet problem

v
′′

= K1v
′
+K2f(v) in (0, r1) (1.3)

v(0) = 0, v(r1) = v1 > 0 (1.4)

where K1, K2 and r1 are positive real numbers. If f(0) = 0 and f is increasing, then the problem
has a unique solution. If moreover f satisfies the condition (1.2), then v

′
(0) > 0 and 0 < v < v1 in

(0, r1), where v is the solution of (1.3)-(1.4).
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Proof. We obviously see that v ≡ 0 is a subsolution and v ≡ C is a supersolution to (1.3)-(1.4),
provided that C is very large. By using theorem 1 we deduce that problem (1.3)-(1.4) has at least
a solution.
To prove uniqueness, suppose that v0 and v2 are two different solutions and let v := v0 − v2. Then
v satisfies

v
′′

= K1v
′
+K2(f(v0)− f(v2)) in (0, r1) (1.5)

v(0) = v(r1) = 0 (1.6)

We prove that v0 ≤ v2. If not, then there exists a point x0 ∈ (0, r1) such that v(x0) = sup
x∈(0,r1)

v(x) >

0. Hence v
′
(x0) = 0 and v

′′
(x0) ≤ 0. By replacing in (1.5) we obtain 0 ≥ v

′′
(x0) = K1v

′
(x0) +

K2(f(v0(x0)) − f(v2(x0))) > 0, which is a contradiction. Hence v0 ≤ v2 and by reversing the roles
we get also that v2 ≤ v0. The uniqueness follows.
Assume now that f satisfies (1.2) and let v be a solution of (1.5)-(1.6). Let r0 := sup{0 ≤ r ≤ r1 :
v(r) = 0}. Then 0 ≤ r0 < r1 and v(r0) = 0. We prove in the following lines that necessary r0 = 0,
which will end the proof.
We argue by contradiction and suppose that r0 > 0. Then v

′
(r0) = 0 and v

′ ≤ 0 on (r0, r1). Hence
v : [r0, r1] → [0, v(r1)] is a bijection(since v can not have local maxima in (0, r1), fact which derives
from the equation). We multiply (1.5) by v

′
and we integrate. By setting w := (v

′
)2 we obtain:

w
′
= 2K1w + 2K2(F (v))

′
(1.7)

We multiply again (1.7) by e−2K1r and we integrate in (r0, r). We have:

e−2K1rw(r)− e−2K1r0w(r0) = 2K2

r∫
r0

e−2K1s(F (v(s)))
′
ds (1.8)

Since w(r0) = 0, it follows that 2K2

r∫
r0

e−2K1s(F (v(s)))
′
ds = e−2K1rw(r) ≤ 2K2

r∫
r0

e−2K1r0(F (v(s)))
′
ds =

2K2e
−2K1r0(F (v(r))−F (v(r0))), hence v

′
(r)√

F (v(r))
≤ 2K2e

−2K1(r−r0) ≤ C, for any r ∈ (0, r1). Since

v : [r0, r1] → [0, v1] is a bijection, by integrating and changing the variable we obtain:

v1∫
0

dt√
F (t)

≤ C(r1 − r0) < +∞

which is a contradiction to the condition (1.2) supposed for f .

We denote for convenience the solution v in this general lemma by v(r;K1,K2, r1, v1) in order
to emphase its dependence on the parameters. We can now prove the Vazquez maximum principle
in its form for the Laplace operator.

Proof. Let Ω0 := {x ∈ Ω : u(x) = 0}, where u ≥ 0 in Ω. Let x1 be a point in Ω \ Ω0 such that
d(x1,Ω0) < d(x1, ∂Ω). Suppose that Ω0 is a proper subset of Ω. Set R := d(x1,Ω0) and x0 be a
point in Ω0 ∩B(x1, R). Then u(x0) = 0. Also set ω := {x ∈ Ω : 1

2R < |x− x1| < R}.
We apply lemma 1 for the parameters r1 = R

2 , v1 = inf{u(x) : |x − x1| = R
2 }, K1 = 2(N−1)

R ,
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K2 = 1. We can define u(x) := v(R − |x − x1|;K1,K2, r1, v1), where v is given by lemma 1. Then
u(R) = v(0) = 0 and u(R

2 ) = v(R
2 ). From the equation we deduce:

∆u = u
′′
− N − 1

r
u
′
≥ v

′′
− 2(N − 1)

R
v
′
= f(v) (1.9)

in ω. In conclusion, using the function v given by lemma 1 we obtained u. We prove that u ≤ u in
ω. We see that the equality holds on ∂ω and we will prove in fact that for any ε > 0 we have

u(x) ≤ u(x) + ε(1 + |x2|)− 1
2 in ω (1.10)

Suppose (1.10) is not true; hence there exists y0 ∈ ω such that u(x)−u(x)−ε(1+ |x|2)− 1
2 attains its

maximum in y0 and this maximum is positive. We obtain that 0 ≥ ∆(u(x)−u(x)−ε(1+|x|2)− 1
2 )|x=y0

and by a straightforward calculation(using also (1.9)) we derive a contradiction forN ≥ 3. By passing
to the limit as ε→ 0 we obtain that u ≤ u in ω.

Remark. We see that the above comparison does not hold for N = 2. Instead of this, we can
compare directly in the same way as before u and u and obtain the same result provided that f is
supposed increasing instead of nondecreasing. Hence the principle is valid also for N = 2 in this
stronger hypothesis on f .

Hence u(x0) = u(x0) = 0, where x0 ∈ ∂ω, and since u ≥ 0 in Ω, ∇u(x0) = 0, hence ∂u
∂n (x0) = 0.

On the other hand we compute the normal derivative of u|ω in x0. We have

∂u

∂n
(x0) = lim

t→0

u(x0 − t(x− x0))
t

≥ lim
t→0

u(x0 − t(x− x0))
t

= lim
t→0

v(tR)
t

= Rv
′
(0) > 0

which is a contradiction with ∂u
∂n (x0) = 0. It follows that our assumption that Ω0 is a proper subset

of Ω is false, hence either Ω0 = Ω (and in this case u ≡ 0 in Ω) or Ω0 = ∅ (and in this case u > 0
in Ω).

We are going now to prove the Vazquez maximum principle for the p-Laplace operator, by
showing the modifications we have to make in the above proof. For the beginning, let us define the
p-Laplace operator, as ∆pu := div(|∇u|p−2∇u), where p > 1. We will need also the expression of
the p-Laplacian in polar coordinates; this is

∆pu = (|u
′
(r)|p−2u

′
(r))

′
+ |u

′
(r)|p−2u

′
(r)

N − 1
r

(1.11)

where u = u(r) = u(|x|). We remark that the usual Laplace operator is a particular case of the
p-Laplacian for p = 2. Based on these, we can formulate:

Lemma 2. Consider the 1-dimensional Dirichlet problem:

(|v
′
|p−2v

′
)
′
= K1|v

′
|p−2v

′
+K2f(v), in (0, r1) (1.12)

v(0) = 0, v(r1) = v1 > 0 (1.13)
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where K1, K2 and r1 are positive real numbers and f(0) = 0, f is increasing.
Then the problem (1.12)-(1.13) has a unique solution. If, in addition, f satisfies the condition∫

0+

dt

F (t)1/p
= +∞ (1.14)

where F (t) :=
t∫
0

f(s)ds, then v
′
(0) = 0 and 0 < v < v1 in (0, r1).

We will prove completely this lemma because, even if the idea is the same as in the proof of
lemma 1, there are some technical differences that are not always obvious.

Proof. We easily see, as before, that v ≡ 0 is a subsolution and v ≡ C is a supersolution to (1.12)-
(1.13); by theorem 1 it follows that (1.12)-(1.13) has at least a solution.
To prove uniqueness, suppose that v0 and v2 are two solutions of (1.12)-(1.13). We prove that
v0 ≤ v2 in (0, r1). Suppose not; then there exists a point x0 ∈ (0, r1) such that v0(x0) − v2(x0) =
sup{v0(x)− v2(x) : x ∈ (0, r1)} > 0. Hence v

′

0(x0) = v
′

2(x0) and v
′′

0 (x0) ≤ v
′′

2 (x0).
By subtracting the equations (1.12) for v0 and v2 one has:

(|v
′

0|p−2v
′

0)
′
(x0)− (|v

′

2|p−2v
′

2)
′
(x0) = K2(f(v0(x0))− f(v2(x0))) > 0 (1.15)

since the term with coefficient K1 is the same in both expressions and it cancels. Since v
′′

0 (x0) ≤
v
′′

2 (x0) and v
′

0(x0) = v
′

2(x0), one can easily check that the left hand side is nonpositive, contradiction.
Hence v0 ≤ v2 in (0, r1). By changing v0 by v2 uniqueness follows.
Suppose now that f satisfies (1.14). Let v be the solution of (1.12)-(1.13) and let r0 := sup{0 ≤ r ≤
r1 : v(r) = 0}. Then v(r0) = 0 and r0 < r1. We will prove that r0 = 0.
Suppose that r0 > 0. Since v has no local maxima in (0, r1), it follows that v ≡ 0 in (0, r0) and
v
′
(r0) = 0. We also remark that v

′
> 0 in (r0, r1), hence v : [r0, r1] → [0, v1] is a bijection.

We multiply in both sides of (1.12) by v
′
and we integrate. We have:

w
′
=

K1p

p− 1
w +

K2p

p− 1
(F (v))

′
(1.16)

where, as in lemma 1, we denote by w := |v′ |p. We multiply again in both sides of (1.16) by e−
K1p
p−1 r.

We obtain

(w
′
− K1p

p− 1
w)e−

K1p
p−1 r =

K2p

p− 1
e−

K1p
p−1 r(F (v))

′

or, equivalently, after integration on (r0, r)

w(r)e−
K1p
p−1 r =

K2p

p− 1

r∫
r0

e−
K1p
p−1 sF (v(s))

′
≤ K2p

p− 1
e−

K1p
p−1 r0F (v(r)) (1.17)

It follows that
w(r)

F (v(r))
≤ K2p

p− 1
e−

K1p
p−1 (r0−r) ≤ C

for some constant C > 0. Hence
|v′(r)|

F (v(r))1/p
≤ C1/p
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Since v : [r0, r1] → [0, v1] is a bijection, by integrating in the last equality and changing the variable,
we obtain:

|
v1∫
0

dt

F (t)
1
p

| ≤ C(r1 − r0)

which contradicts (1.14). Hence r0 = 0 and v
′
(r) > 0, ∀r ∈ (0, r1) and we are done.

We state now the Vazquez maximum principle for the p-Laplacian:

Theorem 3. (The Vazquez Maximum Principle for the p-Laplacian) Let Ω ⊂ RN be a bounded
domain with smooth boundary and let u ∈ C2(Ω) ∩ C(Ω) be a function satisfying u ≥ 0 in Ω and

∆pu ≤ f(u) in Ω (1.18)

where f : [0,∞) → R is a continuous, increasing function such that f(0) = 0 and it satisfies (1.14).
Then the following alternative holds: either u ≡ 0 in Ω or u > 0 in Ω.

We will skip the proof of this theorem, since it follows the same lines as the proof of theorem
2. The only technical difference is when choosing the parameters in order to apply lemma 2. In this
case, the correct parameters are: r1 = R(p−1)

p , v1 = inf{u(x) : |x− x1| = R(p−1)
p }, K1 = p(N−1)

R(p−1) and

K2 = 1. The interior set ω must be taken as it follows: ω := {x ∈ Ω : R(p−1)
p < |x− x1| < R}. The

rest of the proof is similar to that of theorem 2.

1.3 A Theorem of Diaz and Saa

In this section we prove a theorem of J.I.Diaz and J.E.Saa(see [DS87]) which extends to the p-
Laplace case another famous theorem, that of Brezis and Oswald, published in [BO86].
We deal in what follows with the following problem:

−∆pu = f(x, u), in Ω (1.19)

u ≥ 0, u = 0 on ∂Ω (1.20)

where Ω is a bounded and smooth domain in RN and f : Ω × [0,∞) → R is a function satisfying
the following hypothesis:
(A) r → f(x, r) is continuous in [0,∞) for a.e. x ∈ Ω and x→ f(x, r) is in L∞(Ω);
(B) The application r → f(x,r)

rp−1 is decreasing on (0,∞) for a.e. x ∈ Ω;
(C) There exists a positive constant C such that f(x, r) ≤ C(1 + rp−1) for all r ≥ 0 and for a.e
x ∈ Ω.
We look for solutions u ∈W 1,p

0 (Ω)∩L∞(Ω). We remark that (A) implies in this case that f(x, u(x)) ∈
L∞(Ω), hence, using the well-known Sobolev regularity estimates, we derive that u is in the space
W 2,2

loc (Ω). We also impose the condition that u is not identically 0.
We define the following quantities:

a0(x) := lim
r→0

f(x, r)
rp−1

, a∞(x) = lim
r→0

f(x, r)
rp−1

(1.21)
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and

λ1(−∆pv − a|v|p−2v) := inf{
∫
Ω

|∇v|pdx−
∫

{v 6=0}

a|v|pdx : v ∈W 1,p
0 (Ω), ‖v‖LP = 1} (1.22)

where a is a real function on Ω.
Using these we state:

Theorem 4. (Diaz-Saa) The problem (1.19)-(1.20) has at most one solution. It has a solution if
and only if we have:

λ1(−∆pv − a0|v|p−2v) < 0 < λ1(∆pv − a∞|v|p−2v) (1.23)

Before starting the proof, we have to introduce three technical lemmas,very useful for the general
treatment of the uniqueness in the p-Laplace case. The main difficulty of the uniqueness part, that
these lemmas are solving, is to prove the monotonicity of the rather complicated operator

w → (−∆pw
1
p )w

1−p
p (1.24)

We will show at the end of this section how the proof can be simplified for p = 2, where we need
only one of these lemmas.

Lemma 3. If u is a solution of problem (1.19)-(1.20), with u > 0 in Ω, then ∂u
∂n < 0 on ∂Ω.

Proof. Since u ∈ L∞(Ω), it follows that u(x) ≤ ‖u‖∞, hence

f(x, u(x))
u(x)p−1

≥ f(x, ‖u‖∞)
‖u‖p−1

∞
≥ −M

or equivalently f(x, u(x)) ≥ −Mu(x)p−1. Hence ∆p(u) ≤ Mup−1 and we apply the Vazquez maxi-
mum principle for the p-Laplacian(theorem 3). Since we impose that u is not identically 0, it follows
that u > 0 in Ω. From the maximum principle we derive also the conclusion.

Lemma 4. Let J : L1(Ω) → (−∞,∞] be the following functional:

J(w) =
1
p

∫
Ω

|∇w
1
p |pdx (1.25)

for w ≥ 0 and w
1
p ∈W 1,p

0 (Ω). We define J(w) to be ∞ in the rest. Then J is not identically infinite
and it is convex.

Proof. Let w1, w2 ∈ L1(Ω) be two functions such that w
1
p

1 , w
1
p

2 ∈ W 1,p(Ω), wi ≥ 0 in Ω for i = 1, 2

and w1 = w2 on ∂Ω. Let w3 := tw1 + (1 − t)w2, where t ∈ (0, 1) is fixed and let zi = w
1
p

i , for
i = 1, 2, 3. The convexity of J expresses as:∫

Ω

|∇w
1
p

3 |pdx ≤ t

∫
Ω

|∇w
1
p

1 |pdx+ (1− t)
∫
Ω

|∇w
1
p

2 |pdx

or, equivalently, ∫
Ω

(|∇z3|p − t|∇z1|p − (1− t)|∇z2|p)dx ≤ 0 (1.26)
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To prove this, we can write:

|∇w3| = |∇zp
3 | = pzp−1

3 |∇z3|

= p(tzp
1 + (1− t)zp

2)
p−1

p |∇z3|

= p(tzp
1 + (1− t)zp

2)
p−1

p |∇(tzp
1 + (1− t)zp

2)
1
p |

= p(tzp
1 + (1− t)zp

2)
p−1

p
1
p
(tzp

1 + (1− t)zp
2)−

p−1
p |t∇zp

1 + (1− t)∇zp
2 |

= p|tzp−1
1 ∇z1 + (1− t)zp−1

2 ∇z2|

≤ p(tzp
1 + (1− t)zp

2)
p−1

p (t|∇z1|p + (1− t)|∇z2|p)
1
p

where for the inequality we have applied the Holder inequality with the exponents p−1
p and 1

p . Hence
|∇z3|p ≤ t|∇z1|p + (1− t)|∇z2|p. Then (1.26) follows by integration.

Lemma 5. For i = 1, 2 let wi ∈ L∞(Ω) be two functions such that wi ≥ 0 a.e. in Ω, w
1
p

i ∈W 1,p(Ω)

and ∆pw
1
p

i ∈ L∞(Ω). We suppose also that:
(i) w1 = w2 on ∂Ω;
(ii) w1

w2
and w2

w1
belongs to L∞(Ω)

Then we have: ∫
Ω

(−∆pw
1
p

1

w
p−1

p

1

+
∆pw

1
p

2

w
p−1

p

2

)(w1 − w2)dx ≥ 0 (1.27)

This lemma shows what we understand rigourously by the monotonicity of the operator (1.24).
After proving it, the uniqueness follows immediately, as we shall see.

Proof. The idea is to compute the Gateaux differential of the functional J considered above in the
direction w := w1 − w2 and to use the convexity of J . We have:

J
′
(w1;w) =

1
p

lim
h→0

1
h

∫
Ω

(|∇(w1 + hw)
1
p |p − |∇w

1
p

1 |p)dx (1.28)

We use a limited Taylor developpment. We have

(w1 + hw)
1
p = w

1
p

1 (1 + h
w

w1
)

1
p = w

1
p

1 (1 +
1
p
h
w

w1
+ o(h))

hence
∇((w1 + hw)

1
p ) = ∇w

1
p

1 +
1
p
h∇ w

w
p−1

p

1

+ o(h)

When deriving the last equation we have used essentially the condition w1
w2

∈ L∞(Ω). By using again
the limited Taylor developpment one obtains:

|∇((w1 + hw)
1
p )|p = |∇w

1
p

1 |p +
h

p
|∇w

1
p

1 |p−1∇ w

w
p−1

p

1

+ o(h)

Then ∫
Ω

lim
h→0

1
h

(|∇((w1 + hw)
1
p )|p − |∇w

1
p

1 |p)dx =
1
p

∫
Ω

|∇w
1
p

1 |p−2∇w
1
p

1 ∇
w

w
p−1

p

1

=
1
p

∫
Ω

−∆pw
1
p

1

w
p−1

p

1

wdx

(1.29)
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By Lebesgue’s theorem, we can commute the limit and the integral in (1.29) and we obtain:

J
′
(w1;w) =

1
p

∫
Ω

−∆pw
1
p

1

w
p−1

p

1

wdx (1.30)

Hence the expression in (1.27) is J
′
(w1;w) − J

′
(w2;w), which is nonnegative by the convexity of

J .

Now we can pass to the proof of the main theorem. We start with the uniqueness part, which
follows easily from these lemmas.

Proof. (Uniqueness) Let w be an arbitrary solution of problem (1.19)-(1.20). Then w ∈ L∞(Ω) and
f(x,w(x)) ≤ C(1+‖w‖p−1

∞ ). On the other hand f(x,w(x)) ≥ −M‖w‖p−1
∞ , hence ∆pw = −f(x,w) ∈

L∞(Ω).
Consider now two different solutions w1, w2 of (1.19)-(1.20). From lemma 3 and using by example
the l’Hopital rule, we deduce that w2

w1
and w1

w2
are in L∞(Ω) and we can apply lemma 5. We have

0 ≤
∫
Ω

(−∆pw1

wp−1
1

+
−∆pw2

wp−1
2

)(wp
1 − wp

2) < 0

which is a contradiction.

Proof. (Existence) We start with the ”if part”. Suppose that there exists a solution u of problem
(1.19)-(1.20). Then, it follows from the definition that:

λ1(−∆pv − a0|v|p−2v) ≤ 1∫
Ω

|u|pdx
(
∫
Ω

|∇u|pdx−
∫
Ω

a0|u|pdx) (1.31)

On the other hand,

−∆pu · u = f(x, u)u =
f(x, u)
up−1

up

,hence, by integrating,∫
Ω

−div(|∇u|p−2∇u)udx =
∫
Ω

f(x, u)
up−1

updx <

∫
Ω

a0u
pdx

It follows immediately that λ1(−∆pv − a0|v|p−2v) < 0.
To prove that λ1(−∆pv−a∞|v|p−2v) > 0, we first set a(x) := f(x,1+‖u‖∞)

(1+‖u‖∞)p−1 , hence a(x) ≥ a∞(x), for

a.e. x ∈ Ω and f(x,u(x))
u(x)p−1 > a(x). We derive that

λ1(−∆pv − a∞|v|p−2v) > λ1(−∆pv − a|v|p−2v) =: µ (1.32)

We prove next that µ ≥ 0.
From the variational definition of λ1 we deduce that there exists an ”eigenfunction” Ψ solving the
following problem:

−∆pΨ− aΨp−1 = µΨp−1 in Ω (1.33)

Ψ > 0 in Ω, Ψ = 0 on ∂Ω (1.34)
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We see that also kΨ is a solution for the problem above, for any k > 0. Set Ωk := {x ∈ Ω : kΨ(x) >
u(x)}. Obviously Ω = ∪k>0Ωk. We apply lemma 5 and we get:

0 ≤
∫
Ωk

(−∆pu

up−1
+

∆p(kΨ)
(kΨ)p−1

)(up − (kΨp))

=
∫
Ωk

(
f(x, u)
up−1

− (a(x) + µ)(up − (kΨp)))dx

It follows that f(x,u)
up−1 < a(x) + µ. But f(x,u)

up−1 > a(x), hence µ > 0.
Conversely, let us assume that (1.23) holds and we will prove that (1.19)-(1.20) has a solution. The
proof uses only classical arguments in nonlinear analysis, as a variational technique followed by an
interesting and not at all trivial bootstrap argument. First of all, we can generalize more the problem
by replacing condition (B) on f by the following:
(B’) For all δ > 0, there exists Cδ ≥ 0 such that f(x, r) ≥ −Cδr

p−1, ∀r ∈ [0, δ].
In view of this new condition, we define

a0(x) := lim inf
u→0

f(x, u)
up−1

, a∞(x) := lim sup
u→0

f(x, u)
up−1

(1.35)

hence a0(x) ≥ −C and a∞(x) ≤ C. We renote by f(x, u) the function equal to the old f(x, u) for
u ≥ 0 and equal to f(x, 0) for u < 0. We introduce the energy functional:

E(u) :=
1
p

∫
Ω

|∇u|pdx−
∫
Ω

F (x, u)dx, (1.36)

defined for u ∈ W 1,p
0 (Ω), where as usual F (x, u) =

u∫
0

f(x, s)ds. From (C) we have that |F (x, u)| ≤
C
p (p|u|+ |u|p), hence E is well-defined on W 1,p

0 (Ω). We prove the following three properties for the
energy functional:
(a) lim

‖u‖→∞
E(u) = +∞ (i.e. E is coercive);

(b) E is weakly lower semicontinuous in W 1,p
0 (Ω);

(c) there exists φ ∈W 1,p
0 (Ω) such that E(φ) < 0.

