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Introduction

The aim of this thesis is to present some recent results in the field of algebraic
combinatorics. Combinatorial commutative algebra is a relatively new area of
research, starting in the 70’s with the works of M. Hochster and R. Stanley.
One of the main features of this new domain is the strong interaction between
several apparently divergent fields: commutative algebra, graph theory, convex
geometry (polytopes), algebraic topology to name just a few. It was our wish
to highlight some of these interactions in this thesis.

The initial topic we intended to cover was a result of Herzog, Hibi and Zheng.
In [10] they presented a new proof of a classical theorem of Dirac (see [3]) on
chordal graphs. In [10] they rephrase Dirac’s original work in terms of the new
geometrical notion of quasi-forest which they introduce. However, the tools
used come from commutative algebra via the Alexander duality for simplicial
complexes.

Alexander duality in itself proves to be a powerful device to switch between
algebraic and/or combinatorial properties of graphs or simplicial complexes.

A property that comes often to our sight is the Cohen-Macaulay property.
Using techniques developed in the previously mentioned article, in [11] Herzog,
Hibi and Zheng classify all Cohen-Macaulay chordal graphs. Although at a first
sight there is little commutative algebra present there, and mostly graph theory
techniques are used, at some crucial steps some results from commutative
algebra are implicitely needed.

It seemed just fair to present also some results about Alexander duality
and contexts in which notions as Cohen-Macaulayness, chordal graphs, linear
resolutions, shellability interact. Results from the works of Fröberg([5]), Eagon
and Reiner([7]), Terai([14]) and Hochster([12]) are outlined.

The thesis consists of four sections. The first section covers some Commu-
tative Algebra background needed later. We talk about the standard and the
fine gradings on the polynomial ring S = k[x1, . . . , xn] over a commutative
field k. The minimal free resolution of a finitely generated graded module over
S is introduced, and in analogy to the local case the graded and fine Betti
numbers are defined. In the last subsection we talk about pefect S-modules, a
class which contains the Cohen-Macaulay S-modules. It is shown that, if I is
a homogeneous ideal in S, then I is a Cohen-Macaulay ideal if and only if it
is perfect. The Hilbert-Burch Theorem gives the general structure for perfect
ideals of codimension(i.e. height) 2 in a Noetherian ring in terms of Fitting
ideals. Further readings were some proofs and other information about these
topics can be found are Bruns and Herzog [2] and Eisebud [8].
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The second section deals with chordal graphs in combinatorics and commu-
tative algebra. In subsection 2.1 the chordal graphs are introduced. We present
here the work of Dirac from his article [3], where he gives necessary and suffi-
cient conditions for a graph to be chordal, and he even gives a constructibility
criterion. Starting with a simplicial complex Δ, Stanley’s idea was to define
a square-free monomial ideal IΔ, called the Stanley-Reisner ideal, in order
to study the geometric or combinatorial properties via commutative algebra’s
methods. The nice thing is that starting with a square free monomial ideal in
S we can recover the simplicial complex Δ from which it showed up. Further
in this section other similar constructions are presented: the facet ideal, the
edge ideal of a graph, the complementary simplicial complex and some basic
properties are listed and/or proved.

In section 2.3 we go deeper into the study of the Alexander duality. Starting
with a simplicial complex we can build another simplicial complex Δ∨ by
considering the complements of the non-faces in Δ. For Δ, the monomials
that generate IΔ are xF , with F a minimal non-face, while the associated
primes are generated by monomials xG with G the complement in [n] of a facet
F ∈ F(Δ). For Δ∨, the Stanley-Reisner ideal IΔ∨ is generated by monomials
xG, with G = [n] \ F , for some facet F ∈ F(Δ), while an associated prime is
generated by a monomial xF for some F , a minimal non-face. Thus Alexander
duality maps generators of IΔ into associated primes of IΔ∨ and viceversa.

The information on (fine) Betti numbers is gathered by the Betti-polynomial.
Hochster in [12] gives a formula for the Betti polynomials of the Stanley-
Reisner ring of a simplicial complex. This is used in [7] by Eagon and Reiner to
express this polynomial in terms of homology of links of faces in the Alexander
dual. A nice consequence they derive, using a criterion of Reisner for Cohen-
Macaulayness, is that IΔ has linear resolution if and only if Δ∨ is Cohen-
Macaulay over the field k. Fröberg in [5] and in [6] shows more: IΔ is generated
by quadratic monomials and it has linear resolution if and only if Δ is the flag
complex Δ(G) associated to some chordal graph G. Using these results, Eagon
and Reiner in [5] provide a new characterization of chordal graphs: a graph G
is chordal if and only if the Alexander dual of the associated flag complex is
vertex-decomposable, equivalently it is Cohen-Macaulay over some/any field
k. Another result only mentioned without a proof belongs to Terai [14] who
gives a formula for computing the projective dimension of IΔ∨ .

The third section introduces the quasi-forests and gives an algebraic proof
for Dirac’s theorem. At the beginning, the definition of Taylor’s resolution
for a monomial ideal I is mentioned for further reference. Using the Taylor
complex and the cyclic syzygies they define, Bruns and Herzog in [1] describe
the structure of the perfect monomial ideals in S of codimension 2. These
ideals are described by a relation tree assigned uniquely to a minimal set of
generators of syz2(S/I). An example of the construction of such a tree is
presented. As a corollary to the general theory presented, in [1] the authors
also show that the second Betti number of S/I is independent of the field k.

In [17] Zheng introduces the quasi-trees and quasi-forests, extending some
definitions of Faridi [4]. In [10] Herzog, Hibi and Zheng give an if and only if
condition for a simplicial complex to be a quasi-forest in terms of some minors

3



of a matrix they introduce. They remark the similarity with a matrix of
Taylor relations and thus conclude in [10] by proving that a simplicial complex
is a quasi-forest if and only if the projective dimension of the complementary
simplicial complex is 1.

In the last subsection we give the proof from [10] to Dirac’s Theorem. It is
true that it is not easier then the original one in [3]. On the contrary. Herzog,
Hibi, Zheng show that a graph is chordal if and only if it is the 1-skeleton of
a quasi-forest.

In the last section we present some results on classes of Cohen-Macaulay
graphs. Villarreal [16], Herzog and Hibi [9] give a complete description of
Cohen-Macaulay trees, cycles, and bipartite graphs. In the last subsection we
prove in detail a recent result of Herzog, Hibi and Zheng [11] concerning the
classification of Cohen-Macaulay chordal graphs. With a long and technical
proof, using Dirac’s theorem in the form from [10], they show that a graph G
is Cohen-Macaulay over some field if and only if it is over any field if and only
if it is unmixed. Furthermore, this is equivalent to the fact that the vertex set
is a disjoint union of the (vertices of) faces in the flag complex associated the
graph which have a free vertex.

I am indebted to some people who attracted me to the area of combinato-
rial commutative algebra. My interest in the topics presented in this thesis
started at the School in Commutative Algebra-”Monomial Algebras”, Eforie
2003 where professor Jürgen Herzog and Xinxian Zheng described their work
from [9], [10] and [17]. This topic is also a consequence of the graduate course of
”Combinatorics in Commutative algebra” held at Şcoala Normală Superioară
Bucureşti by professors Dorin Popescu and Cristodor Ionescu.
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1. Commutative Algebra background

1.1. Gradings on k[x1, ..., xn].

Let (G, +) be a commutative group.

Definition 1.1.1. A graded G-ring R is a ring R together with a decomposition
R =

⊕
g∈G Rg (as a Z-module) such that RgRh ⊂ Rg+h for all g, h ∈ G.

Definition 1.1.2. Let R be a graded G-ring. A graded G-module M is an
R-module M together with a decomposition M =

⊕
g∈G Mg (as a Z-module)

such that RgMh ⊂ Mg+h for any g, h ∈ G. One calls Mg the gth homogeneous
(or graded ) component of M .

Suppose M is a G-graded R-module. The elements x ∈ Mg are called
homogeneous (of degree g). According to this definition the zero element is
homogeneous of arbitrary degree. The degree of a homogeneous element x ∈ M
will be denoted be degx. Any element x ∈ M has a unique presentation
x =

∑
g∈G xg as a sum of its homogeneous components.

Remark 1.1.3. Note that if R0 is a ring with 1 ∈ R0, then all summands Mg

are R0-modules and that M =
⊕

g∈G Mg is a direct sum decomposition of M
as an R0-module.

Definition 1.1.4. Let R be a G-graded ring. An R-module homomorphism
ϕ : M → N of G-graded R-modules is called homogeneous (or of degree 0) if
ϕ(Mg) ⊂ Ng for any g ∈ G.

Example 1.1.5. A G-graded module M =
⊕

g∈G Mg can be shifted “d posi-

tions” obtaining another G-graded module M [d] defined by M [d]g = Mg+d. If
x ∈ R is a homogeneous element of degree d, then the multiplication by x,
φx : M [−d] → M is a homogeneous homomorphism.

Definition 1.1.6. Let M be a graded R-module and N a submodule of M .
Then N is called a graded submodule if it is a graded module such that the
inclusion map is a homogeneous homomorphism.

Remark 1.1.7. This is equivalent to the condition Ng = N∩Mg for all g ∈ G.
In other words, N is a graded submodule of M if and only if N is generated
by all the homogeneous elements of M which belong to N . In particular, if
x ∈ N , then all homogeneous components of x belong to N. Furthermore,
M/N is G-graded in an obvious way.
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Definition 1.1.8. A graded submodule of a graded ring R is called graded
ideal.

Definition 1.1.9. Let R be a G-graded ring. A graded ideal m of R is called
*maximal if every graded ideal that properly contains m equals R. The ring
R is called *local if it has a unique *maximal ideal.

Remark 1.1.10. In the *local graded ring R/m all nonzero homogeneous
elements are invertible.

Remark 1.1.11. With respect to its finitely generated graded modules M , a
*local graded ring (R, m) behaves like a local ring.

Let m1, . . . , mn be a minimal homogeneous system of generators of M and
let F0 =

∑n
i=1 R(− deg mi), the ith summand being generated by an element

ei satisfying deg ei = deg mi. The R-module F0 is free of rank n and the
assignment ei �→ mi induces a surjective homomorphism ϕ0 of graded modules.
ker ϕ0 is a graded submodule of F0. Suppose that ker ϕ0 �⊂ mF0. Then one
sees easily that there exists a homogeneous element u ∈ ker ϕ0, u /∈ mF0 and
one of the coefficients ai in the decomposition u =

∑
aiei is not in m, call it

aj . But each ai is homogeneous, and so aj is a unit. It follows that the given
system of generators is not minimal, which is a contradiction. It can be shown
that all homogeneous systems of generators for M have the same number of
elements. Iterating the construction of F0 and ϕ0, one obtains an augmented
free resolution of M.

Definition 1.1.12. The resolution of M obtained in the above remark is called
a minimal G-graded free resolution of M .

Proposition 1.1.13. A minimal G-graded resolution is unique up to graded
isomorphism.

Let us specialize these notions to give a concrete example. In the sequel,
suppose k is a commutative field and let S = k[x1, . . . , xn] be the ring of
polynomials with coefficients in k. For S, one has the decomposition

S =
⊕
d∈Nn

Sd with Sd = {f ∈ k[x1, . . . , xn]| deg f = d}

where by deg f we mean the standard notion of degree for the polynomial f .

