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Abstract. We prove a local index formula for cusp-pseudodifferential operators on a manifold
with boundary. This is known to be equivalent to an index formula for manifolds with cylindri-
cal ends, and hence we obtain a new proof of the classical Atiyah-Patodi-Singer index theorem
for Dirac operators on manifolds with boundary, as well as an extension of Melrose’s b-index
theorem. Our approach is based on an unpublished paper by Melrose and Nistor “Homology of
pseudo-differential operators I. Manifolds with boundary” [39]. We therefore take the opportu-
nity to review some of the results from that paper from the perspective of subsequent research
on the Hochschild and cyclic homologies of algebras of pseudodifferential operators and of their
applications to index theory.

Introduction

About ten years ago, three papers have been written on the homological invariants of algebras
of pseudodifferential operators on singular spaces (conical manifolds and manifolds with bound-
ary). These papers by Melrose [37], by Melrose and Nistor [39], and by Schrohe [51], have had a
significant impact on two related subjects of research: Hochschild and cyclic homology of algebras
of pseudodifferential operators and index theory on singular and non-compact manifolds. One of
the goals of the present work is to complete the results from [39], as well as to provide an up-to-
date account of the unpublished results of that paper. We try to provide extensive references to
subsequent work. We complete the results of [39] by fully relating the results of that paper with
the Atiyah-Patodi-Singer index theorem for Dirac operators.

Most of the results from [39] on Hochschild homology are now published in greater generality
see [9, 10, 28, 29] (some of these papers were motivated at least in part by [39]). On the other
hand, the index formulas of [39] have since then been improved. An index formula simplifying the
Index Theorem of [39] appeared in an unpublished manuscript [25], later generalized to manifolds
with corners [26]. A similar index formula for b-operators on manifolds with corners has been
found by Loya [32, 33], extending earlier work by Piazza [50]. The method of proof used in the
present paper is a very simple instance of the method used in [27]. Again, the ideas of [39] were
at the origin of [27]. In turn, [39] relied in part on the approach in [45] to index theorems using
the boundary map in cohomology.

Many quite significant related results on traces, homology, and index theorems in the framework
of pseudodifferential operators on singular spaces were obtained more recently by Grubb [15],
Grubb and Schrohe [17, 16], Nazaikinskii, Savin, Schulze, and Sternin [43], Nest and Schrohe [44],
Schrohe [52], Nistor [48, 49]. The related problem of multiplicative determinants and multiplicative
defects was studied by Scott and Wojciechowski [54], Scott [53], Lescure and Paycha [30], and by
others. Progress has also been achieve on the analysis underlying the index problem for cusp-
pseudodifferential operators. For example, a simple definition using groupoids has been given in
[46] and in [23] it was proved that the cusp algebra is closed under holomorphic functional calculus,
which is a result of Melrose.

The index formula in [39] was motivated, in part, by the desire to get a better understanding
of the Atiyah-Patodi-Singer index theorem [8] and to eventually extend it to other singular (or
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non-compact) spaces. The Atiyah-Patodi-Singer index theorem can be used to obtain a formula
for the index of elliptic boundary value problems on domains with conical points [22], in the
same way as the usual Atiyah-Singer index theorem [7] can be used to obtain an index formula
for elliptic boundary problems [6] on smooth domains. The relevance of non-smooth domains to
practical problems (Structural Analysis in Civil Engineering and the related numerical methods)
makes it desirable to extend these results to other types of domains, especially polyhedral domains
in three dimensions. The homological approach to index theorems [13, 45], the excision property
in periodic cyclic homology [14], and especially the approach presented in this paper show that the
index of a Fredholm pseudodifferential operator on a Lie manifold [2] can always be represented
by a local term that is given by the Atiyah-Patodi-Singer integrand and some non-local terms that
can be expressed completely in terms of the behavior at infinity of the operator.

We work in the following geometric context: X is a compact manifold with boundary (for
notational simplicity, we shall assume that X is connected with non-empty boundary); E → X
is a smooth Hermitian vector bundle with a fixed metric; x : X → [0,∞) is a boundary-defining
function; ∂X × [0, ε) ↪→ X is a product decomposition of X near the boundary; and g is a
Riemannian metric on X◦ of the following form near the boundary. Let M := ∂X, then

(1) g = a

((
dx

x2
+ α(x)

)2

+ gM (x)

)
,

where a : [0, ε)×M → (0,∞) is a smooth family of strictly positive functions, α : [0, ε) → Ω1(M)
is a smooth function with values 1-forms on M , and gM : [0, ε) → T ∗M ⊗ T ∗M is a smooth
function with values Riemannian metrics on M := ∂X. The metric g then turns out to be what
is sometimes called a “cusp-metric.”