We start our program by proving (b), which is easy. Let (un)n be a sequence converging weakly in
W 1,p

0 (Ω) to a function u. Then, by the lower semicontinuity of the norm, ‖u‖p

W 1,p
0 (Ω)

≤ lim inf
n→∞

‖un‖p

W 1,p
0 (Ω)

.
By extracting a subsequence if needed, we may suppose that un → u in Lp(Ω) and a.e. Also by
taking a larger constant, we may suppose that F (x, un) ≤ C(1 + up

n). By Fatou’s lemma, we obtain

lim sup
n→∞

∫
Ω

F (x, un)dx ≤
∫
Ω

F (x, u)dx

hence E(u) ≤ lim inf
n→∞

E(un).
We next prove assumption (c). We know that λ1(−∆pv − a0|v|p−2v) < 0, hence there exists a
function φ ∈W 1,p

0 such that ∫
Ω

|∇φ|pdx <
∫

{φ6=0}

a0|φ|pdx (1.37)

In (1.37) we may suppose without loss of generality that φ ≥ 0 and φ ∈ L∞(Ω). For the first
assumption, we replace φ by φ+, and one can check that in this way the inequality (1.37) is conserved.
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For the second assumption, set as before Ωk := {x ∈ Ω : φ(x) ≤ k}, for any k ∈ N. Then obviously
Ω = ∪kΩk and Ωk ⊂ Ωk+1, ∀k ∈ N. It follows that∫

Ω

|∇φ|pdx = lim
k→∞

∫
Ωk

|∇φ|pdx

We deduce from (1.37) that there exists a k ∈ N such that the same inequality (1.37) holds with
the integrals taken on Ωk. Fix such a k and set φ̃(x) := φ(x) if φ(x) ≤ k and φ̃(x) = 0 if φ(x) > k.
Hence φ̃ ∈ L∞(Ω) and∫

Ω

|∇φ̃|pdx =
∫
Ωk

|∇φ|pdx <
∫

Ωk∩{φ6=0}

a0|φ|pdx =
∫

{φ̃6=0}

a0|φ|pdx

In this way we may replace φ by φ̃ ∈ L∞(Ω). Hence we take from the beginning φ ∈W 1,p
0 (Ω)∪L∞(Ω)

and φ ≥ 0.
Then, it follows from the definition of a0 that lim inf

u→0

F (x,u)
up ≥ 1

pa0(x). We take in this inequality

u = εφ, with ε > 0 and φ as above. Then lim inf
ε→0

F (x,εφ(x))
εp ≥ a0(x)φ(x)p

p a.e in {φ 6= 0}. By
integration an use of (1.37) we have

1
p

∫
Ω

|∇φ|pdx <
∫
Ω

F (x, εφ(x))
εp

dx

for ε > 0 small. Hence E(εφ) < 0.
Finally, we prove (a). Suppose that there exists a sequence (un)n ⊂W 1,p

0 (Ω) and there exists C > 0
such that ‖un‖W 1,p

0 (Ω) →∞ and E(un) ≤ C. Then

1
p

∫
Ω

|∇un|pdx ≤
∫
Ω

F (x, un)dx+ C ≤ C(1 + ‖un‖p
Lp(Ω))

Set un := tnvn, where tn = ‖un‖Lp(Ω) → ∞ and vn = un

‖un‖Lp(Ω)
. Then 1

p

∫
Ω

|∇vn|pdx ≤ C(1 + 1
tp
n
),

hence (vn)n is bounded in W 1,p
0 (Ω). By reflexivity of W 1,p

0 (Ω) (see [Br83]) we may suppose(by
subtracting a subsequence) that vn → v weakly in W 1,p

0 (Ω), strongly in Lp(Ω) and a.e. in Ω. We
deduce that ‖v‖Lp(Ω) = 1.
By passing to the limit we obtain:

1
p

∫
Ω

|∇v|pdx ≤ lim inf
n→∞

∫
Ω

F (x, tnvn)
tpn

dx ≤ lim sup
n→∞

∫
Ω

F (x, tnvn)
tpn

dx (1.38)

On the other hand, we have:∫
Ω

F (x, tnvn)
tpn

dx =
∫

{vn≤0}

F (x, tnvn)
tpn

dx+
∫

{vn>0}

F (x, tnvn)
tpn

dx

=
∫

{vn≤0}

F (x, tnvn)
tpn

dx+
∫

{v≤0}

F (x, tnv+
n )

tpn
dx+

∫
{v>0}

F (x, tnv+
n )

tpn
dx

= I1 + I2 + I3

Trying to estimate I1, I2 and I3 we obtain :

I1 =
∫

{vn≤0}

F (x, tnvn)
tpn

dx ≤ C

tpn

∫
{vn≤0}

tn|vn|dx ≤
C

tn
→ 0
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I2 =
∫

{v≤0}

F (x, tnv+
n )

tpn
dx ≤ C

tpn

∫
{v≤0}

((tnv+
n )p + 1)dx→ 0

From the definition of a∞ it follows that lim sup
v→∞

F (x,v)
vp ≤ 1

pa∞(x), hence lim sup
n→∞

F (x,tnv+
n )

tp
n

≤ a∞(x)vp
n

p

for a.e. x ∈ {v > 0}. By Fatou’s lemma, lim sup
n→∞

I3 ≤ 1
p

∫
{v>0}

a∞v
pdx.

By putting these estimates together it follows that∫
Ω

|∇v|pdx ≤
∫
Ω

a∞v
pdx (1.39)

and ∫
Ω

|∇v|pdx−
∫
Ω

a∞v
pdx ≥ α‖v‖p

Lp(Ω) (1.40)

where α := λ1(−∆pv− a∞|v|p−2v) > 0. But (1.39) and (1.40) imply that v = 0, which is contradic-
tory to ‖v‖Lp(Ω) = 1.
Using the properties (a),(b),(c) we derive the existence result. Let m := inf

u∈W 1,p
0 (Ω)

E(u). By (a) and

(c), −∞ < m < 0. Let (un)n be a minimizing sequence, i.e. E(un) → m. Hence (un)n is bounded
in W 1,p

0 (Ω) and we may suppose there exists u ∈ W 1,p
0 (Ω) such that un → u weakly in W 1,p

0 (Ω),
strongly in Lp(Ω) and a.e. in Ω. Then, by (b), E(u) ≤ lim inf

n→∞
E(un) = m, hence E(u) = m. By

replacing u by u+, the energy decreases, hence E(u+) = m. It follows that u+ is a nonnegative
solution of (1.19)-(1.20).
We prove that u ∈ L∞(Ω). For any k ≥ 1, let fk(x, u) := f(x, 0) for u ≤ 0 and fk(x, u) :=
max{f(x, u),−kup−1} for u > 0. We remark easily that fk satisfies (A),(B),(C) for any k provided
that f satisfies. Hence there exists a unique solution uk of

−∆puk = fk(x, uk) in Ω (1.41)

uk = 0 on ∂Ω, uk > 0 in Ω (1.42)

Then uk ∈W 1,p
0 (Ω) ⊂ Lp∗(Ω) (if N > p), hence fk(x, uk) ∈ Lp∗(Ω). From the classical Lp estimates

(see [GT02], chapter 9) it follows that uk ∈ W 2,p∗(Ω) ⊂ Lq(Ω), where q = Np∗

N−2p∗ , if N > 2p∗. We
replace p∗ = Np

N−p and we obtain q = Np
N−3p , in the case that N > 3p. In all the contrary cases to

these inequalities, the space is L∞(Ω). In the case that N > 3p we continue our bootstrap technique.
The next space will be Lr(Ω) with r = Np

N−5p if N > 5p or L∞(Ω) if N ≤ 5p. We continue and after
a finite number of steps(N being fixed) we will arrive to the situation that N < kp for k sufficiently
large. It follows that (see again [GT02], chapter 7) uk ∈ L∞(Ω), for any k ∈ N.
But

−∆puk = fk(x, uk) ≥ f(x, uk) in Ω (1.43)

and uk = 0 on ∂Ω, hence uk is a supersolution to (1.19)-(1.20). We see that 0 is a subsolution to
(1.19)-(1.20), hence the unique solution u of the problem (1.19)-(1.20) satisfies 0 ≤ u ≤ uk. But we
have just proved that uk ∈ L∞(Ω), hence u ∈ L∞(Ω) and the proof ends.

To end this section, we will show how the proof can be simplified in the case p = 2. This
corresponds to the usual Laplacian and was proved before the Diaz-Saa theorem, by Brezis and
Oswald(see [BO86]).
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We will prove just the uniqueness of the solution, since this is the main point where the simplification
is indeed important.

Proof. (uniqueness for p = 2) Let u1, u2 be two solutions of the problem (1.19)-(1.20). From the
previous lemmas, we will use only lemma 3. From the result of this lemma and the usual l’Hopital
rule we derive that

u1

u2
∈ L∞(Ω),

u2
1

u2
∈ H1

0 (Ω) (1.44)

From the equation we derive that −∆u1
u1

= f(x,u1)
u1

. We multiply in both sides by u2
1 − u2

2 and we
integrate. By applying also the Green formula, we obtain:∫

Ω

f(x, u1)
u1

(u2
1 − u2

2)dx = −
∫
Ω

∆u1(u1 −
u2

2

u1
)dx

=
∫
Ω

∇u1(∇u1 −∇u
2
2

u1
)dx

=
∫
Ω

|∇u1|2dx−
∫
Ω

∇u1(
2u2

u1
∇u2 −

u2
2

u2
1

∇u1)dx

=
∫
Ω

(|∇u1|2 − 2
u2

u1
∇u1∇u2 +

u2
2

u2
1

|∇u1|2)dx

We obtain a similar result by reversing the roles of u1 and u2. By summing these equalities, one
has: ∫

Ω

(
f(x, u1)
u1

)− f(x, u2)
u2

)(u2
1 − u2

2)dx =
∫
Ω

(|∇u1 −
u1

u2
∇u2|2 − |∇u2 −

u2

u1
∇u1|2) (1.45)

It follows that the left hand side is nonnegative, and, since f(x,u)
u is decreasing, we deduce that

u1 = u2 in Ω.

The rest of the proof follow essentially the same lines as the general one. We remark that the
essential tool that allow us to do such simplification in the proof is the Green formula. This is a fact
that often happens when passing from the Laplacian to the p-Laplacian.
Open question Establish a similar result without monotonicity of f , using possibly a stronger
integral condition instead of this. For example, try to make an analogue of the facts in chapter 3,
where the strong Keller-Osserman condition allows us to treat very general nonlinearities.
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Chapter 2

A Result for a Singular Neumann

Problem in a Ball

2.1 Introduction

In this chapter we are concerned in studying the existence of radial solutions for the following singular
elliptic Neumann problem:

−∆u+ u−ν = h(x) + f(u), in B (2.1)

∂u

∂n
= 0, on ∂B (2.2)

where B is the unit ball in RN , with N ≥ 2, ν > 1 and h ∈ C(B) is a radially symmetric function.
We introduce the following hypothesis on function f :
(i)f ∈ C1([0,∞)), f ≥ 0, f(0) = 0;
(ii)f is a nondecreasing function in [0,∞);
(iii) f is asymptotically sublinear, i.e. lim

s→∞
f(s)

s = 0.
Typical examples for the nonlinearity f are f(x) = arctg(x) or f(x) = x

1+x for f bounded or
f(x) = log(1 + x), f(x) = xα with α < 1 or f(x) = xαlog(1 + x) for α < 1.
We say that a function u ∈ C2(B \ {0}) ∩ C(B) is a solution of problem (2.1)-(2.2) if it solves the
problem distributionally and it satisfies u > 0 in B \ {0}. We will see in the next section that this
definition of solution will appear as natural.
Our starting point for this study is the paper of M. del Pino and G. Hernandez where a similar
problem is considered, but without the nonlinearity f . That’s why the ideas and methods we use
follow closely those in the above mentioned paper.
The main techniques used for proving existence for the problem (2.1)-(2.2) are the following:
A: We perturb the equation (2.1) in order to avoid the singularity. This is a change that one
usually do when treating problems with singular terms. More precisely, we consider the family of
approximating problems:

−∆u+ (max{u, s})−ν = h(x) + f(u), in B (2.3)

19



20 CHAPTER 2. A RESULT FOR A SINGULAR NEUMANN PROBLEM IN A BALL

∂u

∂n
= 0, on ∂B (2.4)

for small u > 0.
B: We try to obtain apriori bounds from below for the solutions, uniformly with respect to s > 0. We
will see at this step that our change in the equation (2.3) is not sufficient, and we have to introduce
another perturbation, useful for technical reasons:

−∆u+ (max{u, s})−ν = h(x) + f(u) + εδ0, in B (2.5)

where we will look for solutions which are positive in B. Here ε > 0 is small and δ0 denotes the
Dirac mass supported at the origin. We will see that this problem, in appearance more difficult
than (2.3)-(2.4), posesses a uniform lower estimate for its solutions. For this, we will need to pass
through the step of proving an upper estimate first.
C: The final argument uses a passage to the limit in the apriori bounds of B and a theorem of
saddle-point type.
The chapter is divided in five sections. In section 2.2 we prove some basic and general results.
Section 2.3 contains some preliminaries, regarding some theorems of saddle-point type which will
be needed to conclude. In section 2.4 we prove(very technically) some apriori bounds which will be
important for the existence theorems. Finally, in the last section we prove the main result and some
other completions.

2.2 General results

In this section we prove several technical lemmas that we will use further in the text. Here appears
essential to have the asymptotic sublinearity condition (iii). The following lemma shows that our
definition of solution is natural.

Lemma 6. If u is a solution of (2.1)-(2.2) and u ≥ 0, then u > 0 in B \ {0}.

Proof. We prove that if there exists some r ∈ (0, 1) such that u(r) > 0, then u(r) > 0,∀ 0 < r < r.

Set F (t) =
t∫
0

f(s)ds.

We write the equation in radial form:

u
′′

+
N − 1
r

u
′
− u−ν + h+ f(u) = 0 (2.6)

By multiplying by rN−1 we have:

(rN−1u
′
)
′
= (u−ν − h− f(u))rN−1

We multiply again by rN−1u
′
and we arrive to the following inequality:

d

ds
(
|sN−1u

′ |2

2
) ≥ − d

ds
(
u−ν+1

−ν + 1
r2N−2 + ‖h‖∞u+ F (u)) (2.7)

on [r, r], where 0 < r < r. By fixing s ∈ (r, r) and integrating on [s, r] we find:

r2(N−1)u
1−ν(s)
ν − 1

+
|sN−1u

′
(s)|2

2
+‖h‖∞u(s)+F (u(s)) ≤ r2(N−1)u

1−ν(r)
ν − 1

+
|rN−1u

′
(r)|2

2
+‖h‖∞u(r)+F (u(r))

(2.8)
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We may suppose(with no loss of generality) that u > 0 on (r, r] and that u is nondecreasing on [r, r].
By passing to the limit in (2.9) as s→ r, we conclude that

r2N−2u
−ν+1(r)
ν − 1

≤ C(r) <∞

hence u(r) > 0.
In a similar way one can prove that u(r) > 0 for r ≤ r ≤ 1.

This lemma produces an interesting question: is it possible that u vanishes at the origin?
For N = 1 the answer is negative. If we multiply by u

′
in the equation and integrate on [s, 1], where

s ∈ (0, 1), we find:

1
2
u
′
(s)2 +

u−ν+1(s)
ν − 1

+ F (u(s)) + ‖h‖∞u(s) ≤
1
2
u
′
(1)2 +

u−ν+1(1)
ν − 1

+ F (u(1)) + ‖h‖∞u(1) (2.9)

If u(0) = 0, then, by making s > 0 very small, the left hand side goes to infinity (since −ν + 1 < 0),
contradicting the inequality (2.10).
For N ≥ 2 things are very different and it may happen that u(0) = 0, as the following example,
taken from the paper [DPH96], shows:
Let θ be a smooth function on [0, 1] such that θ ≡ 1 on [0, 1

3 ] and θ ≡ 0 on [ 23 , 1], and 0 ≤ θ ≤ 1 on
[0, 1]. Consider

u(r) = cθ(r)r
2

ν+1 + 1− θ(r)

with some constant c. By a rather long, but straightforward calculation, it follows that u solves
such an equation with an appropriate value of c and some function h. Here f ≡ 0. But obviously
u(0) = 0. The main technical difference between the cases N = 1 and N ≥ 2 is here the appearance
of the term N−1

r u
′
in the radial form of the Laplacian.

Lemma 7. Let u be a function in C2[a, b], where [a, b] ⊂ [0, 1], such that:

u
′′

+
N − 1
r

u
′
− u−ν +m+ f(u) ≥ 0 (2.10)

where m > 0 and f is assimptotically sublinear (in the sense that lim
t→∞

f(t)
t = 0). Suppose also that

u(a) ≥ µ > 0, u
′
(a) = 0 and u

′ ≤ 0 on (a, b]. Then there exists some constant θ = θ(m, ν, µ) such
that u(b) > θ > 0.

Proof. By multiplying by u
′ ≤ 0, we have:

d

dr
(
u
′2

2
) +

u−ν+1

ν − 1
+mu+ F (u)) ≤ −N − 1

2
(u

′
)2 ≤ 0

hence
u
′2(r)
2

+
u(r)−ν+1

ν − 1
+mu(r) + F (u(r)) ≤ u(a)−ν+1

ν − 1
+mu(a) + F (u(a))

or, equivalently

u
′
(r) ≤

√√√√√√2

u(a)∫
u(r)

(m− s−ν + f(s))ds (2.11)
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By integrating (2.12) with respect to r on [a, b] and by changing the variable, we obtain:

u(b)∫
u(a)

dt√
2

u(a)∫
t

(m− s−ν + f(s))ds

≤ 1 (2.12)

Suppose u(b) < θ < µ ≤ u(a). Then, by nondecreasingness, we have
u(a)∫
µ

dts
2

u(a)R
t

(m−s−ν+f(s))ds

≤ 1.

Since u(a) ≥ µ > θ, there exists a constant C such that u(a) ≥ C
θν−1 .

We prove next that

lim
α→∞

α∫
µ

dt√
2

α∫
t

(m− s−ν + f(s))ds

= ∞ (2.13)

For this, we remark first that m− s−ν + f(s) ≤ m− α−ν + f(α) for s ∈ (µ, α], hence√
α− µ

2(m− α−ν + f(α))
=

α∫
µ

dt√
2(α− t)(m− α−ν + f(α))

≤
α∫

µ

dt√
2

α∫
t

(m− s−ν + f(s))ds

(2.14)

But the first term in (2.15) is unbounded as α → ∞, hence (2.14) is proved. It follows from here
that u(a) must have an upper bound. Since u(a) ≥ C

θν−1 , θ must have a lower bound (depending
only on the parameters m,µ, ν) and we are done.

Remark. In the last proof we have used in an essential way the asymptotic sublinearity of f .

Lemma 8. Assume f, h as before, with ‖h‖∞ ≤ m. Then there exists a number θ = θ(m, ν) > 0
such that if u is a solution of

u
′′

+
N − 1
r

u
′
= u−ν − h(r)− f(u) in (0, 1) (2.15)

u
′
(1) = 0 (2.16)

for which there are numbers a ≤ ρ < 1 with u(ρ) < θ, u
′
(a) = 0 and u

′
(ρ) ≥ 0, then u is

nondecreasing on [a, ρ].

Proof. By way of contradiction, suppose that u is not nondecreasing on [a, ρ]. Then for any θ > 0
there is some b1 ∈ (a, ρ) such that u(b1) < θ and u

′
(b1) < 0. Fix some θ > 0. Let a1 be the first

point at the left of b1 such that u
′
(a1) = 0. It follows easily that u is decreasing on [a1, b1].

We multiply in both sides of the equation by rN−1 and we obtain:

(rN−1u
′
)
′
= (u−ν − h(r)− f(u))rN−1 > (u(a1)−ν − h(r)− f(u))rN−1

hence

0 > bN−1
1 u

′
(b1)

>
1
N

(bN1 − aN
1 )(u(a1)−ν −m)−

b1∫
a1

f(u(r))rN−1dr

>
1
N

(bN1 − aN
1 )(u(a1)−ν −m− f(u(a1)))
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It follows that u(a1)−ν < m + f(u(a1)). But the equation x−ν = m + f(x) has only one solution
c0 ∈ (0,∞) (since the left hand side is decreasing and the right hand side is increasing) and u(a1) >
c0 = c0(m, ν).
The final step is applying the lemma 7 for the interval [a1, b1] and the parameters m, ν and µ =
c0(m, ν). It follows that u(b1) > θ, which yields to a contradiction.

We will need one more general result concerning the differential inequality

−(u
′′

+
N − 1
r

u
′
) ≤ m+ f(u) (2.17)

Lemma 9. Assume that u is a function of class C2([δ, 1]) for some 0 ≤ δ < 1 and satisfies (2.18),
where m > 0. Assume also that u

′
(1) = u

′
(δ) = 0. Then, for any δ ≤ r ≤ 1, we have:

(i) sup
δ≤r≤1

u ≤ inf
δ≤r≤1

u+ (mc+ cf( sup
δ≤r≤1

u))(1 + r2−N ), if N ≥ 3 ;

(ii) sup
δ≤r≤1

u ≤ inf
δ≤r≤1

u+ (mc+ cf( sup
δ≤r≤1

u))(1− log(r)), if N = 2.