Definition 1.1.14. This is the so called standard grading of S = k[x1, . . . , xn].

From now on throughout this thesis by graded we mean graded in the stan-
dard grading unless specified. The graded ideals of S are the ideals generated
by homogeneous polynomials in the usual sense.

We can give S another grading by taking G = Z
n and using the decompo-

sition

S =
⊕
α∈Nn

Sα =
⊕
α∈Nn

kxα where xα = xα1
1 · · ·xαn

n , for α = (α1, . . . , αn) ∈ N
n.

Definition 1.1.15. This is the so called N
n-grading on S.
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This is also called the fine grading on S because with the notations above
we have

Sd =
⊕
|α|=d

kxα where |α| = α1 + · · · + αn, for α = (α1, . . . , αn) ∈ N
n.

Proposition 1.1.16. The homogeneous ideals in S with the fine grading are
generated by monomials in the indeterminates x1, . . . , xn.

This is why they are called monomial ideals. It can be proved (see [13]) that
for any monomial ideal I ⊂ S there is a unique minimal system of generators
which we shall denote by G(I). The ring S with both gradings presented here
is a *local ring whose *maximal ideal is the maximal ideal m = (x1, . . . , xn).

Definition 1.1.17. A Z
n-graded resolution is also called a multigraded reso-

lution.
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1.2. Betti numbers.

For a finitely generated module M over a local ring (R, m, k) the Betti num-
bers βi(M) give the ranks of the ith resolvent in a minimal free resolution of
M . One can show (see [1] Corollary 1.3.2) that βi(M) = dimkTorR

i (M, k).
We shall keep our notation for S to denote k[x1, . . . , xn]. If M is some

finitely generated graded S-module we proved in the previous section that we
can build a minimal free resolution

· · · → Sβi → · · · → Sβ0 → M → 0.

The numbers βi(M) are also called Betti numbers, and, as in the local case,
one can prove that βi(M) = dimkTorR

i (M, k).
This free resolution can be written in the form

· · · →
⊕

j

S(−j)βij → · · · →
⊕

j

S(−j)β0j → M → 0

after we collect the terms with the same ”shift” and make the maps in the
resolution homogeneous. It can be proved (see [1] Proposition 1.5.16) that the
numbers βij above are uniquely determined. They are called the graded Betti
numbers of M .

A similar result can be formulated if we work with the fine grading. One
obtaines the fine Betti numbers βiα.

Definition 1.2.1. The (Castelnuovo-Mumford) regularity of a finite graded
S-module M is the number

reg M = max{i + j| ∗H i
m(M)j �= 0},

where m is the maximal ideal in S generated by the indeterminates.

Definition 1.2.2. Let q be an integer. Then M is called q-regular if q ≥ reg M ,
in other words ∗H i

m(M)j−i = 0 for all i and all j ≥ q.

The notion of regularity measures the ”complexity” of the minimal graded
free resolution of M , as it was shown by Eisenbud and Goto. The following
theorem gives a description of regularity in terms of the graded Betti numbers.
Denoting by M≥q the truncated graded R-module

⊕
j≥q Mj , one has

Theorem 1.2.3. (Eisenbud-Goto) The following conditions are equivalent:
a) M is q-regular;
b) ∗TorS

i (M, k)j+i = 0 for all i and all j > q;
c) M≥q admits a linear S-resolution, i.e. a graded resolution of the form

0 → S(−q − �)c� → · · · → S(−q − 1)c1 → S(−q)c0 → M≥q → 0.

Proof. See Theorem 4.3.1 in [2]. �
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1.3. Perfect modules. The Hilbert-Burch theorem.

The notion of grade was given by Rees the following meaning:

Definition 1.3.1. Let R be a Noetherian ring and M �= 0 a finitely generated
R-module. Then the grade of M is given by

grade(M) = min{i| Exti
R(M, R) �= 0}.

For an ideal I ⊂ R, by convention, grade(I) = grade(R/I).

Remark 1.3.2. It follows from Theorem 1.2.10(e) in [2] that

grade(M) = grade(AnnM, R),

where in the right member of the equality by grade we mean the biggest length
of a regular sequence on R with elements in AnnM . One sees thus that for
ideals, the two notions of grade coincide.

Remark 1.3.3. Since one can compute Exti
R(M, R) from a projective reso-

lution of M , one has gradeM ≤ projdim M .

Definition 1.3.4. Let R be a Noetherian ring. A non-zero finitely generated
R-module M is called perfect if projdim M = gradeM . An ideal I ⊂ R is
called perfect if R/I is a perfect module.

Remark 1.3.5. One can show that an ideal generated by a regular sequence
in a Noetherian ring R is perfect.

The following theorem gives examples of perfect modules.

Theorem 1.3.6. Let R be a Cohen-Macaulay ring, and M a finitely generated
R-module of finite projective dimension.

a) If M is perfect, then it is a Cohen-Macaulay module.
b) The converse holds when R is local.

Proof. See Theorem 2.1.5 in [2]. �

The implication from b) in the previous theorem also holds when referred
to homogeneous ideals I ∈ S, as it is shown in the next

Theorem 1.3.7. ([12] Theorem 3.5) With the above notations, if I is a homo-
geneous proper ideal, then S/I is Cohen-Macaulay if and only if projdim S/I =
grade I(= heightI).

Proof. One implication results from Remark 1.3.2 and Theorem 1.3.6 above.
For the other note that if S/I is Cohen-Macaulay, then any localization at a
maximal ideal (including m = (x1, . . . , xn)) is Cohen-Macaulay (see Theorem
2.1.3 in [2]). Thus (S/I)m

∼= Sm/Im. Now use Theorem 1.3.6a) for this local
ring and obtain that Im is perfect in Sm. Then projdimSm/Im = grade(Im,Sm).
Now, by Theorem 1.5.15 in [2] we have projdim S/I = projdim(S/I)m and
grade(I, S) = grade(Im, Sm). Putting these together, it yields that projdim S/I =
grade(I, S) and S/I is therefore a perfect ring, i.e. I is a perfect ideal in S. �
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The following theorem gives a characterization of perfect ideals of grade 2
in terms of the ideal of the n-minors of a n× (n+1) matrix ϕ (ideal called the
nth Fitting ideal In(ϕ) of ϕ ).

Theorem 1.3.8. (Hilbert-Burch) Let R be a Noetherian ring and I an ideal
with a free resolution

F• : 0 −→ Rn ϕ−→Rn+1 −→ I −→ 0.

Then there exists an R-regular element a such that I = aIn(ϕ). If I is pro-
jective, then I = (a), and if projdim I = 1, then In(ϕ) is perfect of grade
2.

Conversely, if ϕ : Rn → Rn+1 is a R-linear map with grade In(ϕ) ≥ 2, then
I = In(ϕ) has the free resolution F•.

Proof. This theorem is proved in [2] as Theorem 1.4.7. �
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2. Chordal graphs in combinatorics and

commutative algebra

2.1. Dirac’s work on chordal graphs.

The graphs we are working with are considered to be finite and without loops
or multiple edges. However, the results from this subsection are valid also for
infinite graphs.

In this section we intend to present some of the results of G. A. Dirac on
chordal graphs as they appeared in [3]. Further on, in Section 3.4 we shall
rephrase these results in terms of the so called quasi-forests, a notion to be
introduced later.

Definition 2.1.1. If the graph C is a circuit and x and y are two distinct
vertices of C which are not joined by any edge belonging to C, then an edge
which joins x and y is called a chord of C. A graph in which every circuit with
more than three vertices has at least a chord, is called a chordal graph.

Remark 2.1.2. For chordal graphs some other names are (have been) used
in the literature: rigid circuit graphs ([3]), triangulated graphs ([16]).

Definition 2.1.3. A graph in which every two distinct vertices are connected
is called a clique. A graph with only one vertex is considered to be a clique,
but the empty graph is not.

Example 2.1.4. Trees, forests and cliques are examples of chordal graphs.

Recall that by removing a set of vertices F from the graph G one obtains a
new graph G − F whose vertices are the vertices of G which are not in F and
whose edges are the one in G that connect two vertices not in F.

Remark 2.1.5. If G is a chordal graph and H is the subgraph obtained after
removing some vertices, then H is chordal, too.

Definition 2.1.6. If G is a connected graph and F is a set of vertices contained
in G, then F is called a cut-set of G if the graph G − F is disconnected. A
cut-set is called a minimal cut-set of G if no proper subset of F is a cut-set of
G, and it is called a relatively minimal cut-set of G if G contains two vertices
which are separated by F but by no proper subset of F.

Remark 2.1.7. It is obvious that any minimal cut-set is also relatively mini-
mal. However, the converse is not true.
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Remark 2.1.8. We can extend the definition above for arbitrary graphs asking
F to be included in some connected component, and when removed disconnects
it.

Theorem 2.1.9. (Dirac) A graph is a chordal graph if and only if every pair
of vertices that belong to the same relatively minimal cut-set are joined by at
least one edge.

In other words, G is chordal if and only if any relatively minimal cut-set F
in G is a clique.

Proof. Let G be a connected chordal graph, F a relatively minimal cut-set and
i and i′ are two vertices that belong to F and are not joined by an edge. Let a1

and a2 be two vertices which are separated by F, but by no proper subset oh F,
and let G1 and G2 denote the connected components of G−F to which a1 and
a2 respectively belong. The vertex i is joined by an edge to at least one vertex
of G1 and to al least one vertex of G2, and so is i′, because no proper subset of
F separates a1 and a2. For j = 1, 2, let Yj be a path with the least number of
vertices among the paths which have i and i′ as their end-vertices, and whose
intermediate vertices belong all to Gj . The paths Y1 and Y2 exist because G1

and G2 are connected. Y1 ∪ Y2 is then a circuit with at least four vertices and
it has no chord. This contradicts the assumption that G is a chordal graph.

Conversely, suppose that G is a connected graph in which every pair of
vertices which belong to the same relatively minimal cut-set are joined by at
least one edge, but G is not chordal. Let C be a circuit contained in G which
has more that three vertices, but no chord. Let v1 and v2 denote two vertices
of C which are not joined by any edge belonging to C, and let the two paths
connecting v1 and v2 which together make up C be denoted by Y1 and Y2.
v1 and v2 are not joined to each other by any edge in G because C has no
chord. Consequently G contains at least one cut-set separating v1 and v2 (all
vertices which are adjacent to v1 form such a cut-set, for example). Therefore
G contains a cut-set F such that F, and no proper subset of F, separates v1

and v2. F is a relatively minimal cut-set, therefore, by hypothesis, every pair
of vertices belonging to F are joined by at least one edge. Y1 and Y2 each
contain at least one vertex belonging to F because F separates v1 and v2, and
(Y ∩ F) ∩ (Y ′ ∩ F) = ∅ because Y ∪ Y ′ = C. Every edge joining a vertex of
Y ∩ F to a vertex of Y ′ ∩ F is however a chord of G, and this contradicts the
hypothesis that G has a chord. This concludes our proof. �
Corollary 2.1.10. In a chordal graph every pair of vertices belonging to the
same minimal cut-set are joined by at least one edge.

Proof. The conclusion follows from Dirac’s Theorem above and the fact that
any minimal cut-set is also relatively minimal. �
Theorem 2.1.11. If G and F are chordal graphs and G ∩ F is a clique or
empty, then G ∪ F is a clique, too.