The natural class of differential operators associated to a cusp metric is the class of cusp
differential operators. These are differential operators generated as an algebra near the boundary
by x2∂x and Py, where Py : [0, ε) → Diff(M) is a smooth family of differential operators on [0, ε)
with values differential operators on M . No condition is imposed on cusp differential operators
away from the boundary. All geometric operators associated to a cusp metric are cusp differential
operators. This includes the k-form Laplacian ∆c and the Dirac operator associated to a spinc

structure on X. Let D be a cusp differential operator acting between sections of some bundles on
X. If D is Fredholm, then its generalized inverse belongs to the cusp calculus of pseudodifferential
operators (because the algebra of cusp-differential operators is closed under holomorphic functional
calculus). We will explain how to get an index formula for Fredholm cusp-pseudodifferential
operators which contains as a particular case the standard index formulas on manifolds with
asymptotically cylindrical ends. For instance, one new contribution of the present work is an
index formula for the Dirac operator for certain non-exact cusp metrics. One of our main results
(Theorem 16) is an index formula for the spin Dirac operator for a metric conformal to the cusp
metric g:

gp := x2pg

in the Fredholm case, for p ≥ 0 and with the additional assumption that α(0) is closed.
In Section 1 we review the definition of Hochschild homology and a general method of computing

the index of elliptic operators on closed manifolds. This method is inspired from homology and
relies on residue traces. The cusp algebra of pseudodifferential operators is recalled in Section
2. We also review the necessary facts about the ideals and subquotients of the cusp algebra. In
Section 3 we recall the residue functionals on the cusp algebra introduced in [39]. In Section 4
we compute the index in terms of the residue functionals as in [39], and we show that the local
contribution is the same as the more familiar constant term in the supertrace of the heat density.
Moreover we link the boundary term with the eta invariant. Finally in Section 5 we review the
computation of the Hochschild homology groups of the cusp algebra from [39] and from subsequent
papers.

We thank Richard Melrose for useful discussions. The method employed in this paper of using
zeta functions, residues, and commutators for index calculations is due in part to him. We also
thank Bernd Ammann, Moulay Benameur, Robert Lauter, and Paul Loya for useful comments.
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1. Motivation: the case of closed manifolds

Let Ψz(X;E,F ) denote the space of classical pseudodifferential operators of order z ∈ C over
a compact, boundaryless manifold X, acting between sections of vector bundles E,F → X. The
principal symbol map gives rise to the short exact sequence:

0 → Ψz−1(X;E,F ) ↪→ Ψz(X;E,F ) σz→ C∞(S∗X,End(π∗E, π∗F )) → 0

where S∗X is the sphere bundle inside the cotangent bundle T ∗X for a fixed metric, and π :
S∗X → X is the bundle projection. An operator A ∈ Ψz(X;E,F ) is called elliptic if σk(A) ∈
C∞(S∗X,End(π∗E, π∗F )) is invertible. Such an operator is Fredholm (the meaning of which is
unequivocal in this situation). Its index is computed by the Atiyah-Singer formula in terms of
the K-theory element in K0

c (T ∗X) represented by the principal symbol. Note that although the
bundles E and F become isomorphic on S∗X after pull-back, they may be non-isomorphic on X
if the Euler class of X is nonzero.

Let now A ∈ Ψk(X;E) be an elliptic operator of order k ∈ Z acting on the sections of a fixed
bundle E, in other words we assume E ∼= F . One can give an interpretation of its index in terms
of Hochschild homology (cf. [12, 13, 39, 45]). Namely, the operators of integral order form an
algebra ΨZ(X) (we suppress the bundle E from the notation). Inside this algebra we have the
bilateral ideal of smoothing operators, I = Ψ−∞(X) which fits into the short exact sequence

(2) 0 → I → ΨZ(X) → A→ 0.

The quotient A := ΨZ(X)/Ψ−∞(X) is isomorphic as a vector space to the algebra of formal
Laurent series with values in C∞(S∗X,End(π∗E, π∗F )), in fact these two algebras have isomorphic
graded associated algebras (with respect to the order filtration).

Hochschild homology of an algebra with unit A is defined, in low dimensions, by the differential
complex

. . .→ A⊗ A⊗ A
∂2→ A⊗ A

∂1→ A → 0
where

∂2(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2 − a0 ⊗ a1a2 + a2a0 ⊗ a1,

∂1(a0 ⊗ a1) = a0a1 − a1a0.

If A ∈ ΨZ(X) is elliptic, then by a Neumann series argument we see that its image in A is
invertible. We get the well known fundamental Hochschild 1-cycle,

(3) hA := [A]⊗ [A]−1 ∈ C1(A).

For topological algebras, it is more reasonable to consider instead the continuous homology, ob-
tained by replacing the usual tensor product with the projective tensor product. In our case,
however, the multiplication in the algebra A is not jointly continuous. A more delicate completion
is then needed for the space of Hochschild chains [9].

Using the spectral sequence of the Hochschild complex filtered by the total order, the Hochschild
homology of A was obtained in [11] and in an unpublished work of Wodzicki.

(4) HHk(A) ∼= H2n−k(S∗X × S1).

Also, it is not hard to see that the operator trace map Tr : I → C descends to an isomorphism
between HH0(I) and C.

Now the sequence (2) gives rise to a long exact sequence in homology:

HH1(A) δ→ HH0(I) → HH0(ΨZ(X)) → HH0(A) → 0.