Proof. We perform te usual multiplication by rN−1 on both sides of the inequality and we integrate
on [δ, r]. We obtain:

−
r∫

δ

(sN−1u
′
(s))

′
ds ≤

r∫
δ

(m+ f(u(s)))sN−1ds

hence

−rN−1u
′
(r) ≤ m

N
(rN − δN ) +

r∫
δ

f(u(s))sN−1ds

By dividing the last equation by rN−1 and integrating again it follows that:

u(r) ≤ u(1) +
m

2N
(1− r2) +

1∫
r

1
tN−1

t∫
δ

f(u(s))sN−1dsdt

≤ u(1) +
m

2N
(1− r2) +

1∫
r

t∫
δ

f(u(s))dsdt

By taking into account that r ∈ [0, 1], we can further obtain that u(r) ≤ u(1)+ m
2N (1−r2)+f( sup

δ≤r≤1
u),

for any r ∈ [δ, 1]. By passing to the supremum with respect to r we have:

sup
δ≤r≤1

u ≤ u(1) +mc(N) + f( sup
δ≤r≤1

u) (2.18)

On the other hand, we fix for the moment r ∈ [δ, 1] and we integrate on [r, 1]. We suppose N ≥ 3.
We have:

−
1∫

r

(sN−1u
′
(s))

′
ds ≤

1∫
r

(m+ f(u(s)))sN−1ds

or

u
′
(r) ≤ m

N
(1− rN )

1
rN−1

+
1

rN−1

1∫
r

f(u(s))sN−1ds
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By integrating again on [r, 1] it follows that

u(1)− u(r) ≤ m

1∫
r

1− sN

NsN−1
ds+

1∫
r

1
tN−1

1∫
t

f(u(s))sN−1dsdt

≤ m

1∫
r

1− sN

NsN−1
ds+ f( sup

δ≤r≤1
u)

1∫
r

1− sN

NsN−1
ds

≤ (m+ f( sup
δ≤r≤1

u))c(N)r2−N

We pass to the infimum with respect to r and we obtain:

u(1) ≤ inf
δ≤r≤1

u+ c(N)(m+ f( sup
δ≤r≤1

u))r2−N (2.19)

We introduce this estimate for u(1) in (2.19) and we arrive to the desired inequality.
For N = 2 the calculations are very similar, the only difference is that at the final integration we
obtain in (2.20) −log(r) instead of r2−N .

All the results of this section, in spite of their elementary character, will play a key role in the
derivation of apriori bounds for the perturbed singular problem.

2.3 A Saddle-Point Type Theorem

This section is devoted to presenting and proving explicitely a saddle-point theorem of Rabinowitz
which will be used for deriving existence in the last section. For this we introduce the following:

Definition 2. Let X be a real Banach space and F : X → R be a C1 functional on X. We say
that F satisfies the Palais-Smale condition in the point c ∈ R if for any sequence (un)n of elements
of X such that (F (un))n converges to c and ‖F ′

(un)‖X∗ → 0, then (un)n contains a convergent
subsequence.
We say that F satisfies the global Palais-Smale condition if for any sequence (un)n in X such that
sup
n∈N

|F (un)| is finite and ‖F ′
(un)‖X∗ → 0, then (un)n contains a convergent subsequence.

We start by stating a famous result of Ambrosetti and Rabinowitz:

Theorem 5. (The Mountain-Pass Theorem)
Let X be a real Banach space and F ∈ C1(X,R) be a functional on X. Let K be a compact metric
space and K∗ be a nontrivial subset of K. We fix a map p∗ ∈ C(K∗, X). Set P := {p ∈ C(K,X) :
p = p∗ on K∗} (such extensions exists as a consequence of the theorem of Dugundji). Let

c := inf
p∈P

sup
t∈K

F (p(t))

If c > sup
t∈K∗

F (p∗(t)) and F satisfies the Palais-Smale condition in the point c, then c is a critical

value of F .
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We omit the proof of this theorem. The original proof of Ambrosetti and Rabinowitz appears
in [AR73]; another proof, based on a different idea, can be found in the paper [BN91].
The next theorem is an important generalisation of the Mountain-Pass theorem, which gives an idea
of where we can find the critical point of F which realises the critical value c.

Theorem 6. (The Ghoussoub-Preiss Theorem)
Let X be a real Banach space and F be a functional of class C1 on X. Assume that there exists a
closed subset Σ ⊂ X such that:
(i) p∗(K∗) ∩ Σ = ∅;
(ii) p(K) ∩ Σ 6= ∅;
(iii) F ≥ c on Σ,
where the notations are similar to those of the Mountain-Pass theorem( in this case we say that Σ
is a linking between K and K∗).
Then there exists an ”almost critical” sequence (un)n ⊂ X such that F (un) → c, ‖F ′

(un)‖X∗ → 0
and d(un,Σ) → 0. If moreover F satisfies the Palais-Smale condition in c, then there exists a critical
point u ∈ Σ of F such that F (u) = c.

The proof of this theorem is based on the following famous result in nonlinear analysis:

Lemma 10. (The Ekeland Variational Principle)
Let (M,d) be a complete metric space and Ψ : M → (−∞,∞] be a lower semicontinuous function.
Assume that Ψ is bounded from below and that Ψ is not identically infinite. Then for any ε > 0 and
for any point z0 ∈M , there exists z ∈M such that:

Ψ(z) ≤ Ψ(z0)− εd(z, z0) (2.20)

Ψ(x) ≥ Ψ(z)− εd(x, z),∀x ∈M (2.21)

We omit the proof of this lemma, which can be found in the original paper [Ek74] and in many
books in nonlinear analysis, by example [Rad]. Also in the last reference one can find many variants
and many applications of the Ekeland variational principle.
We need another technical result in functional analysis, which is usually known as the pseudogra-

dient lemma.

Lemma 11. Let K be a compact metric space and X be a real Banach space. Let f : K → X∗

be a continuous mapping. Then, for any ε > 0, there exists a locally Lipschitz continuous function
v : K → X such that ‖v(t)‖ ≤ 1, ∀t ∈ K and

〈f(t), v(t)〉 ≥ ‖f(t)‖X∗ − ε, ∀t ∈ K (2.22)

Proof. Fix ε > 0. For any t0 ∈ K, we have that ‖f(t0)‖ = sup
‖w‖<1

〈f(t0), w〉. Hence there exists some

w ∈ X such that ‖w‖ < 1 and 〈f(t0), w〉 > ‖f(t0)‖X∗ − ε. As f is continuous in t0, it follows that
there exists a neighborhood Vt0 of t0 such that for all t ∈ Vt0 we have

〈f(t), w〉 ≥ ‖f(t)‖X∗ − ε
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We have established a mapping K 3 t0 → Vt0 ∈ V(t0). Since K is compact, there are t1, ..., tn ∈ K
such that K ⊂ ∪n

i=1Vti , and for every ti we associate wi ∈ X.
We construct a partition of unity. Let ρi(t) := d(t, V c

ti
) and

Ψi(t) :=
ρi(t)

n∑
j=1

ρj(t)
, t ∈ K, i = 1, n

We finally construct v(t) :=
n∑

i=1

Ψi(t)wi. One can easily check, by a straightforward argument, that

this function v is the one we look for.

Now we are in position to prove the Ghoussoub-Preiss theorem. The proof follows the ideas of
the original paper [GP89]

Proof. From (i) we derive that d(p∗(K∗),Σ) > 0, hence there exists ε such that 0 < ε < d(p∗(K∗)).
Consider p0 ∈ P such that sup

t∈K
F (p0(t)) < c+ 1

2ε
2. Let K0 := {t ∈ K : d(p0(t),Σ) ≥ ε}. Obviously,

K∗ ⊂ K0. Set also P0 := {p ∈ C(K,X) : p = p0 on K0}.
We make a small perturbation of the functional F by replacing it by G := F + η, where η(u) :=
εmax{0, ε− d(u,Σ)}. We remark that η(u) ≤ ε2 with equality if and only if u ∈ Σ. This change is
important in the proof in order to ”identify” the elements of Σ. Define also c0 := inf

p∈P0
sup
t∈K

G(p(t)).

From (iii) we obtain that c+ ε2 ≤ F|Σ + ε2, hence c+ ε2 ≤ c0 ≤ c+ 3
2ε

2.
Define Ψ(t) := sup

t∈K
G(p(t)), hence c0 = inf

p∈P0
Ψ(p). On the space P0 we introduce the natural metric

d(p, q) := sup
t∈K

‖p(t)−q(t)‖, and (P0, d) become a complete metric space. We apply lemma 10 for the

function Ψ, which is obviously continuous and bounded below(by c+ ε2), and for (M,d) = (P0, d).
Then there exists p ∈ P0 such that

Ψ(p)−Ψ(q) + εd(p, q) ≥ 0, ∀q ∈ P0 (2.23)

Ψ(p) ≤ Ψ(p0)− εd(p, p0) (2.24)

It follows that
c+ ε2 ≤ c0 ≤ Ψ(p) ≤ Ψ(p0)− εd(p, p0)

hence d(p, p0) ≤ ε
2 . Define B(p) := {t ∈ K : G(p(t)) = Ψ(p)}; one can easily see that B(p) ⊂ K \K0.

Indeed, if there exists t ∈ B(p) ∩ K0, then G(p(t)) = Ψ(p) ≥ c + ε2, but on the other hand
d(p(t), p0(t)) ≥ ε, which contradicts the previous estimate.
Now it is the moment to use lemma 11 for the compact metric space K and for the function F

′

in order to obtain a locally Lipschitz continuous function w : K → X such that ‖w(t)‖ ≤ 1 for all
t ∈ K and 〈

F
′
(p(t)), w(t)

〉
≥ ‖F

′
(p(t))‖ − ε, ∀t ∈ K (2.25)

Since B(p) and K0 are two compact disjoint sets, there exists a continuous mapping α : K → [0, 1]
such that α = 1 in a neighborhood of B(p) and α = 0 on K0. For any h > 0 we introduce in (2.24)
the mapping qh(t) := p(t)− hα(t)w(t), which is in P0 since α = 0 on K0. It follows that

Ψ(qh)−Ψ(p) + εd(p, qh) ≥ 0 (2.26)
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On the other hand, by compactness one can find some th ∈ K such that Ψ(qh) = G(qh(th)). Since
K is compact, we may suppose that(passing to a subsequence if needed) th → t0 for some t0 ∈ K.
One obviously see that t0 belongs to B(p). It follows, from the construction of α, that α(th) = 1 for
h > 0 small enough.
We perform a limited Taylor developpment in (2.27). For this we remark that

F (p(th)− hw(th)) = F (p(th))− h
〈
F
′
(p(th)), w(th)

〉
+ o(h)

Using this and the fact that Ψ(p) ≥ F (p(th)) + εη(th), we obtain that
〈
F
′
(p(th)), w(th)

〉
≤ o(1).

We replace this in (2.26) and we get that ‖F ′
(p(th))‖ ≤ ε + o(1) for all sufficiently small h, hence

‖F ′
(p(t0))‖ ≤ ε. On the other hand, G = F +O(ε2), hence F (p(t0)) = c+O(ε2).

We also estimate

d(p(t),Σ) ≤ d(p, p0) + d(p0(t),Σ) ≤ d(p0(t),Σ) +
ε

2
But t0 ∈ B(p), hence t0 is not in K0 and d(p0(t0),Σ) ≤ ε. It follows that d(p(t0),Σ) ≤ 3ε

2 .
By taking succesively εn = 1

n and tn the corresponding value of t0 for εn, we obtain that un := p(tn)
is the desired sequence. Moreover, if we have the Palais-Smale condition in c, let u0 be a limit point
of the sequence (un)n. Then F (u0) = c, F

′
(u0) = 0 and, since d(un,Σ) converges to 0, u0 ∈ Σ.

We arrive now to the main result of this section. This is a remarkable theorem due to P.H.
Rabinowitz(see by example [Rab86]) which has many applications in nonlinear analysis and that we
will use in order to derive existence for our singular problem.

Theorem 7. (The Saddle-Point Theorem) Let X be a real Banach space and suppose that X =
X1

⊕
X2, where X1 and X2 are closed subspaces of X with dimX2 < ∞. Let F ∈ C1(X,R) be a

functional on X. Assume that there exists R > ρ ≥ 0 such that

F (u) ≥ ρ, ∀u ∈ X1 (2.27)

and

F (u) ≤ 0, ∀u ∈ X2, ‖u‖ = R (2.28)

If F satisfies the global Palais-Smale condition, then it admits a critical point u such that F (u) ≥ 0.

Proof. The idea of the proof is that of trying to arrive to the conditions of the Ghoussoub-Preiss
theorem. We mention here that this is not the original proof of P.H. Rabinowitz(see [Rab86] for it),
since the Ghoussoub-Preiss theorem has appeared later.
For this goal we consider the sets K := {x ∈ X2 : ‖x‖ ≤ R} and K∗ := {x ∈ X2 : ‖x‖ = R}
and the mapping p∗ : K∗ → X, p∗(x) = x. Let P be the set of the extensions of p∗ to K. We
take in the Ghoussoub-Preiss theorem Σ = X1. In what follows we check that the conditions in the
Ghoussoub-Preiss theorem are satisfied for X1.
Obviously, K∗ ⊂ X2 and does not contain 0, hence p∗(K∗)∩X1 = K∗ ∩X1 = ∅. For the condition
(ii) we need to use a topological degree argument. Let P : X → X2 be the orthogonal projection.
Then we may rewrite the condition (ii) as ∀p ∈ P ∃x ∈ K such that p(x) ∈ X1, or equivalently p(x) is
not in X2, or again P ◦p(x) = 0. But P ◦p is the identity on K∗, hence d(P ◦p,K, 0) = d(I,K, 0) = 1.
Here by d(P,K, 0) we understand the Brouwer topological degree. From the existence property of
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the degree we derive the existence of x such that p ◦ p(x) = 0, hence (ii). From this we also obtain
that sup

t∈K
F (p(t)) ≥ ρ for any p ∈ P, hence

c := inf
p∈P

sup
t∈K

F (p(t)) ≥ ρ

and we obtain the last condition.
We end the proof by applying the Ghoussoub-Preiss theorem.

Remark. In the Saddle-Point theorem the values ρ and 0 are not important. The theorem holds
for any values r1 and r2 such that r1 > r2, F (u) ≥ r1 for u ∈ X1 and F (u) ≤ r2 for u ∈ X2 and
‖u‖ = R for R big enough.

2.4 Apriori Estimates for the Singular Problem

In this section, we consider the problem of finding apriori bounds for the radial solutions of the
perturbed singular problem:

−∆u+ (max{u, s})−ν = h(x) + f(u) + εδ0, in B (2.29)

∂u

∂n
= 0 on ∂B (2.30)

where ε > 0, s > 0, ν > 1 and δ0 is the Dirac mass concentrated in the origin. In this section we
will assume that the nonlinearity f satisfies the conditions (i) and (ii) from the introduction. Our
goal is to obtain a lower bound for the radial solutions, which will be decissive in proving existence.
But, as we will see, for proving it we will need an upper bound for these solutions.
Let us denote by ΦN the fundamental solution for the Laplacian in dimension N , i.e. ΦN (r) =

1
ωN (N−2)r

N−2 for N ≥ 3 and ΦN (r) = − 1
2π log(r) for N = 2. Here ωN denotes the surface measure

of the unit sphere in RN . We start with the upper bound:

Proposition 1. Assume h ∈ C(B) is radially symmetric and
∫
B

hdx > 0. Then, there exists the

numbers ε0 > 0, s0 > 0, β > 0 such that for any ε ∈ (0, ε0), s ∈ (0, s0) and for any radial solution
of (2.30)-(2.31) for such s and ε we have:

u(r)− εΦN (r) ≤ β, ∀r ∈ (0, 1] (2.31)

Proof. We will prove the proposition only for N ≥ 3, the other case is very similar. Set

v(r) := u(r)− ε

ωN (N − 2)
r2−N (2.32)

Then by a simple computation we have that

∆v ≤ h+ f(v + εΦN )

and by the same integration as in lemma 3, we obtain

sup
B
v ≤ v(1) + c‖h‖L∞(B) + f(sup

B
v) (2.33)
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If we suppose that we do not have a uniform bound for every v, then, by sublinearity of f , we have
for some v that 1

2 sup
B
v ≤ f(sup

B
v), or

sup
B
v ≤ 2(v(1) + c‖h‖L∞(B)) (2.34)

Hence one must only prove that v(1) is uniformly bounded, or equivalently that u(1) is. Suppose by
contradiction that this is not true. Then there exists sequences εn > 0, σn > 0 which are decreasing
to 0, and solutions un for (2.30)-(2.31) with parameters sn and εn, such that lim

n→∞
un(1) →∞. From

lemma 9 we deduce that inf
ρ≤r≤1

un(r) →∞ as n→∞, for all ρ > 0.

By integration in the equation, we obtain:∫
B

(max{un, sn})−νdx =
∫
B

hdx+ εn +
∫
B

f(un)dx (2.35)

From here we deduce that for any δ > 0, there exists nδ such that inf
B
un < δ for n > nδ. Otherwise,

there would be some δ such that un > δ on B, for any n ∈ N and the fact that inf
ρ≤r≤1

u(r) → ∞
would imply that the left-hand side of (2.36) will go to 0, which is a contradiction. Hence there
exists a value δn ∈ (0, 1] such that δn → 0 as n → ∞ and un(δn) = inf

B
un. We derive also that un

is nondecreasing in (0, δn].
Fix a point θ > 0 and consider

γn := inf{0 < ρ < 1 : un(r) ≥ θ, ∀r ≥ ρ} (2.36)

Since inf
ρ≤r≤1

u(r) →∞ for all ρ > 0, we must have lim
n→∞

γn = 0 and from lemma 8 we derive that un

is nondecreasing on [δn, γn].
We introduce the change of variable r = t−

1
N−2 ; denote by f(t) := f(t−

1
N−2 ). Then, by a straight-

forward calculation, we deduce that un solves

un
′′

=
1

(N − 2)2tλ
(max{un, sn}−ν − h̃(t)− f(un)) (2.37)

where λ = 2(N−1)
N−2 .

In this setting, let Rn := δ2−N
n and Sn := γ2−N

n . Since δn ≤ γn, it follows that Sn ≤ Rn and
u(Rn) = inf

[1,∞)
un.

We prove next the following facts:

lim
n→∞

(un
′
(Sn + t) +

1
(N − 2)2

Sn+t∫
1

f(un(s))
sλ

ds) = −α (2.38)

for all t ∈ [0, θ
α ), and

lim
n→∞

(Rn − Sn) =
θ

α
(2.39)

where α := 1
(N−2)2

∞∫
1

h(t)
tλ dt.

To prove (2.39), we first integrate in the equation and obtain:

un
′
(Sn) =

1
(N − 2)2

Sn∫
1

(max{un, sn}−ν − h− f(un))
1
tλ
dt



30 CHAPTER 2. A RESULT FOR A SINGULAR NEUMANN PROBLEM IN A BALL

hence

lim
n→∞

(un
′
(Sn) +

1
(N − 2)2

Sn∫
1

f(un)(t)
tλ

dt) = −α (2.40)

Consider now the function

φn(t) := un(Sn + t) +
1

(N − 22)

t∫
0

Sn+l∫
1

f(un(s))
sλ

dsdl (2.41)

By differentiation of φn we arrive to the left-hand side of (2.39) and we easily see that for small sn,
i.e. for large n, φn is a convex function. We express the result of (2.41) as lim

n→∞
φ
′

n(0) = −α. Using

also the convexity of φn, we have φn(t)− φn(0) ≥ tφ
′

n(0), or for n sufficiently large

φn(t) ≥ θ − (α+ ε)t ≥ θ − α+ ε

α+ 2ε
θ > 0

for t ∈ [0, θ
α+2ε ). On the other hand, by direct computation we obtain

φ
′′

n(t) =
1

(N − 2)2(Sn + t)λ
(max{un(Sn + t), sn}−ν − h) (2.42)

If we prove that in (2.43) the term in brackets in the right-hand side is uniformly bounded, then
φ
′′

n(t) → 0 uniformly for t ∈ [0, θ
α+2ε ] and (2.39) follows from the Lagrange theorem.

To prove that max{un(Sn + t), sn}−ν−h is uniformly bounded, it suffices to show that un(Sn + t) >
C > 0. But we know first that φn(t) ≥ εθ

α+2ε > 0 for all t ∈ [0, θ
α+2ε ]. Then we have:

φn(t) = un(Sn + t)(1 +
1

(N − 2)2un(Sn + t)

t∫
0

Sn+l∫
1

f(un(s))
sλ

dsdl) (2.43)

and, since f is asimptotically sublinear and un(Sn + t) →∞, we can write

lim
n→∞

1
un(Sn + t)

t∫
0

Sn+l∫
1

f(un(s))
sλ

dsdl ≤ lim
n→∞

1
un(Sn + t)

t∫
0

lf(un(Sn + l))dl

≤ lim
n→∞

t2f(un(Sn + t))
un(Sn + t)

= 0

Hence there exists C > 0 such that un(Sn + t) > C > 0 and (2.39) is proved.
To prove (2.40), suppose that there exists η > 0 such that Rn ≥ Sn + θ

α + 2η. Since φ
′

n(t) → −α
uniformly on compact sets in [0, θ

α ) and φn(0) = θ, it follows that φn(t) → θ − αt uniformly on
compact sets in [0, θ

α ). On the other hand, since φn is decreasing and convex in [0, θ
α + η), it follows

that φ
′

n( θ
α + η) → 0. Hence

φ
′

n(
θ

α
+ η)− φ

′

n(
θ

α
− η) → α (2.44)

as n→∞, and

φ
′

n(
θ

α
+ 3η)− φ

′

n(
θ

α
+ η) → 0 (2.45)
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as n→∞. On the other hand,

φ
′

n(
θ

α
+ η)− φ

′

n(
θ

α
− η) = un

′
(Sn +

θ

α
+ η)− un

′
(Sn +

θ

α
− η) +

1
(N − 2)2

Sn+ θ
α +η∫

Sn+ θ
α−η

f(un(s))
sλ

ds

=

θ
α +η∫

θ
α−η

(un
′′
(Sn + s) +

f(un(Sn + s))
(N − 2)2(Sn + s)λ

)ds

=
1

(N − 2)2

θ
α +η∫

θ
α−η

max{un(Sn + s), sn}−ν

(Sn + s)λ
ds+ o(1)

≤ 1
(N − 2)2

(1− 2η
Sn

)−λ

θ
α +3η∫

θ
α +η

max{un(Sn + t− 2η), sn}−ν

(Sn + t)λ
dt

where the last inequality holds by a change of variable s→ t−2η. But un(Sn + t−2η) ≥ un(Sn + t),
hence

φ
′

n(
θ

α
+ η)− φ

′

n(
θ

α
− η) ≤ C(φ

′

n(
θ

α
+ 3η)− φ

′

n(
θ

α
+ η)) → 0

which is a contradiction with (2.45) and (2.46). It follows that lim
n→∞

(Rn − Sn) ≤ θ
α . But from the

choices of Rn, Sn and from (2.39), we obtain that lim
n→∞

(Rn − Sn) ≥ θ
α+2ε , for all ε > 0. We obtain

(2.40).
Let η > 0 and choose θ > 0 such that for any τ < θ we have

(1− η)(max{τ, sn})−ν < (max{τ, sn})−ν − h− f(τ) < (1 + η)(max{τ, sn})−ν (2.46)

Since

un
′′
(Rn + s) =

1
(N − 2)2(Rn + s)λ

((max{un(Rn + s), sn})−ν − h(t)− f(un(Rn + s)))

we obtain from (2.47) for s < 0 and un(Rn + s) < θ that

un
′′
(Rn + s) ≥ 1

(N − 2)2Rλ
n

(1− η)(max{un(Rn + s), sn})−ν (2.47)

In a similar way, for s > 0 and un(Rn + s) < θ we obtain

un
′′
(Rn + s) ≤ 1

(N − 2)2Rλ
n

(1 + η)(max{un(Rn + s), sn})−ν (2.48)

We multiply in both sides of (2.48) and by integration we obtain

1
2
un

′
(Rn + s)2 ≥ 1

(N − 2)2Rλ
n

(1− η)

un(Rn+s)∫
un(Rn)

(max{τ, sn})−νdτ

for all s ∈ [−(Rn − Sn), 0], or equivalently

√
1− η ≤ un

′
(Rn + s)√√√√ 2

(N−2)2Rλ
n

un(Rn+s)∫
un(Rn)

(max{τ, sn})−νdτ
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By integration again we find

√
1− η(−s) ≤

un(Rn+s)∫
un(Rn)

(
1

(N − 2)2Rλ
n

z∫
un(Rn)

max{τ, sn}−νdτ)−
1
2 dz (2.49)

Similarly, by multiplying in (2.49) and integrating we obtain

s
√

1 + η ≥
un(Rn+s)∫
un(Rn)

(
1

(N − 2)2Rλ
n

z∫
un(Rn)

max{τ, sn}−νdτ)−
1
2 dz (2.50)

where s > 0 is the point where un(Rn + s) = un(Rn + s), for a fixed s ∈ (−(Rn − Sn), 0). It follows
that s

√
1 + η ≥

√
1− η(−s) and from the monotonicity of un we have

un(Rn + s) ≥ un(Rn − µs) (2.51)

where we denoted µ :=
√

1−η
1+η .