Proof. If G ∩ F contains no circuit with more than three vertices, then it is a
chordal graph. If G ∪ F contains such circuits, then let C be one of them. If
C ⊂ G or C ⊂ F then C has a chord. If C �⊂ F and C �⊂ G, then C contains at
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least one vertex from each of G\ (G∩F ) and F \ (G∩F ), v and w respectively
say. v and w are separated by the vertices of G ∩ F . It follows, exactly as in
the second part of the proof of Theorem 2.1.9, that C has a chord. Thus every
circuit of G ∪ F with more than three vertices has a chord. �
Remark 2.1.12. Theorem 2.1.9 shows that any chordal graph which is not a
clique can be built up from two smaller mutually disjoint chordal graphs by
identifying a clique in one with a similar clique in the other. It follows that
any chordal graph which is not a clique can be obtained by applications of this
process starting from a set of cliques. Theorem 2.1.11 shows that conversely,
whenever the process is applied to two mutually disjoint chordal graphs, the
result is still a chordal graph. It’s worth mentioning that the union of two
chordal graphs whose intersection is neither empty nor a clique may of course
still be a chordal graph.
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2.2. Ideals associated to simplicial complexes and the Alexander dual.

In the following, let S denote the polynomial ring in n variables k[x1, . . . , xn]
over a field k. We also denote by [n] the set {1, 2, . . . , n} and by P ([n], i)
the set of all i-element subsets of [n]. For F ⊂ [n], F c denotes [n] \ F . If
F = {i1, . . . , ip} ⊂ [n], xF denotes the square-free monomial xi1 · · ·xip .

If X is any finite set, we denote by |X| its cardinality.

Definition 2.2.1. A simplicial complex Δ over a set of vertices [n] is a col-
lection of subsets of [n] with the property that {i} ∈ Δ for all i = 1, . . . , n
and if F ∈ Δ, then all subsets of F are also in Δ (including the empty set).
An element of Δ is called a face of Δ, and the dimension of a face F of Δ is
defined as |F | − 1.

The faces of dimension 0 and 1 are called vertices and edges, respectively.
By convention, dim(∅) = −1.

The maximal faces of Δ with respect to inclusion are called facets. The
dimension of a simplicial complex is the maximal dimension of its facets. A
simplicial complex is called pure if all its facets have the same dimension.

A simplicial complex can be given either by enumerating all its faces, or just
by giving the facets F(Δ) = {F1, . . . , Ft}. In the latter case we write

Δ = 〈F1, . . . , Ft〉.
A simplicial complex with only one facet is called a simplex.
A subcomplex of the simplicial complex Δ is a simplicial complex whose

facets are faces of Δ.

Definition 2.2.2. The i-skeleton of a simplicial complex Δ is the simplicial
complex skelΔ(i) whose facets are the i-dimensional faces of Δ.

Therefore, skelΔ(i) is pure. By taking the i-skeleton, one loses information
about the facets of dimension smaller than i.

To a simplicial complex Δ we can attach in a natural way two square-free
monomial ideals in S.

Definition 2.2.3. The Stanley-Reisner ideal IΔ ⊂ S is the ideal generated by
all monomials xF , with F /∈ Δ.

One sees easily that the minimal generators of IΔ are xF with F a minimal
non-face of Δ. The ring S/IΔ is called the Stanley-Reisner ring of Δ and it is
denoted by k[Δ].

Remark 2.2.4. It can be proved (see [13] and [16]) that a minimal (or as-
sociated) prime of IΔ is generated by a monomial of the form x[n]\F where
F ∈ F(Δ).

Definition 2.2.5. The facet ideal of the simplicial complex Δ is the ideal I(Δ)
generated by all monomials xF , where F ∈ F(Δ). Suppose Δ = 〈F1, . . . Ft〉.
Then

I(Δ) = (xF1 , . . . , xFt).

If Δ is a graph G, I(G) is called the edge ideal of G.
14



Remark 2.2.6. A minimal prime ideal over I(G) is generated by a monomial
xF where F is a minimal vertex cover of G. (see [13] and [16]).

Definition 2.2.7. A graph G is called unmixed if all its minimal vertex covers
have the same number of elements.

Remark 2.2.8. If I ⊂ (x1, . . . xn)2 ⊂ S is a monomial ideal generated by
square-free monomials, there is exactly one simplicial complex Δ on [n] such
that I = IΔ. Indeed, if G(I) = {xF1, . . . , xFt} with F1, . . . , Ft ⊂ [n], then

Δ = {F |Fi �⊂ F for any i = 1, . . . , t}.
When we compute the Stanley-Reisner ideal of Δ, we see that the minimal
non-faces of Δ are exactly F1, . . . , Ft.

In the following we present some constructions of simplicial complexes de-
rived from a given one.

Definition 2.2.9. Suppose Δ is a pure (d−1)-dimensional simplicial complex.
We define

Δ̄ = 〈F |F /∈ Δ, F ∈ P ([n], d)〉.
Lemma 2.2.10. Let Δ be a (d− 1)-dimensional pure simplicial complex, and
let Γ be the simplicial complex such that I(Δ) = IΓ. Then

Δ̄ = skelΓ(d − 1).

Proof. If F is a facet of Δ̄, then F /∈ Δ. Therefore xF ∈ I(Δ), hence xF /∈ IΓ.
This means that F ∈ skelΓ(d − 1). The converse is straightforward. �
Definition 2.2.11. The Alexander dual of a simplicial complex Δ is

Δ∨ = {[n] \ F |F /∈ Δ}.
Remark 2.2.12. One sees easily that (Δ∨)∨ = Δ. The facets of Δ∨ are the
complementary of the minimal non-faces of Δ.

Definition 2.2.13. Define

Δc = 〈[n] \ F |F ∈ F(Δ)〉.
The facets of Δc are the complements of the facets in Δ. Indeed, two sets
F1, F2 ∈ [n] are comparable with respect to inclusion if and only if F c

1 , F c
2 are

comparable.

Recall that for a monomial ideal I ⊂ S, G(I) denotes the minimal set
of monomial generators. Next, we express the Stanley-Reisner ideal of the
Alexander dual of a simplicial complex Δ in terms of a facet ideal.

Lemma 2.2.14. Let Δ be a simplicial complex. Then

IΔ∨ = I(Δc).

Proof. Δ∨ = 〈F c|F minimal nonface of Δ〉. Then xG ∈ G(IΔ∨) if and only if
G is a minimal subset of [n] such that G = (Gc)c /∈ Δ∨, equivalently G is a
minimal subset of [n] such that Gc ∈ Δ, equivalently Gc ∈ F(Δ), hence G is
a facet of Δc. �
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Recall that a set of vertices F of the graph G on the vertex set [n] is called
a clique if any two different vertices of F are linked by an edge in G.

Definition 2.2.15. Starting with a graph G we can build a simplicial complex

Δ(G) = {F ⊂ [n]|F is a clique in G }
called the flag complex associated to G.

The facets of Δ(G) are the maximal cliques of G. A complex of the form
Δ(G) has the following interesting property.

Proposition 2.2.16. All minimal non faces of Δ(G) consist of 2 elements.
Therefore the Stanley-Reisner ideal IΔ(G) is generated by quadratic monomials.

Proof. Suppose there is F = {i1, . . . , ip}, p > 2 a minimal non-face in Δ(G).
Therefore, {i1, . . . , ip} is not a clique (i.e. there exist 1 ≤ u < v ≤ p such
that {u, v} is not an edge in G), but all proper subsets of F are cliques. Since
|F | > 2, {u, v} is a clique, hence {u, v} is an edge in G, contradiction. �

There is a converse result.

Proposition 2.2.17. Let Δ be a simplicial complex whose minimal non-faces
consist of 2 elements. Then there is a graph G such that Δ = Δ(G).

Proof. Take G to be the 1-skeleton of G. �
Definition 2.2.18. A simplicial complex Δ is called flag if any minimal non-
face consists of 2 elements.

According to the above theorem, this is equivalent to Δ being of the form
Δ(G) for some graph G. Using the Alexander dual, we see that Δ is flag if
and only if Δ∨ is a graph.
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2.3. Algebraic properties via Alexander duality.

There are in the literature some very nice results relating combinatorial or
algebraic properties of a simplicial complex Δ to those of the Alexander dual
Δ∨. We present here some of them that will be needed in the following sections.

In the following, Δ denotes a simplicial complex on [n], and k a field. If

0 → Sβh → . . . → Sβ1 → S → k[Δ] → 0

is a minimal free resolution of k[Δ], then the resolvents may also be given
the N

n-grading, so as to make the maps in the resolution homogeneous, and
TorS

i (k[Δ], k) inherits this grading. For a given grade α ∈ N
n, let TorS

i (k[Δ], k)α

denote the α-graded component of TorS
i (k[Δ], k). One can put together these

parts and define the Betti polynomial

Ti(k[Δ], t) =
∑

α

dimk TorS
i (k[Δ], k)αtα

where tα =
∏

i t
αi
i . We present here without proof the formula found by

M.Hochster for these Betti polynomials.

Theorem 2.3.1. (Hochster [12])

Ti(k[Δ], t) =
∑

W⊂[n]

dimk H̃|W |−i−1(ΔW ; k)tW ,

where ΔW denotes the simplicial complex on the vertex set W defined by

ΔW = {W ′ ⊂ W |W ′ ∈ Δ}.
Here H̃(·; k) denotes the homology with coefficients in the field k, and tW =∏

i∈W ti.

Proof. See Hochster’s original article [12] or in Bruns and Herzog [2] Theorem
5.5.1 �

In [7] Eagon and Reiner notice that one may view the reduced homologies
in Hochsters’s formula as the reduced cohomologies of links of faces of Δ∨, the
Alexander dual of Δ.

Notice that, if one thinks of Δ as an ordered ideal in the Boolean algebra
2[n], then Δ∨ is obtained by taking the order filter 2[n] \ Δ and then applying
the order-reversing map F �→ [n] \ F to each of these sets, yielding another
order ideal Δ∨.

Definition 2.3.2. If F is a face of the simplicial complex Δ on [n], then the
link of the face F is the simplicial complex on the vertex set [n] \F defined by

linkΔ F = {G ∈ Δ|G ∪ F ∈ Δ, G ∩ F = ∅}.
Definition 2.3.3. Given the vertex v ∈ Δ, the deletion of vertex v is the
simplicial complex given by

delΔ v = {G ∈ Δ|v /∈ G}.
17



Proposition 2.3.4.

Ti(k[Δ], t) =
∑

F∈Δ∨
dimk H̃i−2(linkΔ∨ F ; k)t[n]\F

Proof. Given W ⊂ [n] appearing as a term in Hochster’s sum from Theorem
2.3.1, let F = [n] \ W . Note that if W is a face of Δ, then ΔW will be a
simplex and hence have no reduced homology, therefore we may assume W is
not a face of Δ. By the definition of Δ∨, then F is a face of Δ∨, so F appears
in the sum on the right-hand side term in this proposition.

Therefore, it suffices to show that:

dimk H̃i−2(linkΔ∨ F ; k) = dimk H̃|W |−i−1(ΔW ; k).