Consider now the function

ψn(t) := un(Rn + t) +
1

(N − 2)2

t∫
0

Rn+l∫
Rn

f(un(s))
sλ

dsdl (2.52)

which is convex and nondecreasing. Let bn be such that un(Rn + bn) = θ; bn is unique since un is
increasing on [Rn,∞). Then

un(Rn + a) ≤ un(Rn −
a

µ
) = un(Rn −

θ

2α
) < θ

hence a < bn.
We have

ψ
′

n(+∞) = ψ
′

n(bn) +

∞∫
bn

ψ
′′

n(t)dt

hence

ψ
′

n(∞) ≥ ψ
′

n(a) +
1

(N − 2)2

∞∫
bn

max{un(Rn + τ), sn}−ν − h

(Rn + τ)λ
dτ = ψ

′

n(a) + o(1) (2.53)

On the other hand,

ψ
′

n(a) =
1

(N − 2)2

a∫
0

max{un(Rn + τ), sn}−ν

(Rn + τ)λ
dτ + o(1)

=
1

(N − 2)2

0∫
−a

max{un(Rn − τ), sn}−ν

(Rn − τ)λ
dτ + o(1)

≥ 1
(N − 2)2

0∫
−a

max{un(Rn + τ
µ ), sn}−ν

(Rn − τ)λ
dτ + o(1)
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since un(Rn − τ) ≤ un(Rn + τ
µ ). We perform the change of variable τ → µτ and we obtain:

ψ
′

n(a) ≥ 1
(N − 2)2

0∫
− a

µ

max{un(Rn + τ), sn}−ν

(Rn − τµ)λ
µdτ + o(1)

=
1

(N − 2)2

0∫
− a

µ

max{un(Rn + τ), sn}−ν

(Rn + τ)λ

(Rn + τ)λ

(Rn − τµ)λ
µdτ + o(1)

≥ 1
(N − 2)2

(
Rn − a

µ

Rn + a
)λµ

0∫
− a

µ

max{un(Rn + τ), sn}−ν

(Rn + τ)λ
dτ + o(1)

= µ(
Rn − a

µ

Rn + a
)λ(ψ

′

n(−a
µ

) + o(1)) + o(1)

Since− a
µ ∈ (−(Rn−Sn), 0), it follows from (2.39) that lim

n→∞
ψ
′

n(− a
µ ) = −α. Hence ψ

′

n(a) ≥ µα+o(1).

On the other hand ψ
′

n(+∞) = 1
(N−2)ωN

εn ≤ 1
(N−2)ωN

ε0 or

µ

(N − 2)ωN

∫
B

hdx = µα ≤ 1
(N − 2)ωN

ε0 (2.54)

But µ can be chosen arbitrarily close to 1, hence by choosing ε0 small enough(for example ε0 <
1
2

∫
B

hdx) we arrive to a contradiction

Proposition 2. (bound from below) There exists ε0 > 0 such that for all ε < ε0, there exists s0 > 0,
δε > 0 such that for any solution u of (2.30)-(2.31) for s ∈ (0, s0) and ε, one has u(r) ≥ δε.

Proof. We divide for simplicity this proof into three steps.
Step 1: As in proposition 1, for N ≥ 3 suppose there exists a decreasing sequence sn → 0 and un

solutions of (2.30)-(2.31) for s = sn such that inf
B
un ≤ o(1). Let t = r2−N as before; then un solves

(2.38).
Consider, as in the proof of proposition 1, the function

φn(t) := un(t) +

t∫
0

l∫
1

f(un(s))
sλ

dsdl (2.55)

and let Rn be a point such that φn(Rn) = inf
t
φn(t). It follows that

φ
′

n(t) = un
′
(t) +

1
(N − 2)2

t∫
1

f(un(s))
sλ

ds =
1

(N − 2)2

t∫
1

(max{un, sn}−ν − h)
sλ

ds ≤ k <∞

hence φ
′

n(t) is uniformly bounded. Suppose that there exists a sequence tn ≥ 1 such that φn(tn) ≤
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o(1). In this case un(tn) ≤ o(1). Fix a number δ > 0. Then

φ
′

n(∞)− φ
′

n(1) +
1

(N − 2)2

∞∫
1

h

tλ
dt ≥ 1

(N − 2)2

tn+δ∫
tn

max{un, sn}−ν

tλ
dt

≥ 1
(δ + tn)λ(N − 2)2

tn+δ∫
tn

max{un, sn}−νdt

≥ 1
(δ + tn)λ(N − 2)2

tn+δ∫
tn

max{un(tn) + k(t− tn), sn}−νdt

≥ 1
(δ + tn)λ(N − 2)2

δ

max{sn, un(tn) + kδ}−ν

for some k > 0, where the third inequality holds since un(t1)−un(t2) ≤ k(t1−t2) for t1, t2 sufficiently
close. It follows that

lim inf
n→∞

(tn + δ)λ ≥ C

δν−1
(2.56)

for some C > 0. Since δ is arbitrary, it follows that tn →∞. In particular, un(1) and φn(1) remain
bounded away from 0. Using this remark, we can define the numbers

Sn(θ) := sup{R > 1 : φn(t) ≥ θ, ∀t ∈ [1, R]} (2.57)

A similar argument as in the last calculation shows that

C ≥
Sn(θ)∫
1

max{un, sn}−ν

tλ
dt =

Sn(θ)∫
1

dt

un
νtλ

≥ 1
Sn(θ)λ

Sn(θ)∫
1

dt

(θ + k(Sn(θ)− t))ν

hence
Sn(θ) ≥ C

θ
ν−1

λ

(2.58)

for all sufficiently small θ and for sufficiently large n.
Step 2: we prove the following estimate: given a number z > 0, we have for sufficiently small θ:

lim sup
n→∞

|φ
′

n(Sn(θ))| < z (2.59)

Fix a number θ0 > 0. By construction, φn is nonincreasing and convex on [Sn(θ0), Rn]. We have
two cases:
Case 1: If Sn(θ0) → ∞, we prove that φ

′

n(Sn(θ0)) → 0. If not, there exists α > 0 such that
−φ′n(Sn(θ0)) ≥ α > 0. Set vn(t) := φn(Sn(θ0) − t). Then vn(0) = θ0 and by direct differentiation
we obtain that

v
′′

n(t) =
1

(N − 2)2(Sn(θ0)− t)λ
(max{un, sn}−ν − h(Sn(θ0)− t))

which converges to 0 uniformly on compact subsets in [0,∞). Hence vn(s) ≥ θ0 + αs+ o(1)s2. We
deduce that vn and, consequently, φn, take arbitrarily large values. But this contradicts the results
of proposition 1.
Case 2: If Sn(θ0) ≤ S0 <∞, then φn is nonincreasing and convex on (Sn(θ0), Sn(θ)) for some θ < θ0.
Hence, by convexity,

φn(Sn(θ0))− φn(Sn(θ)) ≥ φ
′

n(Sn(θ))(Sn(θ0)− Sn(θ))
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or equivalently
θ0 − θ ≥ −φ

′

n(Sn(θ)− Sn(θ0))

It follows that, using (2.59)

−φ
′

n(Sn(θ)) ≤ θ0 − θ

Sn(θ)− Sn(θ0)
≤ θ0

Cθ
1−ν

λ + S0

≤ z

for θ0 small enough. The estimate (2.60) is proved.
Step 3: fix as before the numbers z, η > 0 and θ > 0 such that (2.60) holds and for all τ < θ and n
large

(1− η)(max{τ, sn})−ν ≤ (max{τ, sn})−ν + h(t)− f(τ) ≤ (1 + η)(max{τ, sn})−ν (2.60)

Set also
Tn(θ) := inf{R > Rn : un(R) = θ} (2.61)

By an integration similar to that leading to (2.50) and (2.51) in proposition 1, we arrive to the
inequality

|un
′
(Tn(θ))| ≤ (

1 + η

1− η
)

1
2 |un

′
(Sn(θ))| (2.62)

On the other hand, we can choose the parameter θ so small(for η fixed) such that

(
1 + η

1− η
)

1
2

Sn(θ)∫
1

f(un(s))
sλ

ds ≥
Tn(θ)∫
1

f(un(s))
sλ

ds

hence, by adding the two inequalities, we arrive to

(
1 + η

1− η
)

1
2φ

′

n(Sn(θ)) ≥ φ
′

n(Tn(θ)) (2.63)

On the other hand, we have:

φ
′

n(+∞) = φ
′

n(Tn(θ)) +
1

(N − 2)2

∞∫
Tn(θ)

(un
−ν − h)

1
tλ
dt = φ

′

n(Tn(θ)) + o(1)

But using the second step of this proof, we remark that |φ′n(Sn(θ))| < z, hence |φ′n(Tn(θ))| <
( 1+η
1−η )

1
2 z. It follows that

0 < φ
′

n(∞) < (
1 + η

1− η
)

1
2 z (2.64)

which holds for every z > 0(since (2.60) is proved for any z). But this is a contradiction for z
sufficiently small, which proves the proposition.

2.5 The Main Existence Result

In this section we prove existence results, first for the perturbed problem (2.30)-(2.31). This is a
necessary step in order to prove existence for our starting problem (2.1)-(2.2). Here is the place
where we will use the variational technique of Rabinowitz described in section 2.3.
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Theorem 8. There exists a constant ε0 > 0 such that for any ε ∈ (0, ε0) there exists at least one
(radial) solution of the problem

−∆u+ u−ν = h+ εδ0 + f(u), in B (2.65)

∂u

∂n
= 0 on ∂B (2.66)

Proof. By proposition 3, it is enough to prove that for any s > 0 small, (2.30)-(2.31) has a solution.
Consider φ ∈ C2(B \ {0}) radially symmetric with φ

′
(1) = 0 and ψ := φ− ΦN , which is a function

in C2(B) and ∆ψ ≥ 0 in B. By changing u in v + εφ, the problem (2.30)-(2.31) is equivalent to

−∆v +max{εφ(r) + v, s}−ν = hε + f(εφ(r) + v) in B (2.67)

∂v

∂n
= 0 on ∂B (2.68)

where hε := h+ ε∆ψ.
We define the energy functional Js : H1

r (B) → R by

Js(v) :=
1
2

∫
B

|∇v|2dx+
∫
B

Fs(εφ+ v)dx−
∫
B

hevdx−
∫
B

F (εφ+ v)dx (2.69)

where Fs(z) :=
z∫
0

(max{τ, s})−νdτ and we extend f by 0 for x < 0. Here the notation H1
r (B)

indicates the Sobolev space of radial functions on the unit ball.
The idea is to prove the Palais-Smale condition for Js. Let (vn)n be a Palais-Smale sequence for Js,
i.e. (Js(vn))n is bounded and J

′

s(vn) → 0. It suffices to prove that (vn)n is bounded in L1 norm.
The condition J

′

s(vn) → 0 in H1(B) implies∫
B

|∇vn|2dx+
∫
B

max{εφ+ vn, s}−νvndx =
∫
B

hεvndx+
∫
B

f(εφ+ vn)vndx+ o(1)‖vn‖H1(B) (2.70)

In order to apply the Poincare inequality we need to decompose vn := wn +αn where αn :=
∫
B

vndx

and
∫
B

wndx = 0. We remark that, if the sequence (vn)n is not bounded inH1(B), then, by extracting

a suitable subsequence, f(εφ+ vn) = o(1)vn, from the condition of asymptotic sublinearity.
We assume that (vn)n is not bounded in H1(B). By considering the decomposition vn := wn + αn

and using also the previous remark about the behaviour of the f part in (2.71), we can separate the
part with wn and we derive:∫

B

|∇wn|2 =
∫
B

(hε −max{εφ+ vn, s}−ν)wn + o(1)‖wn‖H1(B) + o(1)‖wn‖2
H1(B) (2.71)

Since
∫
B

wn = 0 we can use the Poincare inequality. We obtain that

(1− o(1))‖wn‖2
H1(B) ≤ (C‖h‖∞ + o(1))‖wn‖H1(B)

hence (wn)n is bounded in H1(B). It is still possible that (αn)n to be unbounded. In this case, on
a subsequence, we have αn → ∞ or αn → −∞. Since J

′

s(vn) → 0 and by separating the part with
(αn)n, one has ∫

B

(max{εφ+ vn, s}−ν − hε)dx = o(1) +
∫
B

f(εφ+ αn + wn)dx (2.72)
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If αn →∞ on a subsequence, the boundedness of (wn)n already proved implies that εφ+ vn →∞,
hence the equality (2.73) reads

o(1) =
∫
B

hεdx+ o(1) +
∫
B

f(εφ+ αn + wn)dx

which is a contradiction, since the right-hand side goes to a positive value as n→∞. If αn → −∞,
then by boundedness of (wn)n we have that εφ + αn + wn < 0 for sufficiently large n, hence
f(εφ+ vn) = 0. By taking limits as n→∞ in both sides of (2.73) we find

s−ν =
∫
B

hεdx+ o(1) (2.73)

which is a contradiction for a small s > 0.
Hence Js satisfies the global Palais-Smale condition for s ∈ (0, s0) with s0 > 0 small.
We consider as before the direct sum

H1
r (B) = W ⊕ Z

where W := {w ∈ H1
r (B) :

∫
B

wdx = 0} and Z is the space of constant functions. We compute

Js(α) =
∫
B

Fs(εφ+ α)dx− α

∫
B

hεdx−
∫
B

F (εφ+ α)dx

hence
1
α
Js(α) =

∫
B

Fs(εφ+ α)
α

dx−
∫
B

hεdx−
∫
B

F (εφ+ α)
α

dx < 0

(in fact if f is not constant, the limit of 1
αJs(α) is −∞ as α→∞), hence lim

α→∞
Js(α) = −∞. Hence

on the 1-dimensional space Z the functional Js is not bounded below. On the other hand,

Js(w) =
1
2

∫
B

|∇w|2 +
∫
B

Fs(εφ+ w)dx−
∫
B

hεwdx−
∫
B

F (εφ+ w)dx

≥ 1
2

∫
B

|∇w|2 − C(s, ‖hε‖∞)(
∫
B

w2dx)
1
2 −

∫
B

F (εφ+ w)dx

But by the Poincare inequality, 1
2

∫
B

|∇w|2 ≥ c
∫
B

w2dx and, since f is asimptotically sublinear, the

term with F has a growth weaker then w2. It follows that Js is bounded below on W .
We apply the saddle-point theorem of Rabinowitz(see theorem 7 and the remark after) and we
conclude that for any s > 0 sufficiently small, the functional Js has a critical point, which is a
solution of problem (2.68)-(2.69).

We end this section with the main existence result:

Theorem 9. The problem (2.1)-(2.2) has at least a radial solution provided that
∫
B

hdx > 0.

Proof. We know from theorem 8 that there exists a solution uε > 0 to the problem (2.68)-(2.69),
for any ε ∈ (0,

∫
B

hdx). Set as before vε := uε − εΦN , where ΦN is the fundamental solution for the

Laplacian. Then vε satisfies
∆vε = u−ν

ε − h− f(uε) (2.74)
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and vε is bounded uniformly for small ε > 0, as proposition 1 shows. We have two cases:
Case 1: Suppose that

inf
B
uε ≥ c > 0 (2.75)

Then u−ν
ε is uniformly bounded, and by classical elliptic estimates(see [GT02], chapter 9) we may

assume, passing to a subsequence if necessary, that vε → v in C1(B) as ε→ 0. Then v > 0 and v is
a solution of (2.1)-(2.2).
Case 2: Assume that, by passing to a subsequence, we have

inf
B
uε → 0 (2.76)

as ε→ 0. Let δε be such that

uε(δε) = inf
B
uε

and

ηε := inf{0 < α < 1 : uε(r) ≥ θ, ∀α ≤ r ≤ 1}

From the arguments in the proof of proposition 1, we derive that lim
ε→0

δε = 0 and ηε is well-defined
for all small θ > 0. Fix such a number θ > 0. By the general results of section 2.2, uε is increasing
on (δε, ηε).
We prove next the following inequality:

uε(r) ≥ C(r − δε)
2

ν+1 , ∀r ∈ [δε, 1] (2.77)

for some C > 0.
By multiplying in both sides of the radial form of (2.68) by rN−1 and integrating we obtain

rN−1u
′

ε(r) =

r∫
δε

(
1

uε(s)ν
− h(s)− f(uε(s)))sN−1ds (2.78)

Since f(0) = 0 and f is continuous, we may choose θ > 0 so small that

1
τν

− h(s)− f(τ) ≥ 1
2τν

for all s > 0 and 0 < τ < θ. Then, from (2.78) we have for all r ∈ [δε, ηε]

rN−1u
′

ε(r) ≥
r∫

δε

sN−1

2uε(s)ν
ds =

1
2Nuε(r)ν

(rN − δN
ε )

and by integrating again

uε(r)ν+1 − uε(δε)ν+1 ≥ ν + 1
2N

r∫
δε

(r − δε)dr (2.79)

hence we have (2.77) for r ∈ (δε, ηε). Since for r ∈ [ηε, 1] we have uε(r) ≥ θ, (2.77) follows. In
particular, u−ν

ε remains bounded on each set Aα := {x : α < |x| < 1}. Since

∆uε = u−ν
ε − h− f(uε)
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in Aα, by classical elliptic estimates we conclude the existence of a subsequence of (uε)ε>0 converging
uniformly on compact sets of B \ {0} to a function u ∈ C2(B \ {0}) and u satisfies

∆u = u−ν − h− f(u), in B \ {0} (2.80)

∂u

∂n
= 0 on ∂B, u > 0 in B \ {0} (2.81)

and u ∈ L∞(B) by proposition 1. Since δε → 0 as ε→ 0, by (2.77) we have

u(r) ≥ cr
2

ν+1 , ∀r ∈ (0, 1] (2.82)

hence u(r)−ν ≤ cr1
2ν

ν+1 , which is an Lp function for p very large. We choose such a p > N
2 and it

follows that u−ν − h− f(u) ∈ Lp(B).
Consider now v the solution of

∆v = u−ν − h− f(u) in B (2.83)

v = u on ∂B (2.84)

Then by elliptic estimates and Sobolev inequalities v ∈W 2,p(B) ⊂ C(B). It follows that w := v−u
is bounded and it satisfies

∆w = 0 in B \ {0}

w = 0 on ∂B

From standard harmonic function theory it follows that the singularity in 0 is removable and w ≡ 0.
Hence u can be extended in 0 and becomes a solution of (2.1)-(2.2).

2.6 Open Questions and Final Comments

The study of singular problems with Neumann boundary conditions appears to be a very difficult
problem today. For example, in this chapter we have proved a very particular result and we have
spent a lot of technical effort in doing this. Up to our knowledge there are very few papers written on
this type of problem. That’s why, by contradiction to the case of the Dirichlet boundary condition,
which has been intensively studied in the last decades, the investigation for singular problems with
Neumann boundary condition is very far from a huge development. That’s why there are a lot of
open questions.
The main difficulty concerning the case of the Neumann problem is that many of the main tools in
elliptic equations doesn’t hold. For example the method of sub- and supersolutions is not valid in
this case, as the following simple example shows:
Consider the problem:

−∆u = f(u) in Ω (2.85)
∂u

∂n
= g(x) on ∂Ω (2.86)

where Ω is a smooth, bounded domain in RN and f : R → R is an increasing function. Consider u
a subsolution and u a supersolution of (2.85)-(2.86)(where the adaptation of definition of sub- and
supersolution for Neumann problems is obvious). Assume that u ≥ u and define u := u− u. Then

−∆u ≥ f(u)− f(u) ≥ 0 in Ω
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and u ≥ 0 in Ω with ∂u
∂n ≥ 0 on ∂Ω. By the classical maximum principle, we have either u ≡ 0 in

Ω or u > 0 in Ω and ∂u
∂n < 0 on ∂Ω. But the second case is not possible, hence u ≡ 0 in Ω, which

implies u ≡ u, which is contradictory. Hence the method of sub- and supersolutions does not hold
always when dealing with Neumann boundary condition. Also, up to our knowledge, there are no
works trying to apply a topological degree technique.
We will propose here several open problems:
Open problem 1 What happens if we consider for example f(u) = up with p > 1, i.e for the
superlinear case? But if we consider a function f such that lim

t→∞
f(t)

t = a ∈ (0,∞) ? The previous
method does not seem to be applicable for these cases. There exists two papers treating these prob-
lems in the 1-dimensional case, which is much simpler, but which can be taken as a possible starting
point for further investigation: these are [DPMM92] for the case of an asymptotically linear f and
[DPM93] for a superlinear function.
Open problem 2 What if we introduce a gradient term in the equation? There were many inter-
esting results in the study of nonlinear problems with gradient terms in the last years, but using
Dirichlet conditions or mixed(Robyn) conditions. It will be interesting to develop a technique to
treat singular Neumann problems with gradient terms, which up to now is not done.
Open problem 3 Our result presented here is very particular, since it holds only on balls and with
a radial function h. It is an open problem to study this on a general domain Ω ⊂ RN , where the
ODE techniques doesn’t work. An idea could be that of using the results obtained for balls and to
use a homotopy between Ω and a ball inside Ω, together with a degree setting. The main difficulty
is that in absence of a boundary condition for u itself, it is hard to show that the triples we consider
are admissible for the degree.
Open problem 4 Is it true that any solution of a problem like (2.1)-(2.2) on a ball must be radially
symmetric? Very recently it has been proved(see chapter 3) that any blow-up solution of a general
semilinear elliptic equation on a ball is symmetric. But for problems with singular terms or with
Neumann condition on the boundary this is still unknown.
There are many other open questions concerning for example uniqueness(in [DPH96] it is proved
a uniqueness result for the case f = 0, but only for radial solutions) or asymptotic behaviour of
solutions near the boundary or near the singularity point.
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Chapter 3

Blow-up Solutions for Nonlinear

Elliptic Equations

3.1 Introduction and Hystorical Facts

In this chapter we develop the theory of existence, uniqueness, asymptotic analysis and qualitative
theory of blow-up solutions for semilinear elliptic partial differential equations. This, together with
the similar problem posed in the parabolic case, are very active fields of research in present and
there are a lot of recent good result in this area. What we intent to do here is to realise a survey of
the developpment of this problem, in order to show how the theory was constructed since 1956.
We deal mostly with the following general problem:

∆u = f(u) in Ω (3.1)

u(x) →∞ as x→ ∂Ω (3.2)

where all the time Ω is a bounded and sufficiently regular domain. We will call, as usual, the function
f the nonlinearity of the problem. In the last part we will study also other type of problems with
blow-up, to see how the theory could be adapted in different cases.
Hystorically speaking, the discussion on these problems started in ’50, with the papers of J.B.
Keller(see [Ke56] and [Ke57]) and the paper of R.Osserman([Os57]). In the first of them, Keller
showed how this problem arises from natural(physical) phenomena, more specifically an electrohy-
drodynamic model, which will be presented in the next section. The work of Keller is continued by
himself with a mathematical paper in the next year, where he give a condition for existence of these
solutions. He could do this at that time only for monotone increasing nonlinearities. Independently,
R. Osserman obtained in the same year a similar result. After several years, the problem had been
found as interesting also in geometry, by Loewner and Nirenberg([LN74]), which have found the
nonlinearity f(u) = u

N+2
N−2 from a study of invariance of some PDEs under conformal and projective

mapping.
The problem regained its attraction for researchers many years ago, when the developpment of func-
tional analysis, nonlinear analysis and PDE provided new techniques for finding important results.