To see this, note that the complementation map

{W ′ ⊂ [n]|W ′ ⊂ W} → {F ′ ⊂ [n]|F ⊂ F ′}
given by W ′ �→ [n] \ F ′ identifies the Boolean algebra 2W with the interval
[F, [n]] in the Boolean algebra 2[n], and has the property that W ′ is a face of Δ if
and only if F ′ = [n]\V ′ is not a face of Δ∨. Thus, the map gives an isomorphism
between the complexes linkΔ∨ and (ΔW )∨, if we consider both to have the same
vertex set W . Applying the following lemma and the isomorphism between the
reduced homology and the reduced cohomology over a field k, the conclusion
follows. �

Lemma 2.3.5. For any simplicial complex Δ on vertex set [n], we have

H̃i−2(Δ
∨; k) = H̃n−i−1(Δ; k).

Proof. see [7] �

Definition 2.3.6. The simplicial complex Δ is called Cohen Macaulay (or
Gorenstein) over the field k if the Stanley-Reisner ring k[Δ] is Cohen-Macaulay
(respectively Gorenstein).

If Δ is Cohen-Macaulay (or Gorenstein) over any field k, then it is called
Cohen-Macaulay (respectively Gorenstein).

We mention here without proof a criterion that Reisner obtained for Δ to
be Cohen-Macaulay over k (see Corollary 5.3.9 in [2]).

Theorem 2.3.7. The following conditions are equivalent:
a) Δ is Cohen Macaulay over k;

b) H̃i(linkΔ F ; k) = 0 for all F ∈ Δ and all i < dim linkΔ F .

Definition 2.3.8. An ideal I ⊂ S has linear resolution if there is a minimal
free resolution for S/I in which all non-zero entries in the matrices ϕi : Sβi →
Sβi−1 for all i ≥ 2 are of degree 1 in the standard grading on S.

Eagon and Reiner used Proposition 2.3.4 to prove the following nice result:

Theorem 2.3.9. IΔ has linear resolution if and only if Δ∨ is Cohen-Macaulay
over k.
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Proof. It is easy to see that IΔ has linear resolution if and only if its minimal
generators all have the same degree t and for each i we have TorS

i (k[Δ], k)
is homogeneous of degree t + i in the standard grading. The first of these
conditions is equivalent to Δ∨ being pure. Using Proposition 2.3.4 the second
condition is equivalent to linkΔ∨ F having no homology over k except on its
top dimension for all faces F of Δ∨. Thus these two conditions, by Reisner’s
criterion 2.3.7 are equivalent to Δ∨ being Cohen-Macaulay over k. �
Definition 2.3.10. The simplicial complex Δ is called shellable if it is pure
and we can order its facets F1, . . . , Ft in such a way that for each i ≥ 2 the
intersection Fi ∩ (∪j<iF̄j) between Fi and the subcomplex generated by the
previous facets is a subcomplex of codimension 1 inside Fi.

Theorem 2.3.11. ([2] Theorem 5.1.13) If Δ is shellable, it is Cohen-Macaulay
over any field k.

In [5] Fröberg gives the following characterization of Stanley-Reisner ideals
generated by quadratic monomials and with a linear resolution:

Theorem 2.3.12. ([5], Theorem 1) A Stanley-Reisner ideal IΔ generated by
quadratics has linear resolution if and only if Δ = Δ(G) for some chordal
graph G, where recall that Δ(G) means the flag complex associated to G.

For chordal graphs besides the results presented in Theorem 2.1.9 it is also
known the following characterization:

Theorem 2.3.13. A graph G is chordal if and only if there is an elimination
ordering v1, . . . , vn on the vertices, i.e. for all i there are edges between all pairs
of vi’s neighbors in G\{v1, . . . , vi−1}. In this case vi is called a simplicial vertex
of G \ {v1, . . . , vi−1}.
Definition 2.3.14. A simplicial complex Δ is said to be vertex decomposable
if it satisfies the following recursive definition: either Δ = {∅}, or there exists
some vertex v ∈ Δ for which both subcomplexes delΔ v and linkΔ v are vertex
decomposable.

Theorem 2.3.15. A vertex-decomposable simplicial complex is shellable.

Theorem 2.3.16. The following are equivalent:
a) Δ(G)∨ is vertex decomposable;
b) Δ(G)∨ is Cohen-Macaulay over any field k;
c) Δ(G)∨ is Cohen-Macaulay over some field k;
d) G is chordal.

Proof. The implications a)⇒b)⇒c) are trivial.
c)⇒d) If G is not chordal, then there exists some subset W of vertices which

form a cycle in G having no chord. It can be proven (Fröberg [5]) that Δ(G)
is homemorphic to a circle. Using the identity proved along with proposition
2.3.4, one gets that

0 = H̃|W |−4(linkΔ(G)∨ F ; k) = H̃1(Δ(G)W ; k) �= 0,

so that Δ(G)∨ is not Cohen-Macaulay over k, contradiction.
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d)⇒a) If G id chordal, let v1, . . . , vn be an elimination ordering for its ver-
tices. A vertex decomposition for Δ(G)∨ starting with v1 will then follow from
lemma 2.3.17 below. We have to show that the lemma implies that both sub-
complexes linkΔ(G)∨ v1 and delΔ(G)∨ v1 are vertex decomposable. By induction
and part 1 of the lemma we have that linkΔ(G)∨ v1 = (Δ(G \ v1))

∨ is vertex
decomposable, since G \ v1 is chordal because G is chordal. By part 2 of the
lemma, since v1 is simplicial, delΔ(G)∨ v1 is the complex generated by a collec-
tion of codimension one faces of a simplex, and all such complexes are easily
seen to be vertex-desomposable. �
Lemma 2.3.17. 1) For any vertex v in a graph G, we have linkΔ(G)∨ v =
(Δ(G \ v))∨ as complexes on the vertex set [n] \ {v}.

2) For any simplicial vertex v in a graph G, the deletion delΔ(G)∨ v is the
simplicial complex on the vertex set [n] \ {v} having as facets the faces [n] \
{v, v′} as v′ runs over all non-neighbors of v in G.

Before going further we recall another equivalent definition of shellability,
as it appears in [2], Definition 5.1.11.

Proposition 2.3.18. The simplicial complex Δ is shellable if and only if it is
pure and there exists an ordering of the facets F(Δ) = {F1, . . . , Fm} such that
for all 0 < j < i and x ∈ Fi \ Fj there is some k < i such that Fi \ Fk = {x}.
Definition 2.3.19. An ideal I ⊂ S is said to have linear quotients if I =
(f1, . . . , fm) and for all i > 0 the colon ideals (f1, . . . , fi−1) : fi are generated
by linear forms. For a monomial ideal I we require also that the fi’s belong
to the unique minimal set of monomial generators G(I) of I.

Proposition 2.3.20. The simplicial complex Δ is shellable if and only if IΔ∨

has linear quotients.

Proof. I = (f1, . . . , fm) has linear quotients if for all i > 1 and any j < i,
there exists k < i such that fk/ lcm(fi, fk) is a monomial of degree 1, say x�

and x�|fxj
. But by Lemma 2.2.14 IΔ∨ = (xF c

1
, . . . , xF c

m
), and the conclusion

follows. �
Theorem 2.3.21. (Terai, [14]) projdim k[Δ] = reg(IΔ∨)
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3. Quasi-forests and Dirac’s theorem

3.1. Taylor’s resolution of a monomial ideal.

In her Ph.D thesis [15] Diana K. Taylor described a way to produce a finite
free resolution of J , when J is an ideal in the ring R generated by monomials
in a1, . . . , an (an R-sequence) such that either J contains a power of each ai,
for 1 ≤ i ≤ n − 1, or every permutation of a1, . . . , an is an R-sequence.

We limit ourselves to the case when R is the polynomial ring S = k[x1, . . . , xn].
As a1, . . . , an will shall take the indeterminates x1, . . . , xn which remain an S-
sequence after any permutation. An ideal J generated by monomials in the
indeterminates x1, . . . , xn is therefore a monomial ideal of S.

Let m1, . . . , mt be monomials in the xi-s. We define the Taylor complex T•
as follows. Let Fs be the free module on basis elements eI , where I is a subset
of length s, I ⊂ {1, 2, . . . , t}. Set

mI = least common multiple{mi|i ∈ I}.
For each pair of subsets I, H such that I has s elements and H has s − 1
elements, let I = {i1, . . . , is} and suppose i1 < i2 < . . . < is. Define cI,H = 0
if H �⊂ I and cI,H = (−1)kmI/mH if I = H ∪ {ik} for some k. Finally define
ds : Fs → Fs−1 by sending

eI �→
∑
H

cI,HeH .

Let T(m1, . . . , mt)• : 0 → Ft
dt−→ . . .

d1−→F0−→0.

cI,H =

⎧⎨
⎩

0, if H �⊂ I,

(−1)kmI/mH , if I = H ∪ {ik}.
Theorem 3.1.1. The complex T(m1, . . . , mt)• is a free resolution of the ideal
J = (m1, . . . , mt).

Proof. This theorem is proved in Taylor’s thesis [15]. For some hints on how
to prove the particular case presented here check Exercise 17.11 in [8]. �
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3.2. Perfect monomial ideals of codimension 2.

Let I be generated by the monomials m1, . . . , mt in S and consider the start

Λ2St ϕ2−→St ϕ1−→S−→S/I−→0

of the Taylor resolution. We denote by e1, . . . , et the canonical basis of St.
Then ϕ1(ei) = mi for all i = 1, . . . , t and

ϕ2(ei ∧ ej) =
lcm(mi, mj)

mi

ei − lcm(mi, mj)

mj

ej , for any 1 ≤ i < j ≤ t.

The Taylor resolution is multigraded with deg ei = deg mi and deg ei ∧ ej =
deg lcm(mi, mj).

We choose some � ∈ {1, . . . , t} and some i1, . . . , i� ∈ {1, . . . , t}. Set

s(i1, . . . , i�) =

�∑
k=1

lcm(mi1 , . . . , mi�)

lcm(mik , mik+1
)

(where i�+1 = i1).

Then ϕ2(s(i1, . . . , i�)) = 0. We call the elements s(i1, . . . , i�) cyclic syzygies.
In the following, let R = Z[x1, . . . , xn].

Proposition 3.2.1. Let U be a subset of {(i, j|1 ≤ i < j ≤ t)} and set
F =

∑
(i,j)∈U Rei ∧ ej. Then ker(ϕ2|F ) is generated by cyclic syzygies.

Proof. We prove the proposition by induction on the number of elements of U .
If U = ∅, then there is nothing to prove. Let us assume that |U | > 0, and that
the property holds for all U with fewer elements. ker(ϕ2|F ) is a multigraded
submodule, therefore it is generated by homogeneous elements.

Let x ∈ F ∩ ker(ϕ2) be a homogeneous (in the fine grading) element. x =∑
(i,j)∈U ′ aijei ∧ ej with aij �= 0. We may assume that U = U ′, otherwise

we may apply directly the induction hypothesis. Consider the graph Γ with
edges (i, j) ∈ U . If Γ contains no cyles, then the elements ϕ2(ei ∧ ej), (i, j) ∈
U are linearly independent over R. Otherwise, there is a cycle in Γ, say
(i1, i2), (i2, i3), . . . , (i�−1, i�), (i�, i1). Write x =

∑�
k=1 αkvkeik ∧ eik+1

+ r, where
αk ∈ Z and vk is a monomial for all k and where r is a linear combination in
the remaining basis elements ei ∧ ej . Since x is homogeneous, we must have

v1 lcm(mi1 , mi2) = · · · = v� lcm(mi� , mi1).

Let v denote the common value above. Then there exist a monomial ṽ such
that v = vk lcm(mik , mik+1

) = ṽ lcm(mi1 , . . . , mi�) for any k. Hence

vk =
ṽ lcm(mi1 , . . . , mi�)

lcm(mik , . . . , mik+1
)

for all k, and it follows that the new cycle x′ = x−α1ṽs(i1, . . . , i�) ∈ ker ϕ2 is a
linear combination of fewer basis elements than x. Therefore, by our induction
hypothesis the proof is complete. �
Corollary 3.2.2. There exists a multigraded exact sequence

F
ψ2−→Rt ϕ1−→R−→R/I−→0

with a free R-module F such that ker ψ2 ⊂ (x)F , where (x) = (x1, . . . , xn).
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Proof. Let U ⊂ {(i, j)|1 ≤ i < j ≤ t} such that the elements {ϕ2(ei∧ej)|(i, j) ∈
U} generate ker ϕ1 minimally, i.e. none of them can be left out. Set F =∑

(i,j)∈U Rei ∧ ej and ψ2 = ϕ2|F . Suppose that ker ψ2 �⊂ (x)F . Then, by

Proposition 3.2.1 there exists a cyclic syzygy s(i1, . . . , i�) ∈ F \ (x)F . Such a
cyclic syzygy contains a coefficient ±1 , a contradiction to the minimality of
U . �
Remark 3.2.3. The Corollary 3.2.2 says that the sequence

F
ψ2−→Rt ϕ1−→R−→R/I−→0

can be continued to become a minimal multigraded free resolution of R/I.

Corollary 3.2.4. Let k be a field and J a monomial ideal in S = k[x1, . . . , xn].
Then, the multigraded Hilbert series of TorS

2 (S/J, k) is independent of k.

Proof. We let I be the ideal in Z[x1, . . . , xn] generated by the same monomials
as J , and tensor the complex of Corollary 3.2.2 with k (over Z). This yields
the start of a minimal multigraded resolution of S/J . �
Corollary 3.2.5. The second Betti number of S/J is independent of the field
k.

The results proved up to now enable us to proceed towards a complete
classification of perfect monomial ideals I ⊂ S of grade 2. For such an ideal a
minimal multigraded free resolution of S/I has the form:

0−→St−1 ϕ2−→St ϕ1−→S−→S/I−→0

where the relations of the generators of I given by ϕ2 are Taylor relations and
St−1 has a basis of the form ei ∧ ej, (i, j) ∈ U . Let Γ be the graph associated
to U as described in the proof of Proposition 3.2.1. Then Γ is a graph with t
vertices, t−1 edges and no cycles, therefore it is a tree. In the matrix of ϕ2 one
has 2(t−1) nonzero entries, and on each line we have exactly 2 nonzero entries.
We choose 2(t− 1) variables and place them into an (t− 1)× t matrix ψ2 such
that the nonzero entries of ψ2 and ϕ2 are in the same positions. It is easy to
see that the t − 1 minors of ψ2 are monomials (up to sign). Furthermore, I
arises from the Fitting ideal It−2(ψ2) by the substitution that sends each entry
of ψ2 into the corresponding entry of ϕ2. We can draw the following conclusion
from these observations:

Theorem 3.2.6. The generic types of perfect monomial ideals I = (m1, . . . , mt)
of grade 2 are in bijective correspondence with the trees with t vertices.

Remark 3.2.7. Note that, in general, the tree Γ is not uniquely determined by
I, but it is uniquely determined by the Taylor relations that generate syz1(I) =
syz2(R/I).

Example 3.2.8. If I is a perfect monomial ideal of grade 2, then it admits a
multigraded resolution of the form

0−→St−1 ϕ−→St−→I−→0.

We present here an example in order to understand exactly how these trees
appear. Let I = (x4x5x6, x1x5x6, x1x2x6, x1x2x5) be a monomial ideal in S =
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k[x1, x2, x3, x4, x5]. One can prove that ht(I)=2 and that I is perfect. We are
looking for a presentation of I of the kind

0−→S3 ϕ−→S4−→I−→0.

Our ideal I can be presented by the matrix⎛
⎝x1 −x4 0 0

0 x2 −x5 0
0 x2 0 x6

⎞
⎠ or by

⎛
⎝x1 −x4 0 0

0 x2 −x5 0
0 0 x5 −x6

⎞
⎠

or

⎛
⎝x1 −x4 0 0

0 x2 0 −x6

0 0 x5 −x6

⎞
⎠ .

The second matrix is obtained from the first by substracting the second line
from the third line in the first matrix; and the third matrix is obtained from
the second one by adding the third line to the second line. It is obvious that
since the first matrix is a representation for I, then so are the other two: the
lines in these matrixes represent coordinates of the vectors of a basis of syz1(I).

How can we actually build the trees? For a given choice R of t − 1 Taylor
relations which generate syz1(I) we define a tree Ω with t vertices with {i, j} ∈
E(Ω) if mjiei − mijej ∈ R for i < j, where we denote mpq = mp/ gcd(mp, mq)
for any 1 ≤ p, q ≤ t. Ω is called the relation tree of R.

For our example, the relation tree for the first matrix is

1 2

3

4

while for the other matrices we have:

1 2 3 4

or

1 2 4 3

Next, we want to describe how the generators mi of I can be computed from
the mij and the relation tree. To this end we introduce for each i = 1, . . . , t
an orientation to make Ω a directed(oriented) graph which we denote by Ωi.
Let’s fix some vertex i. For any other vertex j of the tree Ω there is a unique
directed walk from i to j.
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For the first of our relation trees above we get the following directed graphs:

2

4

1 1 2

4

2

3

4

11 2

3

4

3 3

By the Hilbert-Burch Theorem 1.3.8 we have

mi = (−1)i det(Ai),

where the matrix Ai is obtained from the relation matrix A by deleting its ith

column. Computing det(Ai), one sees that

mi =
∏
(k,j)

mkj ,

where the product is taken over all oriented edges (k, j) of Ωi.
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3.3. Quasi-forests and relation trees of ideals of projective dimension
1.

In [4] S. Faridi extends the notions of tree and forest from graphs to sim-
plicial complexes. In [17] X. Zheng gives a further extention of these notions
introducing the so-called quasi-trees and quasi-forests.

In the following, let Δ be a simplicial complex.

Definition 3.3.1. A facet F ∈ F(Δ) is called a leaf, if either F is the only facet
of Δ, or there exists a facet G ∈ F(Δ) such that G �= F and H ∩ F ⊂ G ∩ F
for each H ∈ F(Δ) with H �= F . A facet G with this property is called a
branch of F .

Definition 3.3.2. A vertex i of Δ is called a free vertex if it belongs to exactly
one facet.

Remark 3.3.3. The condition for G �= F to be a branch of F is equivalent
to the fact that the inclusion-ordered set of “traces” of F on the other facets
{H ∩ F |H ∈ F(Δ), H �= F} has a unique maximal element.

Remark 3.3.4. For a given leaf F of Δ the branch G is not necessarily unique.
Denote F = (1, 2, 3, 4), G = (1, 2, 3, 5), H = (1, 2, 6), J = (1, 2, 7) and G1 =
(1, 2, 3, 8). For instance, in the simplicial complex given by the set of facets
Δ = 〈F, G, H, J〉, F is a leaf and G is the only branch that ”supports” it. But
in Δ1 = 〈F, G, H, J, G1〉 the leaf F is supported by both branches G and G1.
It is also possible for a simplicial complex to contain no leaves at all. Take
Δ2 = 〈(1, 2, 3), (1, 3, 4), (1, 2, 4)〉 for instance.

Remark 3.3.5. An easy to check necessary criterion for a facet of Δ to be
a leaf is the presence of a free vertex. In the example before Δ2 had no free
vertices, thus no leaves. This condition is not sufficient:

Δ = 〈(1, 2, 3), (3, 4, 5), (5, 6, 7)〉
is a pure simplicial complex, the facet (3, 4, 5) has a free vertex 4, but it is not
a leaf.

Remark 3.3.6. For a graph G, F is a facet if F is an isolated vertex or an
edge. Therefore, the leaves are the isolated vertices and the edges {i, j} such
that one of the ends is a free vertex.

Definition 3.3.7. A simplicial complex Δ is connected if for any two facets
F and G there exists a sequence of facets F = F0, . . . , Fn = G, such that
Fi ∩ Fi+1 �= ∅ for all i = 0, . . . , n − 1.

Definition 3.3.8. A connected simplicial complex Δ is called a tree if every
nonempty subcomplex of Δ (including Δ) has a leaf.

Equivalently, Δ is a tree if every nonempty connected subcomplex of Δ has
a leaf.

Definition 3.3.9. ([4]) A simplicial complex Δ with the property that every
connected component of Δ is a tree is called a forest. In other words, a forest
is a simplicial complex with the property that every nonempty subcomplex
has a leaf.
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Definition 3.3.10. ([17]) A conected simplicial complex Δ is called a quasi-
tree, if there exists an order F1, . . . , Ft of the facets, such that Fi is a leaf of
〈F1, . . . , Fi〉 for all i = 1, . . . , t. A simplicial complex Δ with the property that
every connected component is a quasi-tree is called a quasi-forest.

Remark 3.3.11. ([17]) Note that a quasi-tree may have different leaf orders. It
is clear that a tree (as in Definition 3.3.9) is a quasi-tree. However, the converse
is not true. The complex Δ = 〈(1, 2, 3), (2, 3, 4), (3, 4, 5), (2, 4, 6)〉 is a quasi-
tree, but it is not a tree, because the subcomplex 〈(1, 2, 3), (3, 4, 5), (2, 4, 6)〉
has no leaf. Still, for 1-dimensional simplicial complexes (i.e. graphs), the
notions of tree and quasi-tree coincide.

Let Δ be a simplicial complex on [n] with F(Δ) = {F1, . . . , Ft} its facets.

We introduce the

(
t
2

)
× t matrix

MΔ = (a
(i,j)
k )1≤i<j≤t,1≤k≤t

whose entries a
(i,j)
k are a

(i,j)
i = xFi\Fj

, a
(i,j)
j = xFj\Fi

, and a
(i,j)
k = 0 if k �= i, k �= j

and for all 1 ≤ i < j ≤ t, 1 ≤ k ≤ t. Recall that for some F = {i1, . . . , is} ⊂
[n], xF denotes the monomial xi1 · · ·xis . And another piece of notation: if u
and v are monomials in S, we write |u| = v if u = ±v.

Lemma 3.3.12. A simplicial complex F(Δ) = {F1, . . . , Ft} on [n] is a quasi-

forest if and only if the matrix MΔ contains a (t−1)×t submatrix M �
Δ with the

property that for each 1 ≤ j ≤ t, if M �
Δ(j) is the (t−1)×(t−1) submatrix of M �

Δ

obtained by removing the jth column from M �
Δ, then | det(M �

Δ(j))| = x[n]/xFj
.