43
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In this line we remark the most important ones, which are on one side the study of multiplicity of
these solutions and the existence of different solutions(which has been done by McKenna,Reichel
and their collaborators in a series of papers, see [LMK94], [MKRW97] si [AfR97]) and on the other
side the elimination of the monotonicity condition on the nonlinearity(done first in [AfR97]).
A different kind of problem was the study of asymptotic behaviour of these solutions. This research
was initiated by C. Bandle and M. Marcus in two papers([BM92] and [BM95]) under the hypoth-
esis of increasingness of f . Much more recently, the problem has been studied in a very general
context(see for example [DDGR06]). Also, the existence of boundary blow-up solutions for other
types of PDEs was studied recently(by example for the logistic equation, see a series of papers of V.
Radulescu and F. Carstea). Also recently(see [RaC06]) the same authors used an approach based
on the theory of regular variation of Karamata.
The structure of this chapter is as follows: in the next section we present in detail the physical
model that gave birth to the interest on these phenomena. Then we will study what existence and
uniqueness results can be obtained by supposing that f is increasing. In section 3.4 we state and
prove results of multiplicity of blow-up solutions, followed in section 3.5 by the presentation of a very
new symmetry result for solutions. The next section is dedicated to the more recent developpment
of the theory in absence of the monotonicity of f . Here we introduce several Keller-Osserman type
conditions and we study their connection with existence of blow-up solutions. In the next section
we are concerned with uniqueness results and boundary blow-up rates. Finally, we end this chapter
with a section devoted for comments and open problems.

3.2 Physical Motivation: a Model in Electrohydrodynamics

In this section we present a model that can be considerated one of the most important applications
and practically started the modern research of the problem. This was introduced by Keller in [Ke56].
By electrohydrodynamics we understand the study of the motion of a fluid under the influence of
an electric field, by example in vacuum tubes(where the fluid is an electron gas) or in plasmas. In
our particular case we consider a uniformly charged gas of mass M in a container Ω. We want to
study the equilibrium of this gas. This state is achieved when the pressure force and the electrostatic
forces are balanced by each other. This equality leads to the equilibrium law:

∇p = aρE (3.3)

where p is the pressure, ρ is the density and aρ the charge density, E the electric vector field and
a := aρ

ρ , which is a constant, since the gas is supposed uniformly charged.
On the other hand, the electric field is given by the charge, hence

div(E) = 4πaρ (3.4)

If the container surface ∂Ω is a perfect conductor, then E has no tangential component on this
surface., hence ∇p is normal to the surface. From classical mechanics we know that any fluid is
characterized by a state equation which writes: p = p(ρ, T ), where T is the temperature of the fluid.
In our case, we assume that the temperature is constant, hence the state equation is:

p = p(ρ) (3.5)
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Since this function is an increasing one of variable ρ (which is obvious from physical reasons, i.e when
the density increases, of course the pressure should increase, since the container remains unchanged)
and goes to ∞ if also ρ does so, we may reverse the roles and express the density as a function of
pressure: ρ = ρ(p).
We eliminate from (3.3) and (3.4) the electric field E: div(E) = 1

adiv(ρ
−1∇p), hence

div(
1
ρ
∇p) = 4πa2ρ (3.6)

which, by the previous considerations, is an equations of variable p or ρ. But for our goal it is more
convenient to introduce a new variable:

v :=

p∫
p0

dp

ρ(p)
(3.7)

where p0 is the initial pressure when ρ = 0. In this notation, the equation (3.6) becomes

∆v = 4πa2ρ(p(v)) (3.8)

and the function in the right-hand side is an increasing function in v. In this way we obtain the
equation (3.1). On the other hand, since ∇p is normal on ∂Ω, it follows that the pressure(hence ρ
and v) is constant on ∂Ω. Let α be this constant value for v. Hence from the classical theory there
exists a unique solution v of (3.8) with boundary condition v = α, and from the classical maximum
principle this solution increases with α. Also, ∆v = f(v) ≥ 0, hence v is subharmonic, and v ≤ α

inside the container. We obviously have

M =
∫
Ω

ρ(s)ds (3.9)

and one can prove that for any given mass M , there exists exactly one value of α such that (3.9)
holds(for the proof see the appendix of [Ke56]).
As an example we consider the case of an ideal gas, whose state equation is

p =
RT

m
ρ (3.10)

where R is the Rayleigh constant and m is the average mass of the molecules in the gas. By a simple
computation, it follows that v = RT

m log(p) and f(v) = 4πa2m
RT e

m
RT v. We introduce in (3.8) the new

variable u := m
RT v + log(4π (am)2

(RT )2 ) and we deduce that

∆u = eu (3.11)

This equation was introduced in this particular case of the ideal gas by Max von Laue(see [ML18]),
who deduced using statistical mechanics that in equilibrium the density at any point is proportional
to an exponential function(which has been described explicitely in terms of the electrostatic poten-
tial).
We will prove in the next section that if the condition

∞∫
p(1)

1
ρ(p)

√
p− p0

dp <∞ (3.12)
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is satisfied, then there exists a bound function g(R) such that for any point P in the container(i.e.
P ∈ Ω in mathematical terms) we have

v(P ) ≤ g(R(P )) (3.13)

where R(P ) = d(P, ∂Ω). The condition (3.12) was deduced also by R. Osserman in [Os57] and it is
called today the Keller-Osserman((KO) for short) condition.
From (3.13) we deduce that for all P ∈ Ω, v, ρ and p tends to finite value in P as M → ∞, for
all gases satisfying (3.12). Also from (3.12), ρ goes to ∞ as P closes the surface of the container.
Thus, we obtain the physical conclusion: as the mass of the gas increases to infinity, the density
remain bounded at any interior point and becomes infinite on the surface. Hence most of the gas
accumulates in a thin layer near the surface as the mass of the gas increases.
From the mathematical point of view, we arrive to the boundary condition (3.2) for the variable ρ
or for v.

3.3 Existence and Uniqueness for Nondecreasing Nonlinear-

ity

From now on we will renounce at the physical notation as in section 3.2. We consider a bounded
domain Ω ⊂ RN with sufficiently smooth boundary. The idea is first to study some qualitative
properties of the solution of (3.1) without any boundary condition and to get a uniform upper
bound.
We start by supposing that f is a nonnegative real continuous function which is also nondecreasing
and satisfies the Keller-Osserman condition

∞∫
0

dt√
F (t)

< +∞ (3.14)

where F (t) :=
t∫
0

f(s)ds. The main result is:

Theorem 10. (Keller, [Ke57]) Let u ∈ C2(Ω) ∩ C(Ω) be an arbitrary solution of (3.1) with f as
above. Then there exists a decreasing function g such that g(x) = g(d(x)) for any x ∈ Ω, where
d(x) := d(x, ∂Ω), such that the following inequality holds:

u(x) ≤ g(d(x)), ∀x ∈ Ω (3.15)

Moreover, g has the asymptotic properties:

lim
t→0

g(t) = ∞, lim
t→∞

g(t) = −∞ (3.16)

Proof. Since for every point x ∈ Ω there exists a ball B(x,R) ⊂ Ω, it suffices to prove the theorem
for Ω = B(0, R). Fix a solution u of (3.1) on this ball and fix a constant θ ∈ (0, 1). Consider first
the Dirichlet problem:

∆v = h(v) in Ω (3.17)
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v = α on ∂Ω (3.18)

where α ≥ sup
x∈∂Ω

u(x) and h(v) := θf(v).

Then, since h is nondecreasing, there exists a unique solution of (3.17)-(3.18). Indeed, uniqueness
follows easily from a standard comparison argument: if u1 and u2 are two solutions and we suppose
that the sets Ω1 := {x ∈ Ω : u1(x) < u2(x)} and Ω2 := {x ∈ Ω : u2(x) < u1(x)} are both nonempty,
then on ∂Ω1 and ∂Ω2 we have u1 = u2. On the other hand, we obtain:

∆(u1 − u2) = θ(f(u1)− f(u2)) (3.19)

But in Ω1, the right-hand side is nonpositive and from the classical maximum principle it follows
that u1(x)− u2(x) ≥ 0 in Ω1, which is a contradiction. Hence Ω1 = ∅ and similarly Ω2 = ∅, which
means that u1 ≡ u2. Existence follows also from a standard sub- and supersolutions argument,
which we omit here.
Let vα be the solution of (3.17)-(3.18). From the maximum principle it follows that vα is a nonde-
creasing function of α and we can define

g(x) := lim
α→∞

vα(x) (3.20)

By the theorem of Gidas-Ni-Nirenberg(see [GNN79]) it follows that vα is a radial function and g is
a radial function. We want to show that this g is the desired function. First of all, since vα ≥ u on
∂Ω, and

∆(vα − u) = θ(f(va)− f(u)) + (θ − 1)(f(u))

by the same comparison argument as above, it follows that vα ≥ u in Ω or u ≤ g in Ω. On the other
hand, since vα is radially symmetric, we arrive to the ordinary differential equation(where v = vα):

v
′′

+
N − 1
r

v
′
= h(v) in (0, R) (3.21)

v
′
(0) = 0, v(R) = α (3.22)

Denote also v0,α := vα(0), which is uniquely determined by α. We multiply by rN−1 in both sides
of (3.21) and we integrate to obtain:

v
′
(r) =

1
rN−1

r∫
0

sN−1h(v(s))ds ≥ 0 (3.23)

hence v is nondecreasing. Then

v
′
(r) ≤ 1

rN−1
h(v(r))

r∫
0

sN−1ds =
r

N
h(v(r))

It follows that

v
′′
(r) ≥ h(v(r))− N − 1

N
h(v(r)) =

1
N
h(v(r))

and
1
N
h(v(r)) ≤ v

′′
(r) ≤ h(v(r)) (3.24)
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We multiply the last inequality by v
′
(r) and we integrate from 0 to r. By making a change of

variable and taking the power − 1
2 in both sides one obtains:

v∫
v0

1√
θF (s)

ds ≤ r ≤
√
N

v∫
v0

1√
θF (s)

ds (3.25)

But from condition (3.14), the integrals are convergent as v →∞, hence for some value of r, denoted

by R(v0), v becomes infinite and the inequality (3.25) still holds. Since lim
v0→∞

∞∫
v0

1√
θF (s)

ds = 0 and

lim
v0→−∞

∞∫
v0

1√
θF (s)

ds = ∞, it follows that R(v0) has the same behaviour as a function of v0. Also one

can easily check that R(v0) is nonincreasing.
We finally define g(r) := inf{v0 : R(v0) = r}, which is a sort of ”inverse” of the function R(v0). It
is easy to see that g is the desired function and it corresponds with the first definition.

Corollary. If f is as in theorem 10, the equation (3.1) posed in the whole RN has no solutions.

Proof. If there exists a solution u ∈ C2(RN ), then by theorem 10, u(x) ≤ g(R), for any x ∈ RN

and for any R > 0. But from the conditions (3.16) on g, it follows that u(x) ≤ t, ∀t ∈ R, which is
absurd.

Now we derive the most interesting result for us:

Theorem 11. If f is as above, then in any bounded domain Ω ⊂ RN there exists a solution of
(3.1)-(3.2).

Proof. We remark as before that for any α there exista a solution uα of (3.1) with u = α on ∂Ω and
from the maximum principle uα is a nondecreasing function with respect to α. From theorem 10
we deduce that for any x ∈ Ω we have uα(x) ≤ g(d(x)), hence are bounded above uniformly in α.
Thus there exists u(x) := lim

α→∞
uα(x) < ∞, ∀x ∈ Ω, and the limit u is still a solution of (3.1). But

as x → ∂Ω, u(x) becomes indefinitely large, since on ∂Ω, uα(x) = α → ∞. Hence u is the desired
solution.

In the same paper of Keller there exists another complementary result which gives conditions
in order to have solution in RN , and that we only state:

Theorem 12. Let f : R → R be a continuous function. Then (3.1) has a radially symmetric
solution in RN if and only if one of the following conditions is satisfied:
(i) f(u1) = 0;

(ii) f > 0 and
∞∫
u0

dt√
F (t)

= ∞;

(iii) f < 0 and
u0∫
−∞

dt√
F (t)

= ∞.

Hence we remark here an opposite condition to (3.14). For a proof, we indicate the original
paper of Keller([Ke57]).
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3.4 Relaxation of Monotonicity Condition. Multiplicity and

Non-existence Results

In this long section we present the recent development of the problem in absence of the monotonicity
of f . In fact, after the papers of Keller and Osserman, there were very few papers on problem (3.1)-
(3.2) for a very long period. It was only in the 90’s when the important work of Lazer, McKenna, W.
Reichel, W. Walter opened a new direction in studying the problem, that of non-necessary monotonic
f . As we will show, the results here are much different: one can has uniqueness, non-uniqueness or
even non-existence.
The first result of non-uniqueness was obtained by McKenna, Reichel and Walter ([MKRW97]) for
the function f(u) = |u|p on a ball in RN . In this paper, it is showed that for 1 < p < N∗, where N∗

is the critical Sobolev exponent(i.e. N∗ = N+2
N−2 for N ≥ 3 and N∗ = ∞ for N = 1, 2), there exists

exactly two blow-up solutions, a positive one and another one that changes sign. For p ≥ N∗ there
exists only one solution, which is positive (and is obtained in a very similar way as in theorem 8).
W. Reichel (see [Re97]) has extended the multiplicity result to convex and bounded smooth domains,
for the same function and for some small perturbation of it. The technique used is variational and
uses the Mountain-Pass theorem(see chapter 2).
We will present next the more general result in this direction, obtained by A. Aftalion and W. Reichel
in [AfR97]. This extends the previous results to a wide class of nonlinearities, using a topological
degree technique.
Consider a function f : R → R with the following properties:
(A) f is locally Lipschitz continuous and f(0) = 0;
(B) there exists s0 > 0 such that f is positive and nondecreasing on [s0,∞) and it satisfies condition
(3.14);
(C) there exists p ∈ (1, N∗) such that 0 < lim

s→−∞
f(s)
|s|p <∞.

By example, these hypotheses allows to consider the nonlinearities mentioned above and many more,
as f(s) = sp1 for s > 0 and f(s) = (−s)p2 for s < 0, where 1 < p1 and 1 < p2 < N∗. In fact,
conditions (3.14) and (C) are growth conditions near∞ and−∞ which are required in order to obtain
solutions(we have seen already that (3.14) is needed in general). If the second growth condition is
relaxed, then the sign-changing solution may not exist, as it is the case in the next result:

Theorem 13. Let Ω ⊂ RN be a smooth bounded domain, symmetric with respect to all hyperplanes
xi = 0 (for example a ball) and f as before. If p2 > N∗, then there is no sign-changing solution of
(3.1)-(3.2)

We will prove this at the end of this section, in a more general form.
The idea for proving a multiplicity result in the conditions (A), (B), (C) is to obtain two solution
for the problem (3.1) with the boundary condition

u = c on ∂Ω (3.26)

where c > s0 and then to pass to the limit as c→∞. In order to use the topological degree method,
we will also consider the perturbed problem:

∆u = f(u) + k in Ω (3.27)
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together with (3.26), where k ≥ 0.

Lemma 12. Let f as before. If u solves (3.26)-(3.27) for some k ≥ 0 then u < c in Ω.

Proof. If there exists x0 ∈ Ω such that u(x0) = sup
x∈Ω

u(x) > c, then f(u(x0)) > 0 by condition (B),

but ∆u(x0) ≤ 0, which is a contradiction.

Lemma 13. (Apriori bound from above) If f satisfies (A) and (B), then, for every compact K ⊂ Ω,
there exists CK > 0 such that u ≤ C(K) on K, for every solution u of (3.1)-(3.26).

Proof. Consider vα the solution of the Cauchy problem:

v
′′

α =
1
N
vα (3.28)

vα(0) = α, v
′

α(0) = 0 (3.29)

where α > s0. Consider the maximal interval (0, Rα) on which the solution vα exists. Then
lim

x→Rα

vα(x) = ∞. We multiply in both sides by v
′

α and integrate. Then

v
′

α =
2
N

(F (vα)− F (α))

with the common notation. Hence by integrating on (α,∞) and changing the variables, we get

Rα =

∞∫
α

√
N√

2(F (s)− F (α))
ds (3.30)

One can write

Rα =

∞∫
0

√
N√

2(F (s+ α)− F (α))
ds

=

α∫
0

√
N√

2(F (s+ α)− F (α))
ds+

∞∫
α

√
N√

2(F (s+ α)− F (α))
ds

= I1 + I2

But for s > s0, F is increasing and convex, hence F (s+ α)− F (α) ≥ αf(s). It follows that

I1 ≤
α∫

0

√
Nds√

2sf(α)
= C

√
α

f(α)

and (3.14) implies lim
α→∞

α
f(α) = 0. Hence lim

α→∞
I1 = 0. Similarly, from the convexity of F it follows

that F (s+ 2α) ≥ F (2α) ≥ 2F (α), and I2 ≤ C
∞∫
0

ds√
F (s+2α)

→ 0 as α→∞. Hence

lim
α→∞

Rα = 0 (3.31)

Let now u be a solution of (3.1)-(3.26) and x0 ∈ Ω. Choose α > 0 big such that Rα <
1
2d(x0). Then

if vα = vα(r), we have:

∆vα = v
′′

α +
N − 1
r

v
′

α ≤ Nv
′′

α = f(vα)



3.4. RELAXATION OF MONOTONICITY CONDITION. MULTIPLICITY AND NON-EXISTENCE RESULTS51

for 0 < r := |x − x0| < Rα. Hence vα is a supersolution for (3.1) in B(x0, Rα). By maximum
principle we obtain that vα ≥ u in the same ball. For a general compact K ⊂ Ω we cover it with a
finite number of such balls B(x0, Rα) and we take CK to be the maximum of the estimates on each
ball.

Remark. As we shall see, the condition (3.31) it is particularly important in connection to what
we usually call today the strong Keller-Osserman condition, for short (KOs). That’s why [AfR97] is
considered the origin of this stronger growth condition. We will see many aspects concerning (KOs)
in the next section.

In what follows we will need to prove some technical non-existence results for (3.26)-(3.27) for
large k. These results will be essential when applying the topological degree technique.

Lemma 14. Let α and k > 0 be given. Let p > 1. If the following Dirichlet problem:

∆v + αvp + k = 0 in B(0, R) (3.32)

v = 0 on ∂B(0, R) (3.33)

has a positive solution, then
k ≤ λ

p
p−1
1 α−

1
p−1R−2 p

p−1 (3.34)

where λ1 is the first eigenvalue of the Laplacian in B(0, 1).

Proof. Let v > 0 be a solution of (3.32)-(3.33). We multiply in both sides of (3.32) by φ, the first
eigenfunction of the Laplacian in B(0, R), and we integrate. We obtain:∫

B(0,R)

αvpφdx =
λ1

R2

∫
B(0,R)

vφdx− k

≤ λ1

R2

∫
B(0,R)

vφdx

≤ λ1

R2
(

∫
B(0,R)

αvpφdx)
1
pα−

1
p

hence ∫
B(0,R)

αvpφdx ≤ λ
p

p−1
1 α−

1
p−1R−2 p

p−1 (3.35)

and the same inequality for λ1
R2

∫
B(0,R)

vφdx. Using these we find (3.34).

We need now a comparison principle which is very useful for differential inequalities:

Lemma 15. (Comparison principle) Let f : R → R be a Lipschitz continuous and nondecreasing
function and suppose that in an interval [a, b] with 0 ≤ a < b there exists two functions g, h of class
C2 such that:

g
′′

+
N − 1
r

g
′
≤ f(g), h

′′
+
N − 1
r

h
′
≥ f(h)

and g(a) ≤ h(a), g
′
(a) ≤ h

′
(a) (where by convention we assume g

′
(a) = h

′
(a) = 0 if a = 0). Then

g ≤ h on [a, b].
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Proof. Consider for any ε > 0 the solution hε of the problem:

h
′′

ε +
N − 1
r

h
′

ε − f(hε) = h
′′

+
N − 1
r

h
′
− f(h)

hε(a) = h(a) + ε, h
′

ε(a) = h
′
(a)

From Dini’s theorem we get that hε converges to h uniformly as ε → 0. We compare g to hε.
Let [a, c] ⊂ [a, b] be the maximal subinterval with g ≤ hε, for some fixed ε. Then c > a and by
multiplication to rN−1 we find:

(rN−1(h
′

ε − g
′
))
′
= rN−1(h

′′

ε +
N − 1
r

h
′

ε − g
′′
− N − 1

r
g
′
)

≥ rN−1(h
′′

+
N − 1
r

h
′
− f(h) + f(hε)− f(g))

≥ 0

It follows that h
′

ε ≥ g
′
on [a, c], hence hε−g is increasing on [a, c]. But hε(a) > g(a), hence c = b.

Proposition 3. Let f satisfy (A), (B), (C). Then there exists a constant K∗ > 0 which depends
only on Ω such that (3.26)-(3.27) posed in Ω has no solution for k ≥ K∗.

Proof. We divide the proof into several steps.
Step 1: We start the proof by making a reduction of the problem. We first take Ω = B(0, R). Con-
sider a modification of f on (0, s0) to a function f which is Lipschitz continuous and nondecreasing
on [0, s0], with f(0) = 0. This linking is possible since f(s0) > 0. Define g(s) := f(s) + k

2 for s > 0
and g(s) := a|s|p + k

2 for s ≤ 0, where a > 0 is a constant chosen such that g(s) ≤ f(s) + k.
We prove non-existence for the problem:

∆u = g(u) in B(0, R) (3.36)

and (3.26). Suppose we have already proved this. Then any solution v of (3.26)-(3.27) becomes a
subsolution for (3.36)-(3.26). By lemma 12 v ≤ c in B(0, R). On the other hand, since f is nonneg-
ative, the constant function c is a supersolution for (3.36)-(3.26). Hence, existence for (3.26)-(3.27)
and theorem 1 will imply existence for (3.36)-(3.27). It follows that we can not have a solution for
(3.26)-(3.27).
We study next the problem (3.36)-(3.26). By the Gidas-Ni-Nirenberg theorem(see [GNN79]) its solu-
tion must be radially symmetric and radially increasing, hence it remains bounded by the boundary
value c.
Step 2: Non-existence of nonnegative solutions.
Consider φ the solution of the following Cauchy problem:

φ
′′

=
1
N

(f(φ) +
k

2
) (3.37)

φ(0) = 0, φ
′
(0) = 0 (3.38)

which exists in a maximal interval (0, Rk). Following the same lines of the proof of lemma 13, we
obtain that

Rk =

∞∫
0

√
Nds√

2f + ks
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which is obviously decreasing in k and lim
k→∞

Rk = 0 by the monotone convergence theorem. On the

other hand, φ
′′

is nondecreasing and φ
′′
(0) = k

2N > 0, hence φ
′

is also nondecreasing on (0, Rk).
Since φ

′
(0) = 0, φ is also nondecreasing. Using these facts, one can easily prove that 1

rφ
′ ≤ φ

′′
. It

follows that

∆φ = φ
′′

+
N − 1
r

φ
′
≤ Nφ

′′
= f(φ) +

k

2
(3.39)

On the other hand, if there exists a nonnegative solution u of (3.36)-(3.26), then

∆u = u
′′

+
N − 1
r

u
′
= f(u) +

k

2
(3.40)

and u(0) ≥ 0, u
′
(0) = 0. We now use the comparison principle given in lemma 15 together with

(3.39)-(3.40) and we obtain that φ ≤ u. Hence u blows-up before φ. But φ blows-up at Rk which
goes to 0 as k →∞, contradiction for k large enough.
Step 3: Non-existence of sign-changing solutions.
We have proved in the lines of step 2 that any solution is increasing in r. Hence, if there exists such
a solution u, then u(0) < 0 and u(ρ) = 0 for some ρ ∈ (0, R). From lemma 13 we deduce that for
large k, for example for k ≥ α−

1
p−1λ

p
p−1
1 (R

4 )−
2p

p−1 we have ρ ≤ R
4 . As in step 2, the solution φ of

(3.37)-(3.38) satisfies for r ≥ ρ the same inequality as in step 2, hence φ(· − ρ) ≤ u for any r ≥ ρ.
We arrive to the same contradiction.
Step 4: Extension to general domains.
Until now we have proved the proposition in the case of a ball. Let Ω be a general domain, such
that 0 ∈ Ω and let R > 0 such that B(0, R) ⊂ Ω. Let k ≥ kR, where kR is given by the preceding
steps, and assume that (3.26)-(3.27) has a solution u. Then u ≤ c in B(0, R) by lemma 12, hence u
is a subsolution of (3.26)-(3.27) in B(0, R). Since the constant function u ≡ c is a supersolution, it
follows that the problem on the ball has a solution, in contradiction with the result of the previous
two steps.

The next step is to obtain an apriori bound from below. For this goal we use two of the
most spectacular techniques in nonlinear partial differential equations: the moving plane method
of Gidas, Ni and Nirenberg(see [GNN79]) and a scaling argument based on the ideas of Gidas and
Spruck([GS811] and [GS812]).
The moving plane method is a technique of ”going away” from the boundary in an uniform way:

Theorem 14. Let f be as above and let u be a positive solution of the equation (3.1) with zero
boundary condition. Then there exists a t0 > 0 depending only on the geometry of Ω such that
on [0, t0], the function t → u(x − tν(x)) is increasing, where ν(x) is the outer normal vector in
x ∈ ∂Ω. In particular, this result implies that the critical points of u stay away from the boundary
at a distance depending only on Ω.

Proof. (sketched) Let x = (x1, x
′
) and for λ > 0, xλ := (2λ− x1, x

′
), where x

′
= (x2, ..., xN ).

Fix x0 ∈ ∂Ω and take the axis x1 for simplicity to be parallel to the normal direction at the boundary
in x0. Consider Tλ0 the tangent plane to ∂Ω at x0, where λ0 is the first coordinate of x0. The idea
is to take all the parallel hyperplanes Tλ to Tλ0 and to reflect the part of Ω which lies between Tλ0

and Tλ(which will be denoted by Σλ) with respect to Tλ. In this way, we still stay inside Ω until a
limit position Tl where the symmetric of Σl goes out of the boundary of Ω(see the figure).
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We remark that the previous transform x→ xλ is exactly the symmetry with respect to Tλ. Define
uλ(x) := u(xλ) and wλ(x) := u(xλ)− u(x). We remark that if we prove that wλ > 0 in Σλ for some
λ > 0, this implies the desired increasingness in the normal direction.
We have

∆wλ = ∆(uλ − u) = f(uλ)− f(u)

or
∆wλ = cλ(x)wλ (3.41)

where cλ(x) := f(uλ)−f(u)
uλ−u ∈ L∞(Ω). To apply the maximum principle in (3.41) we need that

cλ ≤ λ1(Σλ) where λ1 means the first eigenvalue of the operator −∆ on the indicated domain. Since
λ1(Σλ) →∞ as vol(Σλ) → 0, the maximum principle holds for a small domain.
Consider the largest interval (λ∗, λ0) on which wλ > 0 in Σλ and the maximum principle is applicable.
It follows by continuity that wλ∗ ≥ 0 and by maximum principle that either wλ∗ > 0 or wλ∗ ≡ 0.
If λ∗ > L, then wλ∗ > 0 in Σλ∗ and there exists δ > 0 and a compact set K ⊂ Σλ∗ such that
wλ∗ > δ > 0 on K and vol(Σλ∗ \K) is small enough in order to apply the maximum principle. If
in this case we move λ between λ∗ − ε and λ∗ for a small ε, it follows that wλ > 0 also for these λ,
which contradicts the maximality of the interval (λ∗, λ0).

The scaling argument has been developed by Gidas and Spruck in the early ’80s in order to
prove a very nice extension of the Liouville theorem in RN

+ :

Theorem 15. (Gidas-Spruck) Suppose that u ≥ 0 is a classical solution of the problem:

−∆u = up in RN
+ (3.42)

u = 0 on ∂RN
+ (3.43)

where 1 < p ≤ N+2
N−2 . Then u ≡ 0.

The proof of this Liouville-type result uses also the moving plane method in order to prove that
the solution u depends only on the first coordinate x1, then ODE techniques. Based on this theorem
and using again the same scaling argument, Gidas and Spruck have obtained a L∞-boundedness
result for the solutions of certain nonlinear equations. In the next proof we will need another theorem
of Liouville-type that we do not prove:

Theorem 16. (Chen-Li) Suppose u ≥ 0 is a classical solution of

−∆u = up in RN (3.44)

where 1 < p ≤ N+2
N−2 . Then u ≡ 0.

The proof is easy and its idea is to show first that the solution must be radially symmetric.
For this we restrict to a ball which becomes larger and larger and apply the Gidas-Ni-Nirenberg
theorem. For a complete proof the reader should consult [ChLi91].
We are now in position to prove the basic apriori bound from below.

Proposition 4. Let f satisfy (A), (B), (C). Then there exists a constant L > 0 such that any
solution u of (3.26)-(3.27) with k ∈ (0, k∗), where k∗ is given by proposition 3, satisfies u ≥ −L in
Ω.
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Proof. Suppose by contradiction that there exists sequences cj → ∞ as j → ∞, (xcj )j ⊂ Ω,
(kcj )j ⊂ [0, k∗] and functions ucj with the following properties:

∆ucj = f(ucj ) + kcj in Ω (3.45)

ucj
= cj on ∂Ω (3.46)

and

mcj = − inf
Ω
ucj = −ucj (xcj ) →∞ (3.47)

as j →∞. We will use for simplicity in the next lines only indices j.
From the moving plane method we deduce that the critical points of uj are bounded away from
the boundary uniformly in j, hence d(xj , ∂Ω) ≥ δ > 0. By subtracting convergent subsequences if
necessary, we may suppose that kj → k ∈ [0, k∗] and xj → x ∈ Ω with d(x, ∂Ω) ≥ δ.
We define the scaling

wj(y) :=
1
mj

uj(m
− p−1

2
j y + xj) (3.48)

Hence wj(0) = −1 and wj ≥ −1. We compute:

∆wj(y) =
1
mj

(∆uj)(m
− p−1

2
j y + xj)m

1−p
j

=
1
mp

j

(f(uj(m
− p−1

2
j y + xj)))

=
1
mp

j

(f(mjwj(y)) + kj)

(3.49)

Consider R > 0 small enough such that R ≤ δ
2 and let ψ be the solution of the Cauchy problem :

ψ
′′

=
1
N
f(ψ) (3.50)

ψ
′
(0) = 0, ψ(R) = ∞ (3.51)

We choose R small such that ψ(0) ≥ s0. Define a similar scaling

φj(r) :=
1
mj

ψ(m− p−1
2

j r) (3.52)

where r ∈ B(0,m
p−1
2

j R). We compute

∆φj :=
1
mp

j

∆ψ (3.53)

From (3.50) and (3.51) one can easily prove that ψ, ψ
′

and ψ
′′

are both nondecreasing, hence
∆ψ = ψ

′′
+ N−1

r ψ
′ ≤ Nψ

′′
. It follows that

∆φj ≤
1
mp

j

Nψ
′′

=
1
mp

j

f(mjφj) (3.54)

We compare (3.49) and (3.54). We remark that φj(0) = 1
mj
ψ(0) ≥ s0

mj
. Then

∆(wj − φj) ≥
1
mp

j

(f(mjwj)− f(mjφj)) +
kj

mp
j
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For j large, we have that mjwj ≥ s0, hence f is nondecreasing. By a standard comparison argument

that we have used in the proof of theorem 8, it follows that wj ≤ φj in B(0,m
p−1
2

j R).
Let K ⊂ RN be a fixed compact set. Then lim

j→∞
φj = 0 on K and moreover

mjφj(r) = ψ(m− p−1
2

j r)

is bounded uniformly in j on K, where we consider the extension of ψ by 0 on the whole space.
Then, for wj ≥ 0 one has

|∆wj | ≤
1
mp

j

|f(mjwj) + kj | ≤
1
mp

j

C(K) (3.55)

On the other hand, we use the assumption (C) on the nonlinearity f to derive that there exists some
positive constants C1, C2 and C3 such that −C1 ≤ f(s) + kj ≤ C2|s|p + C3, for all s < 0. We use
this for s = mjwj if wj < 0 and by multiplying in both sides by m−p

j , we have:

−C1
1
mp

j

≤ 1
mp

j

(f(mjwj) + kj) = ∆wj ≤ C2|wj |p + C3
1
mp

j

(3.56)

for wj < 0.
Hence, for j large, ∆wj is bounded uniformly in L∞(K). By the Calderon-Zygmund estimates on
K(see for example [GT02], chapter 9) it follows that wj ∈W 2,p(K) for all p > 1. Using the Sobolev
embedding theorem, we obtain that wj ∈ C1,α(K), for any α ∈ (0, 1). Hence we can subtract a
subsequence(denoted also by wj for simplicity) such that wj converges locally uniformly to some
function w. Moreover, since wj ≤ φj and φj → 0 as j →∞, it follows that w ≤ 0. Hence

∆w = lim
j→∞

∆wj
= lim

j→∞

f(mjwj)
(mjwj)p

wp
j = Cwp

and w ≤ 0. Then w := −w solves ∆u + Cup = 0 in RN and w ≤ 0. But this implies w ≡ 0 by the
Chen-Li theorem. This is a contradiction, since wj(0) = −1 for all j, hence w(0) = −1.

We can now prove the main result of this section, the existence of two solutions for the problem
(3.1)-(3.2). We will first derive the same result for (3.1)-(3.26) and then pass to the limit.
For convenience we recall the main properties of the Leray-Schauder topological degree for compact
perturbations of the identity. Let in general X be a real Banach space. Consider the family T :=
{(I − T, Y, 0) : Y ⊆ X is a bounded, open set, T : Y → X compact operator and (I − T )(x) 6=
0, ∀x ∈ ∂Y }. Such a triple is called an admissible triple.

Theorem 17. In the conditions above, there exists an application d : T → Z which has the following
properties:
(P1) If 0 ∈ Y , then d(I, Y, 0) = 1;
(P2) (additivity) If Y = Y1 ∪ Y2 where Y1 and Y2 are two disjoint open sets, T : Y → X a compact
operator such that (I − T, Y, 0) ∈ T , then (I − T, Y1, 0) ∈ T , (I − T, Y2, 0) ∈ T and

d(I − T, Y, 0) = d(I − T, Y1, 0) + d(I − T, Y2, 0) (3.57)

(P3) (the existence theorem) If d(I − T, Y, 0) 6= 0 then there exists x ∈ Y such that Tx = x;
(P4) (the homotopy invariance) If H : [0, 1] × Y → X is a compact operator and H(t, x) 6= x, for
all t ∈ [0, 1] and x ∈ ∂Y , then d(I − Ht, Y, 0) is constant with respect to t. In particular one has
d(I −H0, Y, 0) = d(I −H1, Y, 0).
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The construction of this topological degree is based on the Brouwer degree for finite dimensional
spaces, applied for the Schauder approximation of X. For us this construction is not important;
we need only the properties listed before. For the interested reader we suggest the monograph
of Zeidler([Ze84]) or a small but very nice book of Brown([Br93]), where one can find the precise
construction and further properties. Also the paper [Rab74] is interesting for giving some other
applications in our context.
Now we state the desired result:

Theorem 18. Let Ω ⊂ RN be a smooth and bounded domain(by domain we understand also con-
vexity). If f satisfies (A), (B) and (C) then there exists at least two solutions of (3.1)-(3.2):one is
nonnegative and another is sign-changing.

Before starting the proof, we will introduce some technical lemmas which will be useful in
proving that certain triples are admissible for the topological degree. First of all, since u ≡ 0 is a
subsolution of (3.1)-(3.26) and for c ≥ s0, the function u ≡ c is a supersolution for (3.1)-(3.26), it
follows that there exists a nonnegative solution of (3.1)-(3.26) denoted by u1. Let v1 := c− u1.

Lemma 16. There exists a constant M1 > 0 such that for any v solution of the problem

−∆v = f(c− v) + k, in Ω (3.58)

v = 0 on ∂Ω (3.59)

we have ‖v‖C1(Ω) ≤M1, ∀k ∈ [0, k∗].

Proof. By lemma 12, any solution v of (3.58)-(3.59) is positive. We remark that if we put u = c− v,
then (3.58)-(3.59) becomes (3.26)-(3.27) for u. By proposition 4, we have a uniform lower bound
for u, i.e. u ≥ −L, hence v ≤ c + L. It follows that ‖v‖∞ ≤ c + L, for all k ∈ [0, k∗]. Hence
(f(c − v) + k) ∈ Λ∞(Ω) uniformly in k and from the Calderon-Zygmund estimates we derive that
v ∈ W 2,p(Ω), ∀p > 1. Finally, from the Sobolev embedding theorem, it follows that v ∈ C1(Ω)
uniformly in k.

Lemma 17. Fix µ ≥ 0. Then there exists a constant M2 > 0, independent of t ∈ [0, 1], such that
for any solution v of the problem

−∆v + µv = t(µv + f(c− v)) + (1− t)(µv1 + f(c− v1)) in Ω (3.60)

v = 0 on ∂Ω (3.61)

with 0 ≤ v ≤ c and v1 the nonnegative solution of the problem (3.1)-(3.26), we have ‖v‖C1(Ω) ≤M2.

Proof. We remark that the right hand side is bounded, since 0 ≤ v ≤ c. Then the proof follows the
same lines of that of the previous lemma.

Now we start the proof of the theorem, which we divide into several steps for simplicity. The
first(easy) step was already done, that of finding a nonnegative solution of the approximating prob-
lem (3.1)-(3.26).
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Proof. (Theorem 18) Step 1: we prove that (3.1)-(3.26) has at least two solutions and one is sign-
changing. For this we use the topological degree. Consider v := c− u, hence

−∆v = f(c− v) (3.62)

v = 0 on ∂Ω (3.63)

From lemma 12 we find that any solution of (3.62)-(3.63) is positive. As before, we remark that v1
is such a solution which is bounded by c. We next prove that there exists a solution v2 crossing c.
For this goal we define the compact operators (Ut)t∈[0,1] as follows: for v ∈ C1

0 (Ω), define w = Utv

to be the solution of

−∆w + µw = f(c− v) + µv + tk∗ in Ω (3.64)

w = 0 on ∂Ω (3.65)

where C1
0 (Ω) := {v ∈ C1(Ω) : v = 0 on ∂Ω} and µ := sup

[0,c]

|f ′ |. It is well-known that Ut are compact

operators. Moreover, if 0 ≤ v1 ≤ v2 ≤ c, since the function s→ f(c− s) + µs is increasing in [0, c],
then Utv1 ≤ Utv2 by the classical maximum principle.
We want to find a fixed point of U0 crossing c. For a constant M > max(M1,M2), we define the
sets

Y := {v ∈ C1
0 (Ω) : v > 0 in Ω, ‖v‖C1(Ω) < M and

∂v

∂n
< 0 on ∂Ω} (3.66)

Y1 := {v ∈ Y : v < c in Ω} (3.67)

which are open in C1
0 (Ω). Set Y2 := Y \ Y1.

We prove next that d(I − Ut, Y, 0) = 0, ∀t ∈ [0, 1]. If not, by (P3) there exists v ∈ Y and t ∈ [0, 1]
such that Utv = v. Then v solves (3.58)-(3.59) for k = tk∗, hence ‖v‖C1(Ω) < M . Since v > 0, it
follows that ∂v

∂n > 0 on ∂Ω, hence v ∈ Y . Then (I −Ut, Y, 0) ∈ T and U1 has no fixed points, by the
nonexistence result presented in lemma 14. Using (P3) and (P4) we obtain that d(I − U0, Y, 0) =
d(I − U1, Y, 0) = 0.
We show that d(I − U0, Y1, 0) = 1. We know that there exists a solution v1 ∈ Y1 of (3.62)-(3.63).
Hence d(I − v1, Y1, 0) = 1. Define the compact homotopy

Ht := tU0 + (1− t)v1, t ∈ [0, 1]

If v ∈ Y1 such that v = Htv, then v is a solution of (3.60)-(3.61) and ‖v‖C1(Ω) < M . Then by
maximum principle v ∈ Y1 and it follows that (I −Ht, Y1, 0) ∈ T . By the homotopy invariance (P4)
we obtain that d(I − U0, Y1, 0) = d(I −H1, Y1, 0) = d(I − v1, Y1, 0) = 1.
Then by (P2) we have:

d(I − U0, Y2, 0) = d(I − U0, Y, 0)− d(I − U0, Y1, 0) = −1

and by (P3) there exists a solution v2 of (3.62)-(3.63) such that v2 is not in Y1. Hence v2 crosses c
and u2 := c− v2 is a sign-changing solution of (3.1)-(3.26).
Step 2: passing to the limit. Let u1,c and u2,c be two solutions of (3.1)-(3.26) for c ≥ s0. Then u1,c

is the maximal solution and by standard comparison u1,c1 ≤ u1,c2 for c1 ≤ c2. We prove that there
exists A > 0 such that

u2,c ≥ u1,c −A, ∀x ∈ Ω, ∀c > s0 (3.68)
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To prove this, we know that u2,c ≥ −L in Ω, by proposition 4. Since f is nondecreasing on
[s0,∞), one can find s∗ > s0 such that f(s) ≤ f(s∗), for all s ∈ [−L, s∗]. Set A := L + s∗. Then
f(s) ≤ f(s+A), for all s ≥ −L, hence

f(u2,c) ≤ f(u2,c +A)

We want to compare u1,c and u2,c +A. But

∆(u2,c +A) = ∆u2,c = f(u2,c) ≤ f(u2,c +A)

and ∆u1,c = f(u1,c). Hence u1,c ≤ u2,c +A since f is nondecreasing on [s0,∞).
It follows that ui,c is bounded below in Ω and above locally in Ω, for i = 1, 2. Hence ui,c ∈ L∞loc(Ω)
and by the Calderon-Zygmund estimates and Sobolev inequalities, u ∈ C1,α

loc (Ω). Then there exists
subsequences, denoted for short also as u1,c and u2,c, converging to u1, respectively u2, and by
the usual bootstrap technique we obtain that u1 and u2 satisfy (3.1). Moreover, u1 ≥ 0 and u2

is sign-changing. Finally, u1,c → ∞ on ∂Ω as c → ∞ and u2,c will do the same, since we have
(3.68).

There are also cases where there are no blow-up solutions, even if the conditions are very close
to ours. The following bifurcation result shows the surprisingly very thin line which exists between
multiple existence and nonexistence.

Theorem 19. Let Ω ⊂ RN be a bounded and smooth domain and f satisfies (A), (B), (C), except
from f(0) = 0, replaced by the condition mf := min{f(s) : s ∈ R} > 0. Consider the problem

∆u = λf(u), in Ω (3.69)

u(x) →∞ as x→ ∂Ω (3.70)

Then there exists a critical value λ∗ depending only on f and Ω such that for λ ∈ (0, λ∗) the problem
(3.69)-(3.70) has at least two solutions and for λ > λ∗ (3.69)-(3.70) has no solution.

The idea of the proof is a very elegant one: instead of varying the nonlinearity, as in the
statement, we make a smart change in order to obtain the same problem and to vary the domain.
More precisely, let us consider the domains Ωt := tΩ for any t > 0 (we suppose for simplicity that
0 ∈ Ω) and the functions

ut(x) := u(
x

t
), t ∈ Ωt

If u solves (3.69)-(3.70) for some λ, then ut solves

∆ut = f(ut) in Ωt (3.71)

ut = ∞ on ∂Ωt (3.72)

where t =
√
λ. Concerning the domains, Ωt is convex, bounded, smooth and Ωt1 ⊂ Ωt2 for t1 < t2.