Proof. ”⇒” Let Δ be a quasi-forest on [n] and fix a leaf ordering. Let t > 1
and let Fk, k �= t be a branch of Ft and Δ′ = Δ \ Ft. Since Δ′ is a quasi-
forest (by definition) on [n] \ (Ft \ ∪i<tFi) generated by t − 1 facets, by our
induction hypothesis it follows that MΔ contains a (t− 2)× t submatrix with
the property that, for each 1 ≤ j < t, if M ′(j, t) is the (t − 2) × (t − 2)
submatrix obtained by removing the jth and the tth columns from M ′, then
| det(M ′(j, t))| = x[n]\(Ft\Fk)/xFj

. Let M �
Δ denote the (t − 1) × t submatrix

of MΔ obtained by adding the (k, t) row to M ′. On the added row only the

entries a
(k,t)
t = xFt\Fk

and a
(k,t)
k = xFk\Ft are nonzero. If 1 ≤ j < t one has

| det(M �
Δ(j))| = xFt\Fk

·| detM ′(j, t)| = xFt\Fk
·x[n]\(Ft\Fk)/xFj

= x[n]/xFj
. If j =

t, | det(M �
Δ(t))| = |xFk\Ft · det(M ′(k, t))| = xFk\Ft · x[n]\(Ft\Fk)/xFk

= x[n]/xFt .
” ⇐ ” Suppose that the matrix MΔ contains a (t−1)×t submatrix with the

property that, for each 1 ≤ j ≤ t, if M �
Δ(j) is the (t − 1) × (t − 1) submatrix

of M �
Δ obtained by removing the jth column from M �

Δ, then | det(M �
Δ(j))| =

x[n]/xFj
. Let Ω denote the graph on [t] whose edges are those {i, j} with

1 ≤ i < j ≤ t such that the (i, j)th row of MΔ belongs to M �
Δ. Then Ω

contains no cycles.
If C = {E1, E2, . . . , Ep} were a cycle in Ω with {E1, E2} = {i1, j1} ∈ E(C),

the set of edges of the cycle, then in the matrix M �
Δ(i1) the (i, j)th rows with

(i, j) ∈ E(C) are linearly dependent (over S = k[x1, . . . , xn]), equivalently
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det M �
Δ(i1) = 0, a contradiction. Indeed, if we multiply each line (i, j) of M �

Δ

with the monomial xFi∩Fj
we obtain a matrix M �

Δ which on the (i, j)th line has

the entries xFi
and xFj

on the ith, respectively the jth column. And obviously

det M �
Δ(i1) = 0 if and only if det M �

Δ(i1) = 0. And now if we add to the line
in M �

Δ that corresponds to the edge {E1, E2} each line that corresponds to an
edge {Eq, Eq+1} multiplied by (−1)q · xFEq∩FEq+1

we obtain only zeros on the

{i1, j1} line in M �
Δ(i1), thus det M �

Δ(i1) = 0.
Ω is a graph with t vertices, t − 1 edges and without cycles. Therefore Ω

is connected, and it is a tree. Then, by the following Lemma 3.3.13 it must
have a free vertex v which has only v′ as its neighbor. This implies that
on the vth column in M �

Δ there is only one nonzero entry. Without loss of
generality we can assume that it is the tth column that contains exactly one
nonzero entry and that the (k, t)th row appear in M �

Δ. Then, for each 1 ≤ j <
t, the monomial xFt\Fk

(lying on the tth column on the (k, t)th row) divides

| det(M �
Δ(j))| = x[n]/xFj

. It follows that Ft is a leaf of Δ and Fk is a branch of

Ft. Let Δ′ = Δ \ Ft and M �
Δ′ the (t− 2)× (t− 1) submatrix of M �

Δ′ , which is

obtained by removing the (k, t)th row and the tth column from M �
Δ. Since Δ′ is a

simplicial complex on [n]\(Ft\Fk) and since xFt\Fk
·(x[n]\(Ft\Fk)/xFj

) = x[n]/xFj

for 1 ≤ j ≤ t − 1, working with induction on t it follows that Δ′ is a quasi-
forest. �
Lemma 3.3.13. Let G be a graph. If G is a tree, it has a free vertex.

Proof. If the graph G has t vertices, being a tree it must have t− 1 edges. We
use the identity ∑

v∈G

deg v = 2|E(G)|.

G does not have any isolated vertices because it is connected. If all vertices
had degree at least 2, then 2(t − 1) ≥ 2t, contradiction. Therefore G must
have a vertex of degree 1, i.e. a free vertex. �
Corollary 3.3.14. A simplicial complex Δ is a quasi-forest if and only if

projdim I(Δc) = 1.

Proof. Let F(Δ) = {F1, . . . Ft} be the facets of Δ. By Lemma 3.3.12, the
simplicial complex Δ is a quasi-forest if and only if MΔ contains a (t − 1) × t

submatrix M �
Δ whose ideal of maximal minors is I(Δc). Hence, if Δ is a

quasi-forest, the Hilbert-Burch Theorem 1.3.8 implies that projdimI(Δc) = 1.
Conversely, suppose projdimI(Δc) = 1, and let A be a (t−1)×t relation matrix
of this ideal consisting of Taylor relations. By the Hilbert-Burch Theorem
again, I(Δc) is the ideal of maximal minors of A. Since MΔ = MΔc , it follows
that A is a submatrix of MΔ. Hence Δ is a quasi-forest. �

Let’s come back to the perfect monomial ideal

I = (x4x5x6, x1x5x6, x1x2x6, x1x2x5)

from Example 3.2.8. I may be viewed as a facet ideal I = I(Δc), where

Δ = 〈(1, 2, 3), (2, 3, 4), (3, 4, 5), (3, 4, 6)〉.
28



Δ has the following geometric realization:

1 3

42

5

6

This is a quasi-forest (actually a quasi-tree), as it should be by Corollary
3.3.14.

From the proof of Lemma 3.3.12 we notice that all possible relation trees
Ω of I(Δc) can be recovered from the quasi-forest Δ = 〈F1, . . . Ft〉 as follows:
start with some leaf Fi of Δ, and let Fj be a branch of Fi. Then {i, j} will be an
edge of Ω. According to Corollary 3.4.4, 〈F(Δ) \ {Fi}〉 is again a quasi-forest.
Then remove the leaf Fi, and continue in the same way with the remaining
quasi-forest in order to find the other edges of Ω. Of course, at each step of the
procedure there may be different choices. This gives us the different possible
relation trees.

Geometrically a relation tree is obtained from a given quasi-forest by con-
necting the barycenters of the leaves and branches according to the above rules.
In our example we get:
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3.4. An algebraic proof of Dirac’s theorem.

In this section we present a characterization of chordal graphs which is some-
how a restatement of the original result of Dirac presented in Theorem 2.1.9.
We shall use the notion of quasi-forest introduced before. This new character-
ization given in Theorem 3.4.3 belongs to Herzog, Hibi, and Zheng [10].

Recall that for a graph G on [n] and with E(G) its edge set, a clique is a
subset F of [n] such that {i, j} ∈ E(G) for any i, j ∈ F with i �= j. We write
Δ(G) for the simplicial complex on [n] whose faces are the cliques of G. It
is clear that G is the 1-skeleton of Δ(G), and that if Γ is a simplicial complex
with G = skelΓ(1), then Γ is a subcomplex of Δ(G). Hence, in a certain sense,
Δ(G) is the largest simplicial complex whose 1-skeleton is G. A simplicial
complex is called flag if all its minimal nonfaces are of dimension 1, i.e. consist
of two elements.

Lemma 3.4.1. Let G be a graph and Δ the simplicial complex defined by
IΔ = I(Ḡ). Then

a) Δ = Δ(G);
b) G = skelΔ(1);
c) Δ is a quasi-forest if and only if G is a chordal graph.

Proof. a) Since the 1-skeleton of Δ(G) is G, it follows that I(Ḡ) ⊂ IΔ(G).
Conversely, let F be a minimal nonface of Δ(G). If |F | > 2, then each subset
G ⊂ F with |G| = 2 is an edge of G and therefore F is a clique in G and hence
F ∈ Δ(G), a contradiction. Thus, for every minimal nonface F of Δ(G) one
has |F | = 2. This shows that IΔ(G) = I(Ḡ). Therefore Δ = Δ(G).

b) is a consequence of a) and the remarks before the proof.
c) Theorem 2.3.12 of Fröberg guarantees that the complementary graph

G of Ḡ is a chordal graph if and only if I(Ḡ) = IΔ has a 2-linear resolu-
tion. By Theorem 2.3.21 reg(IΔ) = projdim k[Δ∨] = projdim IΔ∨ + 1, and
so, using Theorem 1.2.3, the ideal I(Ḡ) has a linear resolution if and only if
projdim IΔ∨ = 1. Since by Lemma 2.2.14 IΔ∨ = I(Δc), using Corollary 3.3.14
the conclusion follows. �

The following result will prove useful in the proof of Dirac’s theorem.

Lemma 3.4.2. A quasi-forest is a flag complex.

Proof. Let Δ be a quasi-forest on [n] and fix a leaf ordering of the facets
F1, . . . , Ft of Δ. We prove the lemma by induction on t. The case t = 1
is obvious. Let t > 1. Since Δ′ = 〈F1, . . . , , Ft−1〉 is a quasi-forest, by the
induction hypothesis it follows that Δ′ is flag. Let Fk with k < t be a branch
of Ft. Then Fi ∩ Ft ⊂ Fk ∩ Ft for any i < t and thus Δ′ consists of all faces
G of Δ with G ∩ (Ft \ Fk) = ∅. Suppose H is a minimal nonface of Δ having
at least 3 elements of [n]. We can prove that H is a minimal nonface of Δ′,
i.e. H ∩ (Ft \ Fk) = ∅. Since H is a nonface, there is some p ∈ H with p /∈ Ft.
If q ∈ Ft belongs also to H , then {p, q} ∈ Δ. Thus there is some Fj with
j �= t such that {p, q} ∈ Fj . Hence {q} ⊂ Fj ∩ Ft ⊂ Fk ∩ Ft. Thus q ∈ Fk

and H ∩ (Ft \ Fk) = ∅, as desired. But Δ′ is flag and we get a contradiction.
Therefore Δ is also flag. �
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Theorem 3.4.3. (Dirac) A finite graph G on [n] is a chordal graph if and
only if G is the 1-skeleton of a quasi-forest on [n].

Proof. The statements b) and c) in Lemma 3.4.1 imply that a chordal graph is
the 1-skeleton of a quasi-forest. Conversely, suppose that G is the 1-skeleton
of a quasi-forest Γ. Since by Lemma 3.4.2 Γ is flag, the ideal IΓ is generated
by all monomials xF with |F | = 2 and F /∈ Γ. This shows that IΓ = I(Ḡ), and
so Γ = Δ(G) by Lemma 3.4.1a). Hence G is chordal by Lemma 3.4.1c). �
Corollary 3.4.4. Let Δ be a quasi-forest and F a leaf of Δ. Then 〈F(Δ) \
{F}〉 is again a quasi-forest.

Proof. Let Δ′ = 〈F(Δ) \ {F}〉. Let G be the 1-skeleton of Δ and G′ the 1-
skeleton of Δ′. Then G′ is the subgraph of G obtained after removing all free
vertices of F and all edges containing these vertices. Since Δ is a quasi-forest,
by Dirac’s Theorem 3.4.3 G is chordal; it follows that G′ is chordal, too. And,
again by 3.4.3, Δ′ results to be a quasi-forest. �

We present in the next theorem a result similar to Dirac’s theorem 3.4.3,
which gives a characterization of the �-skeleton of a quasi-forest:

Theorem 3.4.5. Let Δ be a pure �-dimensional simplicial complex on the
vertex set [n] and Γ its 1-skeleton. Then the following conditions are equivalent:

a) Δ is the �-skeleton of a quasi-forest
b) (i) Γ is a chordal graph and

(ii) Δ is the �-skeleton of Δ(Γ).