Moreover, ∪tΩt = RN . The main step of the proof is given in the following general result concerning
(3.1)-(3.2):
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Lemma 18. Let Ω and f as in the theorem. Then there exists 0 < d1 ≤ d2 depending only on f

such that:
(a) If diam(Ω) ≤ d1, then there exists two blow-up solutions of (3.1)-(3.2) and one is nonnegative;
(b) If r(Ω) > d2, there are no blow-up solutions, where we define r(Ω) as the radius of the largest
ball contained in Ω.

Proof. (a) The only time when we use in the proof of theorem 18 the fact that f(0) = 0 is when
we find the function identically 0 to be a subsolution of (3.1)-(3.26). If we find in another way a
subsolution u for this problem, the whole proof of theorem 18 works the same, with the only change
that the first solution will be greater than u and the other will cross u.
To find a subsolution, we start with the solution U of the linear problem

∆U = −1 in Ω

U = 0 on ∂Ω

By usual estimates on the solution, we obtain that U(x) ≤ C(diam(Ω))2.
Define also

D := sup
c>0

c

sup
s∈[0,c]

f(s)

which is a number in (0,∞) and it is attained in some point c > 0, since lim
s→∞

s
f(s) = 0. Set

u(x) := c(1− U(x)
max(U)

) for x ∈ Ω

Then u ≤ c and

∆u = −c ∆U
max(U)

≥ c

C(diam(Ω))2
≥ f(u)

hence u is a subsolution for (3.1)-(3.26) for c and for diam(Ω) ≤ d1 :=
√

C1
C .

(b) We remark that f −mf satisfies (A), (B), (C), hence there exists b > 0 such that

f(s) ≥ f(s) +
1
2
mf , for s > 0

and
f(s) ≥ b|s|p +

1
2
mf , for s < 0

where f is the increasing modification of f in [0, s0] with f(0) = 0, given first in the proof of
proposition 3.
If we change the way of regarding proposition 3 by fixing the value of k, we deduce that (3.26)-(3.27)
has no solution for large R(i.e. posed in a large ball). We apply this observation for k = mf . It
follows that there exists R∗ such that (3.1)-(3.26) has no solution in any ball of radius R ≤ R∗ for
c ≥ s0. If (3.1)-(3.2) has a solution u in a domain Ω with r(Ω) > R∗, then u becomes a subsolution
on a ball of radius R∗ contained in Ω for (3.1)-(3.26) with c ≥ sup

BR∗
u. This is a contradiction, since

the function which is identically c proves to be always a supersolution.

Proof. (Theorem 19) For t small, the diameter of Ωt is also small, hence diam(Ωt) ≤ d1. By part
(a) of the last lemma it follows that (3.71)-(3.72) has at least two solutions. Set

t∗ := sup{t : (3.71)− (3.72)hasasolution} (3.73)
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By the definition, for t > t∗ there are no solutions. Also by part (b) of the lemma, t∗ <∞. We show
that for t < t∗, (3.71)-(3.72) posed in Ωt has two solutions. But any solution ut1 of (3.71)-(3.72) in
Ωt1 is a subsolution of (3.71) posed in Ωt2 with t2 < t1, with the boundary value c = sup

Ωt2

ut1 . But as

we have remarked, the only difficulty is to find a subsolution, that we just did; the proof of theorem
18 applies then without essential changes. We also find the critical value λ∗ = t∗2.

Remark. One can see easily from the proof of the last result that λ∗ → 0 as r(Ω) →∞ and λ∗ →∞
as diam(Ω) → 0.

The same results can be generalized to the non-autonomous case:

∆u = g(x, u) in Ω (3.74)

and (3.2), where we only require u ∈ C1(Ω) for a weak solution. The hypotheses on g are more
technical, but the changes in the proof are not essential and are indicated in great detail in the paper
[AfR97].

3.5 Symmetry Results

The idea of obtaining symmetry results for solutions of partial differential equations is very deep and
very useful in practice, since we deal in most of the cases with domains possessing some symmetries.
For elliptic equations, the first important and the most well-known results are those of Gidas-Ni-
Nirenberg ([GNN79]), where they prove that any positive solution u of the problem

−∆u = f(u) in B(0, R) (3.75)

u = 0 on ∂B(0, R) (3.76)

where f is of class C1, is radially symmetric and moreover ∂u
∂r < 0. Another result of them is that

if u is a classical(i.e. C2) solution of (3.75) in the annulus R1 < |x| < R2, without any condition on
the boundary, then ∂u

∂r < 0 on the upper half of the annulus: R1+R2
2 ≤ |x| < R2. We mention here

that the radial symmetry of u does not remain valid in the case of the annulus.
It was a conjecture proposed by Haim Brezis saying that similar results are valid for solutions with
blow-up on the boundary. This was proved very recently by Laurent Veron and Alessio Poretta(see
[PV06]), who extended the key results in the paper of [GNN79]. In this section we will present in
detail these symmetry results.
For a function u ∈ C1(B), where B is an arbitrary ball centered in origin, we define the radial
derivative of u by

∂u

∂r
(x) :=

〈
∇u(x), x

|x|

〉
(3.77)

and the tangential gradient of u by

∇τu(x) := ∇u(x)− 〈∇u(x), x〉
|x|2

x (3.78)

The main symmetry result for blow-up solution is
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Theorem 20. Assume that f is a Lipschitz continuous function and let u be a solution of

−∆u = f(u) in B(0, R) (3.79)

u(x) →∞ as x→ ∂B(0, R) (3.80)

where R > 0. If there holds

lim
|x|→R

∂u

∂r
(x) = ∞ (3.81)

and
|∇τu(x)| = o(

∂u

∂r
(x)) as |x| → R (3.82)

then u is radially symmetric and ∂u
∂r (x) > 0 on B(0, R) \ {0}.

Proof. The idea of the proof is to use again, as in [GNN79], the moving plane method, which has
been already discussed in the previous section. However, here it is a different setting and we will
present all the details of the technique for convenience.
We start with some general notations. For 0 < λ < R, set Tλ := {x : x1 = λ}, where we will often
write x = (x1, x

′
), where x

′
= (x2, ..., xN ). We also denote Σλ := {x ∈ B(0, R) : λ < x1 < R}

the region between the hyperplane Tλ and the boundary of the ball. For x = (x1, x
′
) ∈ Σλ,

we denote its symmetric with respect to Tλ by xλ := (2λ − x1, x
′
). Let uλ(x) := u(xλ) and

Σ
′

λ := {x ∈ B(0, R) : 2λ−R < x1 < λ} which represents the reflection of Σλ with respect to Tλ.
We start the moving plane method from the point P0 = (R, 0) on the boundary. From the conditions
(3.81) and (3.82), it follows that there exists a small ball of radius δ0 such that

∂u

∂x1
(x) > 0, ∀x ∈ B(0, R) ∩B(P0, δ0) (3.83)

Then u is increasing along the lines x
′
= constant in this intersection of balls. Hence we deduce that

u(xλ) < u(x) for all λ such that Σλ ⊂ B(P0, δ0) and Σ
′

λ ⊂ B(P0, δ0) and for all x ∈ Σλ. But this
happens for λ0 < λ < R, where {x : x1 = λ0} is the hyperplane contains the intersection surfaces
of the two spheres ∂B(0, R) and ∂B(P0, δ0). By elementary geometry, we obtain that λ0 = R− δ2

0
2R .

Also, in this case we have
∂u

∂x1
(x) > 0 (3.84)

for all x ∈ Σλ.
Let

λ∗ := inf{λ > 0 : u(xλ) < u(x) and (3.84) holds,∀x ∈ Σλ} (3.85)

Suppose that λ∗ > 0. By construction u(xλ∗) ≤ u(x) in Σλ∗ . Define Kλ∗ := Tλ∗ ∩ ∂B(0, R), which
is a compact set. We make now the crucial remark that what we did for P0 works for any other
boundary point, i.e for any P ∈ ∂B(0, R) with x1(P ) > 0 there exists a small radius δ(P ) such
that (3.83) is valid in B(P, δ(P )) ∩ B(0, R). By compactness of Kλ∗ and this remark, a standard
argument shows that there exists an ε-neighborhood Vε of Kλ∗ such that (3.83) holds in Vε∩B(0, R).
Set Dε := B(0, R− ε

2 ) ∩ Σλ∗ . Define w := u− uλ∗ and the function

a(x) :=
f(u)− f(uλ∗)

u− uλ∗

Then by direct calculation we observe that ∆w − aw = 0 in Dε and w ≤ 0 and w is not identically
0. By the classical maximum principle it follows that w > 0 and ∂u

∂x1
> 0 on Tλ∗ ∩ ∂Dε. Since ε is
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arbitrarily small, we obtain that u > uλ∗ in Σλ∗ . On the other hand, by the strict inequality and
the continuity of ∇u, there exists η > 0 such that (3.83) holds for every x ∈ {x : λ∗ − η < x1 <

λ∗ + η} ∩B(0, R).
By minimality of λ∗, it follows that there exists a sequence (λn)n which increases to λ∗ and a sequence
(xn)n converging to a point x∗ ∈ Σλ∗ such that u(xn) ≤ u((xn)λn). We obtain a contradiction by
investigating all the possible positions of x∗.
Since u > uλ∗ in Σλ∗ , x∗ does not belong to Σλ∗ , hence it must be on ∂Σλ∗ . From (3.83) for
λ∗ − η < x1 < λ∗ + η, we deduce that x∗ is not on Tλ∗ ; otherwise, by using the Lagrange theorem,
we have

0 ≥ u(xn)− u((xn)λn) = (xn − (xn)λn)
∂u

∂x1
(x

′

n) > 0

for large n, since lim
n→∞

xn = lim
n→∞

(xn)λn
= x∗. But this is obviously a contradiction. Finally, if

x∗ ∈ ∂Σλ∗ \ Tλ∗ , then x∗ ∈ ∂B(0, R) and in this case u(xn)− u((xn)λn
) →∞.

This contradiction shows that λ∗ = 0 and by changing x1 into −x1 it follows that the function u is
symmetric with respect to the hyperplane x1 = 0. By doing the same for every xi for 1 ≤ i ≤ N ,
we obtain the radial symmetry of u.

As we see, we need for our function to satisfy some technical conditions in order to derive the
symmetry of the solutions. In [PV06] it is given a sufficient condition in order (3.81)-(3.82) to hold.
For this we recall the Keller-Osserman condition (3.14).

Theorem 21. Assume that f is locally Lipschitz continuous, convex on [a,∞) for some a > 0 and
satisfies (3.14). Then any solution of (3.79)-(3.80) is radially symmetric.

Proof. We will not give a complete proof of this theorem; instead of this, we will present the main
ideas of it. The proof starts by decomposing f into a sum of two functions f1 and f2, where f1 is
convex, increasing and satisfies (3.14) and f2 = 0 on [M,∞) for some M > 0. Then there exists a
number K0 > 0 such that

|∆u− f1(u)| = |f2(u)| ≤ K0

By considering an auxiliary function φ(x) := R2−|x|2
2N and using an uniqueness result of [MV97], we

find that v −K0φ ≤ u ≤ v +K0φ, where v is the unique blow-up solution of the equation

−∆v + f1(v) = 0 in B(0, R) (3.86)

The next step is to pass to spherical coordinates in RN in order to use the rotation symmetry of
the equation. We introduce the coordinates (r, σ) and some geodesics of the sphere given by the
exponential map γj(t) = exp(tAj)(σ) where (Aj)j=1,N−1 are orthogonal antisymmetric matrices.
Then these geodesics are orthogonal. Fix h > 0. The function uh(x) = u(r, exp(hAj)σ) is also a
solution of (3.86) and it satisfies the same inequality v −K0φ ≤ uh ≤ v +K0φ. Then

lim
|x|→R

(u(x)− uh(x)) = 0 (3.87)

Let r0 be such that u(x) ≥M for |x| ≥ r0. Then ∆uh = f1(uh) in the annulus r0 < |x| < R and for
|x| = r0 there exists a number L > 0 such that |(u− uh)(x)| ≤ L|h|. Let ψ be the unique harmonic
function such that ψ = 1 on ∂B(0, r0) and ψ = 0 on ∂B(0, R) and the auxiliary function

vh := uh + |h|Lψ (3.88)
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Then it is easy to check that lim
|x|→R

vh(x)− u(x) = 0 and, by maximum principle, that vh ≥ u.

The last step is to consider the Lie derivative along the vector fields σ → Ajσ, defined as

LAju(r, σ) :=
du(r, exp(tAjσ))

dt
|t=0

and to remark that

|LAju(r, σ)| ≤ Lψ(x) ≤ C(R− r)

hence (3.82) holds. To prove (3.81) the ideas are similar , but we change the auxiliary function vh

into wh := uh+u−h−2u
h2 . We leave the detail as an exercise for the reader. They can be also taken

from [PV06].

Finally, let us remark that the convexity hypothesis is required only to insure uniqueness of
blow-up solutions for the equation

−∆v + f1(v) = 0 in B(0, R)

3.6 Keller-Osserman Type Conditions

In this section we will make a further investigation of the importance of the Keller-Osserman type
conditions and their connection with the blow-up solutions for (3.1)-(3.2). We will present one of
the deepest result in the theory, which gives a characterisation of existence in terms of integral
conditions.
Let us consider a function f : [0,∞) → [0,∞) which is of class C1 and f(0) = 0. As usual, we

denote F (t) :=
t∫
0

f(s)ds. Let’s remark from the beginning that no monotonicity of f is assumed.

Define

φ(α) :=
1√
2

∞∫
α

dt√
F (t)− F (α)

(3.89)

We introduce the following two conditions, suggested by the paper [AfR97](see section 3.4):

Definition 3. We say that f satisfies the Keller-Osserman condition ((KO) for short) if there exists
some α such that φ(α) <∞. We say that f satisfies the strong Keller-Osserman condition ((KOs)
for short) if lim inf

α→∞
φ(α) = 0.

We remark that (KO) is a little bit different from (3.14), in fact implies (3.14). Also obviously
(KOs) implies (KO). If f is nondecreasing, then F is convex, hence if we assume (3.14), then we
may write:

φ(α) =

∞∫
α+1

dt√
F (t)− F (α)

+

α+1∫
α

dt√
F (t)− F (α)

But the first integral is finite from (3.14) and for the second we have:

α+1∫
α

dt√
F (t)− F (α)

≤
α+1∫
α

dt√
(t− α)f(α)

<∞
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We have just proved that for a monotone function all the Keller-Osserman condition that we intro-
duce are equivalent. Hence, this study is interesting only in absence of monotonicity.
A good question at this moment could be that if (KO) and (KOs) are or not equivalent in general
and our definitions are without object. We are saved by the following elementary example that we
develop in the next technical lemmas.

Lemma 19. Suppose that there exists η > 2 and A > 0 such that F (t)
tη is increasing on (A,∞),

where F is a primitive of f . Then f satisfies (KOs).

Proof. From elementary analysis we know that

1√
1− x

=
∑

n

anx
n

where an = (2n)!
(n!)24n ≤ C√

n
, by Wallis’ formula. Hence we do this for φ(α) (and we skip the constant

1√
2
)

φ(α) =

∞∫
α

(F (t)− F (α))−
1
2 dt

=

∞∫
α

(F (t))−
1
2 (1− F (α)

F (t)
)−

1
2 dt

=
∑

n

anF (α)n

∞∫
α

dt

F (t)n+ 1
2

=
N∑

n=0

anF (α)n

∞∫
α

dt

F (t)n+ 1
2

+
∞∑

n=N

anF (α)n

∞∫
α

dt

F (t)n+ 1
2

= S1 + S2

But S1 ≤ (
N∑

n=0
an)

∞∫
α

dt√
F (t)

, which goes to 0 as α → ∞ by the condition that F (t)
tη is increasing for

some η > 2. We also have
1

F (t)
< (

α

t
)η 1
F (α)

hence

S2 ≤
∞∑

n=N+1

anF (α)nα−η(n+ 1
2 )F (α)−n− 1

2

∞∫
α

tη(n+ 1
2 )

=
∞∑

n=N+1

α√
F (α)

an

1 + η(n+ 1
2 )

≤ Cα

η
√
F (α)

∞∑
n=N+1

1
n
√
n

which goes to 0 as α→∞ since lim
α→∞

α√
F (α)

= 0. Hence f satisfies (KOs).

Lemma 20. The function f(t) = t2(1 + cost) satisfies (KOs). Moreover, for this function we have

lim inf
α→∞

φ(α) = 0, lim sup
α→∞

φ(α) = ∞ (3.90)
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Proof. By computing the primitive of f , we find

F (t) =
1
3
t3 + t2sint+ 2tcost− 2sint

hence the previous lemma applies for any η ∈ (2, 3) and for A sufficiently large. Hence f satisfies
(KOs). For the second limit, we remark that if we take αk := (2k + 1)π, then, by a limited Taylor
development and taking into account the exact value of f , we have:

F (t) = F (αk) + (t− αk)f(αk) +
1
2
(t− αk)2f

′
(αk) + o((t− αk)2)

hence F (t)−F (αk) ∼ 1
2α

2
k(t−αk)2. But the function in the right-hand side is not integrable, hence

lim
k→∞

φ(αk) = ∞ and we are done.

These two lemmas show that there exists oscillating functions satisfying (KOs), hence the
condition is interesting.
We pass now to the main part of this section, that of characterizing these conditions by results of
existence of blow-up solutions. For the beginning, we need some technical preparations, i.e. a sort
of sub- and supersolution principle for blow-up solutions. Recall first theorem 1 and especially the
fact that there exists a minimal solution for any pair (u, u) of sub- and supersolution. We state
here a more refined property of the minimal solution, whose proof is similar and can be consulted
in [Rad] or in [DDGR06].

Proposition 5. Let Ω ∈ RN be a smooth, bounded domain and f ∈ C1(R), g ∈ C(∂Ω). Assume
there exists a subsolution u and a supersolution u of the problem

∆u = f(u) in Ω (3.91)

u = g on ∂Ω (3.92)

such that u ≤ u. Then there exists a unique solution u ∈ C(Ω) of (3.91)-(3.92) such that u ≤ u and
for any ω ⊂ Ω and any function v ∈ C(ω) which satisfies

∆v ≤ f(v) in ω (3.93)

v ≥ u in ω, v ≥ u on ∂ω (3.94)

then u ≤ v in ω. We call the solution u the minimal solution relative to u.

The following remark will be crucial in the next theorems. If in the notations and conditions
above Ω = B(0, R) and the subsolution u is radial, then the minimal solution associated is also
radial. For this it suffices to apply the minimality principle with any rotation of u. We obtain
several minimal solutions relative to the same subsolution, hence all must be equal. It follows that
u(x) = u(Ax) for all rotation matrices A, hence u is radial.
We need a similar principle for blow-up solutions:

Proposition 6. (Minimality principle for blow-up solutions) Let Ω ⊂ RN be a smooth bounded
domain and f ∈ C1(R). Assume that there exists a function u ∈ C(Ω) such that ∆u ≥ f(u) in Ω
and a function v ∈ C(Ω) such that

∆v ≤ f(v) in Ω, lim
x→∂Ω

v(x) = ∞
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and suppose that v ≥ u. Then there exists a unique solution u ∈ C1(Ω) of (3.1)-(3.2) such that
u ≤ u and u ≤ v in ω for any ω ⊂ Ω and for any function v ∈ C(ω) satisfying

∆v ≤ f(v) in ω (3.95)

v ≤ u in ω, lim
x→∂ω

v = ∞ (3.96)

We call u the minimal blow-up solution relative to u.

Proof. The uniqueness is clear from the minimality assumption. Let n > ‖u‖L∞(Ω). From the
minimality principle for solutions(proposition 5) there exists un the minimal solution relative to the
subsolution u for the same equation, but with boundary condition u = n on ∂Ω. By the classical
maximum principle it follows that the sequence (un)n is nondecreasing and un ≤ n.
Consider now a smooth open set ω ⊂ Ω such that v ≥ n on ∂ω. By the minimality principle, v ≥ un

in ω and this is valid for any ω, hence (un)n is bounded uniformly on compact sets in Ω. It follows,
using the classical elliptic estimates, that there exists u := lim

n→∞
un which is a solution of (3.1)-(3.2).

Take again ω ⊂ Ω and take v ∈ C(ω) satisfying (3.95)-(3.96). Take ω̃ ⊂ ω such that v ≥ n on ∂ω̃.
Again by proposition 5, we have that un ≤ v on ω̃. Hence un ≤ v in ω and we are done by letting
n→∞.

Before stating the main results, we still need another technical lemma:

Lemma 21. Let v ∈ C2(0, R) be a nondecreasing function which satisfies:

v
′′

+
N − 1
r

v
′
= f(v) in (0, R) (3.97)

Then, for any 0 < r1 < r2 < R we have:

1√
2

vr2∫
v(r1)

ds√
F (s)− F (v(r1))

≥ r1
N − 2

(1− (
r1
r2

)N−2) (3.98)

for N ≥ 3, or

1√
2

vr2∫
v(r1)

ds√
F (s)− F (v(r1))

≥ r1log
r2
r1

(3.99)

for N = 2.

Proof. By multiplying in both sides by rN−1 and integrating, we obtain

1
2
((rN−1v

′
)2)

′
= r2N−2f(v)v

′

or, after integration

r2N−2v
′
(r)2

2
− r2N−2

1 v
′
(r1)2

2
=

r∫
r1

t2N−2v
′
(t)f(v(t))dt

hence

r2N−2v
′
(r)2 ≥ 2r2N−2

1

r∫
r1

v
′
(t)f(v(t))dt = 2r2N−2

1 (F (v(r))− F (v(r1)))
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We extract the square root and after dividing by the right hand side we obtain:

1√
2

v
′
(r)√

F (v(r))− F (v(r1))
≥ (

r1
r

)N−1

After integration on [r1, r2] and a change of variables, one has exactly the desired inequalities.

Now we pass to, in my opinion, the most important results from all this chapter. These were
proved in the very recent paper [DDGV06].

Theorem 22. The function f satisfies (KO) if and only if (3.1)-(3.2) has a nonnegative solution
on some ball.

Theorem 23. The function f satisfies (KOs) if and only if (3.1)-(3.2) has a nonnegative solution
on every smooth bounded domain.

Proof. (Theorem 22) Suppose that f satisfes (KO). Then there exists a number α > 0 such that
φ(α) <∞. We have two different cases.
Case 1 Suppose first that φ(α) < 1

|N−2| , where N ≥ 3. Consider the problem:

∆u = f(u) in B(0, 1) (3.100)

u = α on ∂B(0, 1) (3.101)

Then u = 0 is a subsolution, u = α is a supersolution and we consider u the minimal solution with
respect to u. Since u is radial, by the previous discussion u is radial. Hence we may consider the
problem

v
′′

+
N − 1
r

v
′
= f(v) in (0, R) (3.102)

v
′
(0) = 0, v(0) = u(0) (3.103)

where we consider R such that (0, R) is the maximal interval of existence. We just need to show
that R <∞. If not, we can apply lemma 21 for r1 = 1 and for any r2 > 1. We have

1√
2

r2∫
r1

ds√
F (s)− F (v(r1))

≥ 1
N − 2

(1− (
1
r2

)N−2)

Since v(1) = α, we obtain

1√
2

v(r2)∫
α

≥ 1
N − 2

(1− (
1
r2

)N−2)

which implies that φ(α) ≥ 1
N−2 , which is a contradiction. Hence R <∞ and it is easy to see that v

becomes a radial solution of (3.1)-(3.2) in the ball B(0, R).
Case 2 If φ(α) ≥ 1

N−2 , we choose a large constant M such that 1
M φ(α) < 1

N−2 . We apply the result
of the first case, we obtain a solution u on B(0, R) for the nonlinearity M2f . Hence the function
ũ(x) := u( x

M ) is a blow-up solution of our equation on B(0,MR).
Conversely, suppose that (3.1) has a positive blow-up solution on some ball B(0, R). We have to
prove that there exists α such that φ(α) < ∞. But the zero function is still a subsolution for
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(3.1)-(3.2) on B(0, R), hence we may assume that u is the minimal solution relative to u = 0. By a
remark from above, u is radially symmetric. Hence the function v(r) = u(x), where r = |x|, solves

v
′′

+
N − 1
r

v
′
= f(v) (3.104)

which writes equivalently

(rN−1v
′
)
′
= rN−1f(v) (3.105)

having (0, R) as the maximal interval of definition. By multiplying (3.105) by rN−1v
′
and integrating

between 0 and r, we have

1
2
r2N−2v

′
(r)2 =

r∫
0

t2N−2f(v(t))v
′
(t)dt ≤ r2N−2(F (v(r))− F (v(0)))

By integrating again on (0, R) we obtain:

R∫
0

v
′
(r)√

2(F (v(r))− F (v(0)))
dr ≤ R

hence
v(R)∫
α

ds√
2(F (s)− F (α))

≤ R

Since v(R) = ∞, it follows that φ(α) ≤ R <∞.

Proof. (Theorem 23) Suppose first that f satisfies (KOs), i.e. lim inf
α→∞

φ(α) = 0. We divide the proof
of this part into two steps.
Step 1: We show first that (3.1)-(3.2) has a solution on every ball with radius sufficiently small.
Using theorem 22 and the fact that (KOs) implies (KO), there exists a blow-up solution on a ball
B(0, R). Let

R0 := inf{R > 0 : (3.1)− (3.2) has a solution on B(0, R)}

and suppose that R0 > 0. From (KOs) we deduce the existence of a sequence βn → ∞ such that
φ(βn) → 0. We consider the problem:

∆un = f(un) in B(0,
R0

2
) (3.106)

un = βn on ∂B(0,
R0

2
) (3.107)

We remark that un ≡ 0 is a subsolution and un ≡ βn is a supersolution of (3.106)-(3.107). Hence
there exists a minimal solution un relative to un ≡ 0, which is radial. Then the function vn(r) :=
un(x) satisfies (3.104) on an interval (0, Rn) with Rn > R0 with the initial conditions vn(0) = un(0)
and v

′

n(0) = 0. We apply now lemma 21 for r1 := R0
2 and r2 := R0. We find

1√
2

vn(R0)∫
vn(

R0
2 )

ds√
F (s)− F (vn(R0

2 ))
≥ R0

2(N − 2)
(1− (

1
2
)N−2)
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But Rn >
R0
2 , hence vn(R0

2 ) = un(R0
2 ) = βn. It follows that

1
2

vn(R0)∫
βn

ds√
F (s)− F (βn)

≥ C > 0

which implies that φ(βn) ≥ C > 0, contradicting the choice of βn. Hence R0 = 0.
Step 2: We prove that (3.1)-(3.2) has a solution on every smooth bounded domain Ω. For n ∈ N,
we consider the problem

∆u = f(u) in Ω (3.108)

u = n on ∂Ω (3.109)

which has obviously u ≡ 0 as a subsolution and u ≡ n as a supersolution. Let un be the minimal
solution of (3.108)-(3.109). Fix x ∈ Ω and consider a small ball B(x, r) ⊂ Ω such that (3.1)-(3.2)
has a solution ur on this ball(this is possible from step 1). By the minimality principle for blow-up
solutions, un ≤ ur in B(x, r), hence (un)n is uniformly bounded in B(x, r

2 ). From the maximum
principle we deduce that the sequence (un)n is increasing. Hence there exists u(x) := lim

n→∞
un(x),

which is a blow-up solution.
For the converse, suppose that there exists a solution of (3.1)-(3.2) on every smooth bounded domain
Ω. For every n ∈ N, we denote by un the minimal blow-up solution of (3.1) in the ball B(0, 1

n ).
Then un is radial and set βn := un(0). We show that βn → ∞ and φ(βn) → 0. From the same
calculations done in the previous steps, we obtain

0 ≤

vn( 1
n )∫

βn

ds√
2(F (s)− F (βn))

≤ 1
n

hence 0 ≤ φ(βn) ≤ 1
n , i.e. lim

n→∞
φ(βn) = 0. Suppose that (on a subsequence) βn → β0 < ∞. Then

φ(βn) → φ(β0), hence φ(β0) = 0, which is obviously impossible since the function under the integral
sign is positive.

3.7 Uniqueness and Asymptotic Behaviour

In this section we study the question of uniqueness of blow-up solutions of (3.1), together with
the classical question in PDE of asymptotic behaviour of solutions. In our case, by studying the
”asymptotic behaviour” we understand to try to give an answer at the question ”How fast does
converge the blow-up solutions to ∞ ?”. The asymptotic behaviour results are often very important
also in paractical applications, because they give a more precise estimate of the blow-up rate.
The uniqueness problem has been treated since 1957, when Keller studied in [Ke57] the uniqueness
of blow-up solutions for the first time. In modern times, the two famous papers of C. Bandle and M.
Marcus, [BM92] and [BM95] establishes uniqueness results and obtain estimates for the asymptotic
behaviour of solutions using some special conditions on the function f :
(i) f ∈ C1(R), f(s) > 0 and f

′
(s) > 0 for some s > s0;

(ii) g(s) :=
∞∫
s

dτ√
2F (τ)

<∞, for all s > s0, where F (τ) =
τ∫

s0

f(s)ds;

(iii) lim inf
s→∞

g(ts)
g(s) > 1, for all t ∈ (0, 1).
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Condition (iii) is obviously achieved for example when lim
s→∞

tf(s)
f(ts) > 1, for all t ∈ (0, 1). Condition

(ii) is of Keller-Osserman type, and condition (iii) can be seen as a superlinearity condition at ∞.
A typical function satisfying all these is f(s) = Csp for p > 1 and C > 0.
More recent, the conditions imposed on the nonlinearity were simplified, and it has been seen that
uniqueness has a strong relation, in the most general cases, with the convexity of f .
Laurent Veron and Moshe Marcus have proved in two papers ([MV97] and [MV03]) some very general
results of existence, uniqueness and asymptotic behaviour. The generality of these results comes
from the fact that they consider much more general domains, even non-smooth or domains with
corners. Here the topology plays a key-role and we will not enter in this in detail. We will discuss
more on this in the last section.
We prove first a very interesting and simple uniqueness result, appeared in [MV03], which deals only
with an increasing nonlinearity. But also from here we will remark the importance of convexity.

Theorem 24. Let Ω ⊂ RN be a bounded domain(not necessarily smooth) and f ∈ C(R), such that
f(0) = 0, and f is nondecreasing and convex. Suppose that there exists a maximal solution u of
(3.1) in Ω and that there exists two constants C > 0 and δ > 0 such that

0 ≤ u(x) ≤ Cu(x), ∀x ∈ Ω, d(x, ∂Ω) ≤ δ (3.110)

and for any blow-up solution u of (3.1). Then there exists at most one blow-up solution.

Remark. This theorem becomes a real uniqueness result for example if f satisfies (KO), and in this
case the maximal solution is a blow-up one and it exists. In this case the previous theorem says that
there exists exactly one blow-up solution.

Proof. Let
Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ} (3.111)

and assume that there exists a blow-up solution u such that u 6= u. Set w := u− 1
2C (u− u). Hence

−∆w + f(w) = −(1 +
1

2C
)∆u+

1
2C

∆u+ f(w)

= f((
1

2C
+ 1)u− 1

2C
u)− (1 +

1
2C

)f(u) +
1

2C
u

But by convexity of f we obtain

f(u) ≤ 2C
1 + 2C

f((
1

2C
+ 1)u− 1

2C
u) +

1
1 + 2C

f(u)

hence −∆w + f(w) ≥ 0. We have obtained a supersolution for (3.1) in Ω and moreover w ≥ 1+C
2C u

in Ωδ.
Consider Ω̃ a smooth bounded domain such that Ω ⊂ Ω̃. By the maximum principle, u ≥ v, where
v is the solution of

∆v = f(v) in Ω̃ (3.112)

with zero boundary condition in Ω̃. Set

wλ := λu+ (1− λ)v (3.113)

for any λ ∈ [0, 1]. Then

−∆wλ + f(wλ) = f(λu+ (1− λ)v)− λf(u)− (1− λ)f(v) ≤ 0
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hence wλ is a subsolution of (3.1) in Ω. For λ < 1+C
2C , since w > λu in Ωδ, it follows that the set

A := {x ∈ Ω : wλ(x) ≥ w(x)}

is compact in Ω. By the maximum principle in this set, since f is nondecreasing, it follows that
A = ∅, hence wλ < w in Ω. Then there exists a blow-up solution u1 such that wλ ≤ u1 ≤ w in Ω.
It follows that u1 ≤ u− 1

2C (u− u), or equivalently

u− u1 ≥ (1 +
1

2C
)(u− u) (3.114)

We replace u by the blow-up solution u1. By the same arguments, but starting from u1, we obtain
a new blow-up solution u2 such that

u− u2 ≥ (1 +
1

2C
)(u− u1) (3.115)

By iterating this process, we construct a sequence (un)n of blow-up solutions with u0 = u and such
that (3.115) holds with u2 and u1 replaced by un and un−1. Hence

u− un ≥ (1 +
1

2C
)n(u− u) in Ω (3.116)

and un is uniformly bounded below by v. We have a contradiction by passing to the limit as
n→∞.

We remark here the crucial importance of convexity in obtaining good inequalities. In the
same setting, there exists another theorem of Veron and Marcus which gives sufficient conditions for
uniqueness in more general domains. We just state it and the interested reader can find a proof in
[MV03] and further applications:

Theorem 25. Let Ω ⊂ RN be a bounded domain such that ∂Ω is locally the graph of a continuous
function. Suppose that f ∈ C1(R), such that f(0) = 0 and f is nondecreasing. Then there exists at
most one solution to (3.1)-(3.2) if one of the following conditions is satisfied:
(i) f is convex and there exists L ≥ 0 such that f(a+ b) ≥ f(a) + f(b)− L, for all a, b ≥ 0;
(ii) there exists L ≥ 0 such that

f(ra+ sb) ≥ rf(a) + sf(b)− (r + s− 1)L, ∀a, b ≥ 0, ∀r, s ≥ 1 (3.117)

Next we prove some asymptotic behaviour estimates strongly connected to the results in the
previous section. They are very important because they are simple and very general; we will suppose
only very few facts on the nonlinearity f .

Proposition 7. Let u be a nonnegative radial and monotone blow-up solution of the problem (3.1)-
(3.2) in the unit ball B(0, 1), with f satisfying (KO). Then

∞∫
u(r)

dt√
F (t)

∼
√

2(1− r) (3.118)

as r → 1.
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Proof. By writing the equation in radial form, multiplying in both sides by rN−1u
′
and integrating

by parts, we obtain:
u
′
(r)2

2
= F (u(r))−G(r) (3.119)

where

G(r) :=
2N − 2

r

r∫
0

(
s

r
)2N−1F (u(s))ds

We prove next that G(r) = o(F (u(r))) as r → 1. For this we compute:

G(r)
F (u(r))

=
2N − 2

r

r∫
0

(
s

r
)2N−1F (u(s))

F (u(r))
ds

≤ 2N − 2
r

1−ε∫
0

(
s

r
)2N−1F (u(s))

F (u(r))
ds+

2N − 2
r

1∫
1−ε

(
s

r
)2N−1F (u(s))

F (u(r))
ds

≤ Cε+
2N − 2

r

1−ε∫
0

(
s

r
)2N−1F (u(s))

F (u(r))
ds

≤ Cε+ C
F (u(1− ε))
F (u(r))

→ 0

as r → 1. Hence G(r) = o(F (u(r))). From (3.119) we find that

1∫
r

u
′
(r)√

F (u(r))
dr =

1∫
r

√
2− G(r)

F (u(r))
dr

which implies by a change of variable
∞∫

u(r)

dt√
F (t)

=

1∫
r

√
2− G(r)

F (u(r))
dr ∼

1∫
r

√
2dr =

√
2(1− r)

This is a result on a ball. But we will use it in the proof of the next result, which is a blow-up
rate on general smooth domains.

Theorem 26. Let Ω ⊂ RN be a smooth bounded domain and let f satisfy (KOs). Let u be a blow-up
solution of (3.1) in Ω. Then

lim
x→x0

∞∫
u(x)

dt√
2F (t)

d(x, x0)
= 1 (3.120)

for all x0 ∈ ∂Ω.

Proof. Let x0 ∈ ∂Ω. Since ∂Ω is smooth, there exists an interior ball B(x1, r) ⊂ Ω such that
B(x1, r) ∩ ∂Ω = x0. Fix η < 1 but very close to 1 and denote by u := u|B(x1,ηr). Let B̃ be another
ball centered in x1 such that B(x1, ηr) ⊂ B̃ ⊂ B(x1, r). From theorem 23, there exists a solution v
of (3.1)-(3.2) posed in B̃. By the minimality principle, v ≥ u on B̃.
Let M > 0 be such that MB̃ = B(x1, r), hence M < 1 and M > η. Define

vM (x) = v(
x− x1

M
+ x1) (3.121)
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It follows that
∆vM =

1
M2

f(vM ) in B(x1, r) (3.122)

vM = ∞ on ∂B(x1, r) (3.123)

Then u(x1) ≤ v(x1) = vM (x1), hence

M

∞∫
u(x1)

dt√
F (t)

≥M

∞∫
vM (x1)

dt√
F (t)

∼
√

2r

where we have used the result of proposition 7. Then

lim inf
x→x0

1
d(x, x0)

∞∫
u(x)

dt√
F (t)

≥
√

2

We need to obtain a converse inequality. To this goal consider an exterior ball B(x2, R
′
) ⊂ RN \ Ω

such that B(x2, R
′) ∩ ∂Ω = x0. Consider also a very large ball B(x2, R

′′
) such that Ω ⊂ B(x2, R

′′
).

Let A := B(x2, R
′′
) \B(x2, R

′
). From theorem 23 we deduce that there exists a minimal solution v

of (3.1)-(3.2) in A. By the minimality principle, u ≥ v in Ω and, since v solves a problem of type
(3.1)-(3.2) on an annulus, it is easy to see(by adapting straightforwardly the proof of proposition 7)
that v has the same asymptotic behaviour as in the case of a ball. Hence

lim sup
x→x0

1
d(x, x0)

∞∫
u(x)

dt√
F (t)

≤ lim sup
x→x0

∞∫
v(x)

dt√
F (t)

≤
√

2

which ends the proof.

In order to obtain uniqueness results, it is necessary to prove first some results of ”similar
behaviour on the boundary”.

Proposition 8. Assume that f is a C1(R)-function which is convex on [a,∞) for some a > 0. Then
two radially symmetric boundary blow-up solutions u and v of (3.1) in B(0, R) satisfy u(r) ∼ v(r)
on ∂B(0, R).

Proof. Let R = 1 and fix a blow-up solution u. From the proof of proposition 7 we obtain:

(1− r)−
∞∫

u(r)

dt√
2F (t)

≤ C

1∫
r

u
′
(s)√

F (u(s))
ds

We introduce the function w(r) such that 1− r =
∞∫

w(r)

dt√
2F (t)

. From the previous inequality we find

u(r)∫
w(r)

dt√
2F (t)

≤ C

∞∫
u(r)

t

F (t)
dt (3.124)

hence, by increasingness of F near ∞, we have

(u(r)− w(r))
1√

2F (u(r))
≤ C

∞∫
u(r)

t

F (t)
dt
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and

(1− w(r)
u(r)

) ≤ C

√
2F (u(r))
u(r)

∞∫
u(r)

t

F (t)
dt (3.125)

Since f is convex at a neighborhood of ∞, there exists α > 0 such that for u and v large, F (v)
v2 ≥

α2 F (u)
u2 . From this, for r sufficiently close to 1 and from (3.125), we obtain

(1− w(r)
u(r)

) ≤ C

α

∞∫
u(r)

dt√
2F (t)

→ 0 (3.126)

as r → 1. Hence every blow-up solution u has a fixed blow-up rate w(r). It follows that u(r) ∼ v(r)
as r → 1.

We remark that the same result can be obtained by replacing the convexity condition near ∞
on f by the condition that f(u)

u is increasing at a neighborhood of ∞. The proof is similar, since
both conditions insure that the number α such that F (v)

v2 ≥ α2 F (u)
u2 exists(in fact, this α comes

from the increasingness of the function t→ F (t+a)−F (a)−tf(a)
t2 , which is true in both cases). We will

prove the subsequent uniqueness results in both cases. We start with the second one, which is much
simpler.

Theorem 27. Suppose that f(0) = 0 and the function (0,∞) 3 u→ f(u)
u is increasing. Then there

exists at most one blow-up solution of (3.1) in a smooth bounded domain Ω.

Proof. Suppose that u1 and u2 are two solutions of (3.1)-(3.2). From proposition 8 we have u1 ∼ u2

on ∂Ω. Set
Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}

For any ε > 0, there exists a δ > 0 such that

(1− ε)u1(x) ≤ u2(x) ≤ (1 + ε)u1(x), ∀x ∈ Ωδ (3.127)

For v = (1 + ε)u1, we remark that ∆v = (1 + ε)f(u1) ≤ f((1 + ε)u1) in Ω \ Ωδ, hence ∆v ≤ f(v).
By (3.127), v ≥ u2 on ∂Ωδ. From the maximum principle we obtain that v ≥ u2 in Ω \Ωδ, hence in
the whole Ω. Hence

(1− ε)u1 ≤ u2 ≤ (1 + ε)u1 in Ω

for any ε > 0. This implies u1 ≡ u2.

A similar result is true if we suppose that f is convex near ∞. The proof follows the same
ideas, but it is more complicated technically. We ask the reader to consult the paper [DDGR06] for
it.

3.8 Final Comments and Open Questions

The investigation of blow-up boundary solution is a very active area of research in the last years.
There were proved many results, and there are still many open questions, even some with in appear-
ance elementary character.



76 CHAPTER 3. BLOW-UP SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS

In this chapter we have tried to present the main developents of the problem (3.1)-(3.2). We have to
say that this is not the only interesting problem concerning the blow-up solutions; there are many
recent works studying more general equations than (3.1), or posed in more general, nonsmooth do-
mains.
For example, in the last four years V.Radulescu and F. Carstea proved in a series of papers results
about blow-up solutions for a class of logistic equations, i.e.

∆u+ au = b(x)f(u) in Ω (3.128)

where a ∈ R, b ∈ C0,α(Ω) and nonnegative and f ∈ C1[0,∞) satisfying f(0) = 0, u
u increasing and

(KO). The authors mentioned above had obtained a deep result that we state here. If we denote by
Ω0 := {x ∈ Ω : b(x) = 0} and λ1(Ω0) the first eigenvalue of −∆ in H1

0 (Ω0), then

Theorem 28. The equation (3.128) has at least a blow-up positive solution if and only if a < λ1(Ω0).

The proof of this results uses a theorem of Alama and Tarantello, which states a similar result
for the positive solutions of the usual Dirichlet problem for the logistic equation, and few comparison
lemmas. The proof appears in [CR03] or [CR04], and in the other papers of V.Radulescu and F.
Carstea mentioned in the references the reader can find more extensions.
The other directions of study is for the equations with gradient terms, i.e. for example

∆u+ |∇u| = p(x)f(u) in Ω (3.129)

where p ∈ C0,α(Ω) is a nonnegative function and f is nondecreasing, f(0) = 0 and f > 0 on (0,∞).
We assume also that f is sublinear at ∞, i.e. sup

s≥1

f(s)
s <∞. In this case the results are more striking:

Theorem 29. In a smooth bounded domain, there is no blow-up solutions of (3.129).

This result is proved in [GR04], where it is given also a criterion for existence of entire positive
blow-up solution(i.e for Ω = RN ), fact which was not possible, as we have seen, for the equation
(3.1). The presence of the potential p is in this case dominating on the effect of the gradient terms.
More results on these problems can be found in [Gh06] and the references therein.
There is another direction of study: to keep the equation (3.1) and to change the domain. In the
two papers [MV97] and [MV03] there are many results about existence and uniqueness of blow-up
solutions of (3.1) in Lipschitz domains or, more general, in domains whose boundaries are locally
continuous graphs. Here the topology plays a key role. There is also a result of asymptotic behaviour
in this setting.
We end this last chapter by stating few open problems:
Open problem 1: Find a function f satisfying (KO) but such that on a certain domain there
do not exists blow-up solutions. This is connected with the question that if (KO) and (KOs) are
equivalent or not. We were able to produce a characterization theorem for both conditions, but it
is not clear if these theorems are sharp. In connection with this, it will be an interesting result to
produce some new examples of functions which satisfy (KOs) or to give a better characterization
result than lemma 19.
Open problem 2: Does there exists a function f ∈ C1[0,∞), with f(0) = 0 and f ≥ 0 which
satisfies (KO), but such that lim inf

α→∞
φ(α) > 0? In spite of its elementary character, this is still an
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open question, up to our knowledge. It is not easy to produce such an example.
Open problem 3: Establish the uniqueness results as in section 3.7 theorem 27 if we suppose only
that f is increasing. In fact, both results that we have proved for f(u)

u increasing are no longer valid:
if u1 and u2 are two blow-up solutions for (3.1) and f is increasing, as we know, it is still open
question if u1 ∼ u2 near ∂Ω or not. After this, it is also a question if u1 ∼ u2 implies equality of
them and therefore uniqueness.
Open problem 4: There are many results about the existence of a maximal solution of a certain
equation, for example for (3.1). For example for the special nonlinearity f(u) = |u|p−1u, p > 1,
there always exists a maximal solution. In the paper [La] there is given a characterization of the
situations when this solution is a blow-up one. There are many types of nonlinearities for which
such a result is not known, for example f(u) = eau in nonsmooth domains. For a more complete
presentation of this problem, the reader should consult [MV03].
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