Proof. The implication b) ⇒ a) follows from Lemma 3.4.1c). For the implica-
tion a) ⇒ b), suppose that Δ is the �-skeleton of a quasi-forest Σ. Then Γ is
also the 1-skeleton of Σ. As in the proof of Theorem 3.4.3 we conclude that
Σ = Δ(Γ). This implies b)(ii). Finally, by Dirac’s theorem Γ is chordal. �
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4. The Cohen-Macaulay property for

chordal graphs

For easy reference we recall here some of the notions that will be used in
this section.

The graphs we’ll be working with are supposed to be finite, without loops,
multiple edges or isolated vertices.

Let k be a field. A graph G is called Cohen-Macaulay over k if the edge
ideal I(G) = (xixj |{i, j} ∈ E(G)) of G is a Cohen-Macaulay ideal in S =
k[x1, ..., xn], in other words S/I(G) is a Cohen-Macaulay ring.

Suppose G is Cohen-Macaulay over k. Then we say that G is of type r over
k if r is the Cohen-Macaulay type of S/I(G), that is, r is the minimal number
of generators of the canonical module of S/I(G). The Cohen-Macaulay type
of a Cohen-Macaulay module R can also be computed as the socle dimension
of the residue class ring of R modulo a maximal regular sequence.

A ring R is Gorenstein if the Cohen-Macaulay type of R is 1. We say that
the graph G is Gorenstein over k if S/I(G) is Gorenstein over k. Finally, we
say that the graph G is Gorenstein if G has the corresponding property over
any field.

4.1. The general classification problem.

Given a field k the general problem is to classify all the graphs which are
Cohen-Macaulay over k.

In this generality the problem is as hard as to classify all Cohen-Macaulay
simplicial complexes, because given a simplicial complex Δ one can naturally
construct a finite graph G such that G is Cohen-Macaulay if and only if Δ is
Cohen-Macaulay. In fact, if P is the face poset of Δ (i.e. the poset consisting
of all faces of Δ, ordered by inclusion), then Δ is Cohen-Macaulay if and only
if the order complex Δ(P ) is Cohen-Macaulay. Since the order complex Δ(P )
is flag, it follows that there is a finite graph G such that I(G) coincides with
the Stanley-Reisner ideal of Δ(P ).

Therefore, one cannot expect a general classification theorem. On the other
hand, some positive results have been obtained recently for several classes of
graphs: trees, cycles, bipartite graphs and chordal graphs. We briefly men-
tion here without proof the results concerning the first three classes mentioned
above. The classification of chordal graphs will be the main topic of the fol-
lowing section.
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Theorem 4.1.1. [16](Theorem 6.3.4) Let T be a tree with vertex set V and
edge E. Then T is Cohen-Macaulay if and only if |V | ≤ 2 or 2 < |V | = 2r
and there are vertices x1, ..., xr, y1, ..., yr so that deg(xi) = 1, deg(yi) ≥ 2 and
{xi, yi} ∈ E for i = 1, ..., r.

Theorem 4.1.2. [16](Corollary 6.3.5) If G is a tree, then G is Cohen-Macaulay
if and only if G is unmixed.

Corollary 4.1.3. [16] (Corollary 6.3.6) The only Cohen-Macaulay cycles are
a triangle and a pentagon.

One knows that bipartite graphs are characterized by the lack of odd length
cycles. Since trees are acyclic, any tree is such a graph. We go further in our
survey and check the more general case of bipartite graphs.

Theorem 4.1.4. [16] (Theorem 6.4.4) Let G be a Cohen-Macaulay bipartite
graph. If G is not a discrete graph, then there is a vertex v ∈ V (G) such that
deg(v) = 1.

Corollary 4.1.5. [16] (Corollary 6.4.5) If G is a Cohen-Macaulay bipartite
graph, then G\{v} is Cohen-Macaulay for some vertex v.

Definition 4.1.6. The complementary simplicial complex ΔG of the graph G
is

ΔG = {A ⊂ V |A is an independent set in G},
where V is the vertex set of G.

Notice that ΔG is exactly the Stanley-Reisner simplicial complex of I(G).

Theorem 4.1.7. [16] (Theorem 6.4.7) If G is a Cohen-Macaulay bipartite
graph, then the Stanley-Reisner simplicial complex ΔG of I(G) is shellable.

In [9] Herzog and Hibi give a complete classification of all bipartite Cohen-
Macaulay and Gorenstein graphs. In the following we shall present their re-
sults.

Let G be a finite bipartite graph on the vertex set W ∪ W ′ with W =
{i1, ..., is} and W ′ = {j1, ..., jt} where s ≤ t (i.e. any edge of G is of the form
{i, j} with i ∈ W and j ∈ W ′). For each subset U of W we write N(U) for the
set of those vertices j ∈ W ′ for which there is a vertex i ∈ U such that {i, j}
is an edge in G.

The ”Marriage Problem” (check for a proof in [16], Theorem 6.1.8) says
that if |U | ≤ |N(U)| for all subsets U of W , then there is a subset W ′′ =
{jl1 , ..., jls} ⊂ W ′ with |W ′′| = s such that {ik, jlk} is an edge of G for k =
1, 2, ..., s.

Let G be a finite bipartite graph on the vertex set W ∪ W ′ and suppose
that G is unmixed. Since each W and W ′ is a minimal vertex cover, one has
|W | = |W ′|. Let W = {x1, ..., xn} and W ′ = {y1, ..., yn}. Since (W \U)∪N(U)
is a vertex cover of G for all subsets U of W and since G is unmixed, it follows
that |U | ≤ |N(U)| for all subsets U of W . Thus, the ”Marriage Problem”
enables us to assume that G satisfies the following condition:

(�) {xi, yi} is an edge of G for all 1 ≤ i ≤ n.
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Furthermore, suppose that G is a Cohen-Macaulay graph. Then, it can
be proved (see [9] Lemma 3.3) that, after a suitable relabeling of the vertices
y1, ..., yn, the edge set of G satisfies the following two conditions:

(�) {xi, yi} is an edge of G for all 1 ≤ i ≤ n.

(��) If {xi, yj} is an edge of G, then i ≤ j.

Adding a third condition one obtains the necessary and sufficient conditions
for a bipartite graph to be Cohen-Macaulay .

Theorem 4.1.8. [9](Theorem 3.4) Let G be a finite bipartite graph on the
vertex set W ∪ W ′, where W = {x1, ..., xn} , W ′ = {y1, ..., yn} and suppose
that the edge set of G satisfies the conditions ( �) and ( ��) above. Then G is
a Cohen-Macaulay graph if and only if the following condition (���) holds:

(���)If {xi, yj} are edges of G with i < j < k, then {xi, yk} is an edge of G.

Corollary 4.1.9. [9](Corollary 3.5) Let G be a finite graph and ΔG the sim-
plicial complex whose Stanley-Reisner ideal coincides with I(G). Then G is
Cohen-Macaulay if and only if ΔG is pure and strongly connected.

It is given also a complete characterization of bipartite Gorenstein graphs.

Theorem 4.1.10. [9](Corollary 3.6) A Cohen-Macaulay bipartite graph G is
Gorenstein if and only if G is the disjoint union of edges.
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4.2. The characterization of all Cohen-Macaulay chordal graphs.

Before passing to the main theorem we need to mention the following technical
results.

Lemma 4.2.1. Let R be a Noetherian ring, S = R[x1, ..., xn] the polynomial
ring over R, k an integer with 0 ≤ k < n, and J the ideal

J = (I1x1, ..., Ikxk, {xixj}1≤i<j≤n) ⊂ S,

where I1, ..., Ik are ideals in R. Then the element x =
∑n

i=1 xi is a non-
zerodivisor on S/J .

Proof. For a subset T ⊂ [n] we let LT be the ideal generated by all monomials
xixj with i, j ∈ T and i < j. Let IT =

∑
j∈T Ij and XT = ({xj}j∈T ). One sees

easily that

LT =
⋂
�∈T

XT\{�}.

Hence we get J = (I1x1, ..., Ikxk, L[n]) =
⋂

T⊂[k](IT , X[k]\T , L[n]) =

=
⋂

T⊂[k]

(IT , X[k]\T , L[n]\([k]\T )) =
⋂

T⊂[k], �∈[n]\([k]\T )

(IT , X[k]\T , X([n]\([k]\T ))\{�}) =

=
⋂

T⊂[k], �∈[n]\([k]\T )

(IT , X[n]\{�})

For an ideal J in a Noetherian ring R, if J = Q1

⋂ · · ·⋂ Qs is the primary
decomposition and

√
Qi = Pi, for all i = 1, . . . , s, then x is a non-zerodivisor

of J if and only if x /∈ P1

⋃ · · ·⋃ Ps. If J = J1

⋂ · · ·⋂ Jt and for each 1 ≤ i ≤ t

as above
√

Ji =
⋂si

j=1 Pij , then
√

J =
⋂

i,j Pij and therefore P1

⋃ · · ·⋃Ps ⊂⋃
i,j Pij . Hence, in order to prove that x is a non-zerodivisor modulo J it suffices

to show that x is a non-zerodivisor modulo each of the ideals (IT , X[n]\{�}).
To see this, we first pass to the residue class ring modulo IT , and hence if

we replace R by R/IT , it remains to be shown that x is a non-zerodivisor
on R[x1, . . . , xn]/(x1, . . . , x�−1, x�+1, . . . , xn). But this is obvious: if xf =
x1f1 + · · · + x�−1f�−1 + x�+1f�+1 + · · ·xnfn , then x�f(0, . . . , x�, . . . , 0) = 0,
and f(0, . . . , x�, . . . , 0) = 0 , hence f ∈ (x1, . . . , x�−1, x�+1, . . . , xn). �
Lemma 4.2.2. Let ϕ : k[x1, . . . , xn] → k[x1, . . . , xn−1] be the k-algebra ho-
momorphism given by ϕ(xi) = xi for any i = 1, . . . , n − 1 and ϕ(xn) =
−x1 − x2 − · · · − xn−1. Let x denote x1 + · · · + xn. Then

a) the ideal I = ({xixj |1 ≤ i < j ≤ n}) is mapped by ϕ into the ideal

J = (x1, . . . , xn−1)
2 = (x2

1, . . . , x
2
n−1, {xixj |1 ≤ i < j ≤ n − 1});

b) ϕ(x) = 0 and therefore ϕ induces a homomorphism

ψ : k[x1, . . . , xn]/(I, x) → k[x1, . . . , xn−1]/J ;

c) ψ is onto and it is a k-algebra isomorphism.

Proof. Easy verification. �
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Recall that for a simplicial complex Δ a vertex i is called a free vertex if it
belongs to precisely one facet of Δ . For a given graph G the associated flag
complex Δ(G) is the simplicial complex whose faces are the cliques of G.

Theorem 4.2.3. Let k be any field and let G be a chordal graph on the vertex
set [n]. Let F1, . . . , Fm be the facets of Δ(G) which admit a free vertex. Then
the following conditions are equivalent:

a) G is Cohen-Macaulay,

b) G is Cohen-Macaulay over k,

c) G is unmixed ,

d) [n] is the disjoint union of F1, . . . , Fm.

Proof. The implication a) ⇒ b) is trivial.
b) ⇒ c): Since any Cohen-Macaulay ring is height unmixed, it follows that

G is unmixed.
c) ⇒ d): Let E(G) be the edge set of the chordal graph G. Let F1, . . . , Fm

be the facets of Δ(G) with free vertices. Fix a free vertex vi of Fi and set
W = {v1, . . . , vm}. Since all vi are free, it yields that these vertices are distinct.
Suppose that B = [n] \ (∪m

i=1Fi) �= ∅ and write G|B for the induced subgraph
of G on B. In particular, G|B is unmixed. Notice that {vi, b} /∈ E(G) for all
1 ≤ i ≤ m and for all b ∈ B.

Take X (included in B) a minimal vertex cover of G|B. Then ((∪m
i=1Fi) \

W ) ∪ X is a vertex cover of G and it is minimal due to the preceding remark
and due to the fact that from the set of vertices (∪m

i=1Fi)\W we can not remove
any more vertices and still obtain a vertex cover, because otherwise one could
not cover all the edges which contain the removed free vertices. Since the
induced graph G|B is again chordal, by induction on the number of vertices,
it follows that if H1, . . . , Hs are the facets of Δ(G|B) with free vertices, then
B is the disjoint union B = ∪s

j=1Hj. Let v′
j be a free vertex of Hj and set

W ′ = {v′
1, . . . , v

′
s}. Since ((∪m

i=1Fi) \ W ) ∪ (B \ W ′) is a minimal vertex cover
of G and since G is unmixed, every minimal vertex cover of G consists of
n − (m + s) vertices.

We claim that Fi ∩ Fj = ∅ if i �= j. In fact, if, say, Fi ∩ Fj �= ∅ and w ∈ [n]
satisfies w ∈ Fi for all 1 ≤ i ≤ � (where � ≥ 2) and w /∈ Fi for all � < i ≤ m
(hence w �= vi for any 1 ≤ i ≤ m), then Z = (∪m

i=1Fi) \ {w, v�+1, . . . , vm} is a
vertex cover of the induced subgraph G′ = G|[n]\B, and this is a minimal one
by the same argument as above. Let Y be a minimal vertex cover of G with
Z ⊂ Y . Since Y ∩ B is a vertex cover of G|B, one has |Y ∩ B| ≥ |B| − s.
Moreover, |Y ∩ ([n] \B)| ≥ n− |B| − (m− � + 1) > n− |B| −m. Hence |Y | =
|Y ∩ B| + |Y ∩ ([n] \ B)| > n − (m + s), a contradiction.

Consequently, a subset Y of [n] is a minimal vertex cover of G if and only if
|Y ∩ Fi| = |Fi| − 1 for all 1 ≤ i ≤ m and |Y ∩Hj| = |Hj| − 1 for all 1 ≤ j ≤ s.

Since Δ(G|B) is a quasi–forest, it has a leaf which must have a free vertex and
it is thus one of the facets H1, . . . , Hs. Suppose H1 is leaf of Δ(G|B). Notice
that if δ and δ′ (where δ �= δ′) are two free vertices of H1 with {δ, a} ∈ E(G)
and {δ′, a′} ∈ E(G), where a and a′ belong to [n] \ B such that a �= a′ and
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{a, a′} ∈ E(G), then either {δ, a′} ∈ E(G) or {δ′, a} ∈ E(G) because G is
chordal and {δ, δ′} ∈ E(G).

We intend to build a subset A ⊂ [n] \ B such that:
i) {a, b} /∈ E(G) for all a, b ∈ A with a �= b,
ii) for each free vertex δ of H1 one has {δ, a} ∈ E(G) for some a ∈ A, and
iii) for each a ∈ A, one has {δ, a} ∈ E(G) for some free vertex δ of H1.
One sees easily that a subset A ⊂ [n] \B satisfying ii) and iii) above exists:

by the above argument, for each free vertex δ ∈ H1 there is some uδ ∈ [n] \ B
with {δ, uδ} ∈ E(G) and take A to be the set containing all vertices u obtained
in this manner. Now, if {a, a′} ∈ E(G), {δ, a} ∈ E(G) and {δ, a′} /∈ E(G) for
some a, a′ ∈ A with a �= a′ and for a free vertex δ of H1, then every free
vertex δ′ of H1 with {δ′, a′} ∈ E(G) must satisfy {δ′, a} ∈ E(G). Repeating
this technique one obtains a subset A ⊂ [n] \ B satisfying i), ii) and iii), as
required.

If s > 1, then H1 has a branch. Let w0 /∈ H1 be a vertex belonging to a
branch of the leaf H1 of G|B. Thus {ξ, w0} ∈ E(G) for all nonfree vertices
ξ of H1 : since ξ is not free, it belongs to some other facet of Δ(G|B). But
w0 belongs also to all branches of H1; therefore indeed {ξ, w0} ∈ E(G). We
claim that either {a, w0} /∈ E(G) for all a ∈ A, or one has some a ∈ A with
{a, ξ} ∈ E(G) for every nonfree vertex ξ of H1. To see why this is true, suppose
{a, w0} ∈ E(G) and {δ, a} ∈ E(G) for some a ∈ A and for some free vertex δ
of H1. Then one has a cycle (a, δ, ξ, w0) of length four for every nonfree vertex
ξ of H1. Since {δ, w0} /∈ E(G) (δ is free), one has {a, ξ} ∈ E(G).

Let X be a minimal vertex over of G such that X ⊂ [n] \ (A ∪ {w0})
(respectively X ⊂ [n] \ A) if {a, w0} /∈ E(G) for all a ∈ A (respectively if one
has some a ∈ A with {a, ξ} ∈ E(G) for every nonfree ξ of H1). In the first
case {a, w0} /∈ E(G) for any a ∈ A; if γ ∈ H1 is free there is some a ∈ A \ X
with {γ, a} ∈ E(G), else if γ ∈ H1 is not free there is {w0, γ} ∈ E(G). In the
second case there is {a, w0} ∈ E(G), and if γ ∈ H1 is free there is some a ∈ A,
hence a /∈ X with {γ, a} ∈ E(G). If γ ∈ H1 is not free, then {γ, a} ∈ E(G)
for any a ∈ A. To conclude, for each vertex γ ∈ H1 there is w /∈ X with
{γ, w} ∈ E(G). Hence H1 ⊂ X, in contrast to our considerations before.
This contradiction guarantees that B = ∅. Hence [n] is the disjoint union
[n] = ∪m

i=1Fi, as required.
Finally, suppose that s = 1. Then H1 is the only facet of Δ(G|B). Then

X = ∪m
i=1(Fi \vi) is a minimal vertex cover of G with H1 ⊂ X, a contradiction.

d) ⇒ c) Let F1, . . . , Fm denote the facets of Δ(G) with free vertices and for
each 1 ≤ i ≤ m write Fi also for the set of vertices of Fi. Given a minimal
vertex cover X ⊂ [n] of G, one has |X ∩ Fi| ≥ |Fi| − 1 for all i since Fi is a
clique of G. If, however, for some i one has |X ∩ Fi| = |Fi|, i.e. Fi ⊂ X, then
X \ {vi} is a vertex cover of G for any free vertex vi of Fi. This contradicts
the fact that X is a minimal vertex cover of G. Thus |X ∩ Fi| = |Fi| − 1 for
all i. Since [n] is the disjoint union [n] = ∪m

i=1Fi, it follows that |X| = n − m
and G is unmixed, as desired.

c) and d) ⇒ a) We know that G is unmixed. Moreover, if vi ∈ Fi is a free
vertex, then [n] \ {v1, . . . , vm} is a minimal vertex cover of G. In particular, it
follows that dimS/I(G) = m.
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For i = 1, . . . , m, we set yi =
∑

j∈Fi
xj . We shall show that y1, . . . , ym is a

regular sequence on S/I(G). This yields that G is a Cohen-Macaulay graph.
Let Fi = {i1, . . . , ik} and assume that i�+1, . . . , ik are the free vertices of Fi.

Let G′ ⊂ G be the induced subgraph of G on the vertex set [n] \ {i1, . . . , ik}.
Then I(G) = (I(G′), J1xi1 , . . . , J�xi� , J) where Jj = ({xr|{r, ij} ∈ E(G)}) for
j = 1, . . . , � and J = ({xirxis |1 ≤ r < s ≤ k}).

Since [n] is the disjoint union of F1, . . . , Fm, it follows that all generators
of the ideal (I(G′), y1, . . . , yi−1) belong to K[{xi}i∈[n]\Fi

]/(I(G′), y1, . . . , yi−1).
Thus, if we set

R = K[{xi}i∈[n]\Fi
]/(I(G′), y1, . . . , yi−1),

then

(S/I(G))/(y1, . . . , yi−1)(S/I(G))

∼= R[xi1 , . . . , xik ]/(I1xi1 , . . . , I�xi� , {xirxis |1 ≤ r < s ≤ k}),
where for each j, the ideal Ij is the image of Jj under the residue class map
onto R. Thus Lemma 4.2.1 implies that yi is regular on

(S/I(G))/(y1, . . . , yi−1)(S/I(G)).

�
Corollary 4.2.4. Let G be a Cohen-Macaulay chordal graph, and let F1, . . . , Fm

be the facets of Δ(G) which have a free vertex. Let ij be a free vertex of Fj for
every j = 1, . . . , m and let G′ be the induced subgraph of G on the vertex set
[n] \ {i1, . . . , im}. Then

a) the type of G is the number of maximal independent subsets of G′,
b) G is Gorenstein if and only if G is a disjoint union of edges.

Proof. a) Let F ⊂ [n] and S = k[x1, . . . , xn]. If J is the ideal generated by
all monomials xixj with i, j ∈ F and i < j, and x =

∑
i∈F xi, notice that by

Lemma 4.2.2 for any i ∈ F one has

(S/J)/x(S/J) ∼= Si/({xj|j ∈ F, j �= i})2,

where Si = k[x1, . . . , xi−1, xi+1, . . . , xn].
Thus, if we factor out the Cohen-Macaulay ring S/I(G) by a maximal regular

sequence as in the proof of Theorem 4.2.3, we obtain an Artinian ring of the
form

A = T/(P 2
1 , . . . , P 2

m, I(G′′)).

Here we denote by Pj = ({xs| s ∈ Fj, s �= ij}), G′′ is the subgraph of G con-
sisting of all edges which do not belong to any Fj , and T is the polynomial
ring over k in the set of variables X = {xs| s ∈ [n], s �= ij for all j = 1, . . . , m}.
In doing the above factorisation we used from d) in Theorem 4.2.3 that [n] is
the disjoint union of the facets Fi. It is obvious that A is obtained from the
polynomial ring T by factoring out the squares of all variables of T and all xixj

with {i, j} ∈ E(G′). Therefore A has a k-basis of squarefree monomials corre-
sponding to the independent subsets of G′, and the socle of A is generated as
a k-vector space by the monomials corresponding to the maximal independent
subsets of G′.
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b) If G is a disjoint union of edges, then I(G) is a complete intersection,
and hence Gorenstein. Conversely, suppose that G is Gorenstein. Then A
is Gorenstein. Since A is an Artinian ring with monomial relations, A is
Gorenstein if and only if A is a complete intersection. This is the case only if
E(G′) = ∅, in which case G is a disjoint union of edges. �
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