This holds because the ideal I is H-unital [58].
Let B ∈ ΨZ(X) be an inverse of A up to I, thus [B] = [A]−1 ∈ A. Then by definition, δ(hA)

equals the commutator [A,B] ∈ I. But Calderòn’s formula for the index reads precisely

Ind(A) = Tr[A,B]

for any inverse B of A modulo I. Therefore

Ind(A) = Tr ◦δ(hA).
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To get a local expression for the index in terms of [A], let us recall the construction of the
Guillemin–Wodzicki noncommutative residue. Let Q ∈ Ψ1(X) be a self-adjoint, strictly posi-
tive pseudodifferential operator. Its complex powers belong to the calculus of pseudodifferential
operators. It follows that for all entire maps A : C → Ψk(X), k ∈ C, the function

Z(A(z); z) := tr(A(z)Q−z)

is well-defined for <(z) > k+ n and extends meromorphically to C with simple poles. (See [5] for
the technical issues related to holomorphic functions with values in the space of pseudodifferential
operators.) The residue

TrR(A(0)) := Resz=0Z(A; z)
is independent ofQ, depends only on A(0) and defines a trace functional on ΨZ(X). This functional
vanishes on I and descends to an isomorphism from HH0(ΨZ(X)) to C. Another notable feature
of TrR is its local character, namely the fact that it is expressible in terms of the full symbol
expansion of A. We compute below the index using this functional.

From Calderòn’s formula, Ind(A) = Z([A,B]; 0). Next, for <(z) > n,

Z([A,B]; z) =Tr((ABQ−z −BAQ−z))

=Tr((ABQ−z −AQ−zB)) by the trace property

=zZ
(
A
B −Q−zBQz

z
; z
)
.

Define [logQ,B] as the value at z = 0 of (B − Q−zBQz)/z. Although we shall not use this in
what follows, let us make the following remark. Let us define logQ using functional calculus for
unbounded, self-adjoint operators. Then [logQ,B] is the commutator of logQ and B. From the
above discussion on the properties of the noncommutative residue, we finally get

Ind(A) = TrR(A[logQ,B])

where B is any inverse of A modulo I.
In homological terms, the derivation [logQ, ·] acts on the Hochschild complex by the usual

actions of derivations on Hochschild homology. This action on Hochschild homology corresponds,
under the identification (4), to the cup product with the generator of H1(S1). Let us explain this
in more detail. Let us denote by [A] the class of A in the quotient A ' ΨZ(X)/I, then [A]−1 = [B]
is defined and hA := [A]⊗ [A]−1 defines a class in HH0(A), Equation (3). With these notation, the
residue trace is simply a constant multiple of pairing with the fundamental class of S∗M . Thus

(5) Ind(A) = TrR(ılog QhA)

does express the index as the integral of a certain volume form on S∗X locally defined in terms
of [A]. The cohomology class of this form on S∗X is (by the Atiyah-Singer index formula) given
by (−1)np∗T (X), where n is the dimension of X, T (X) is the Todd class of X, p : S∗X → X is
the natural projection, and p∗ is the map induces by p on cohomology.

A serious shortcoming of this point of view is the fact that the positive and negative spinor
bundles on an even-dimensional closed spin manifold are in general not isomorphic. Thus we
cannot hope to obtain directly the index formula for twisted Dirac operators in this way. As we
will see, this problem disappears in the case of manifolds with boundary.

It is the above general discussion that we extend to the case of a compact manifold with
boundary in such a way that (5) becomes a pseudodifferential index formula in that context,
extending the Atiyah-Patodi-Singer-Melrose index theorem for b-Dirac operators. In this setting,
every two bundles, between which an elliptic operator acts, must be isomorphic (see Remark 9)
so without loss of generality we can work with operators acting on sections of a fixed bundle.

2. The cusp algebra, ideals and quotients

We shall use in this and in the following sections the geometric framework described in the
Introduction. We shall also need the algebra ΨZ

c (X) of cusp-pseudodifferential operators defined by
Melrose [34, 36, 35] (throughout this paper, we shall use only classical pseudodifferential operators
and symbols). This algebra is a quantization of the algebra of cusp differential operators in the
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same way in which the usual algebra of pseudodifferential operators on a boundaryless manifold is
a quantization of the algebra of differential operators on that manifold. An alternative definition
of the algebra ΨZ

c (X) is given in [23]. In [24], one can find a proof of Melrose’s result that ΨZ
c (X)

is closed under holomorphic functional calculus. This is essentially equivalent to the fact that if
T ∈ Ψm

c (X), m ≥ 0, is elliptic and invertible as an unbounded operator, then T ∈ Ψ−m
c (X).

We look at the cusp calculus instead of the more familiar b-calculus for two reasons. First, unlike
the b-calculus, the algebra ΨZ

c (X) is spectrally invariant, which allows us to consider complex
powers inside the calculus. Secondly, every b-differential operator is a cusp differential operator (by
a transcendental change of variables) but not vice versa, so our index theorem includes the b-index
theorem of Melrose [35] for Dirac operators on asymptotically cylindrical manifolds. However, the
b-calculus Ψ0

b(X) and the cusp calculus Ψ0
c(X) have isomorphic norm closures in the bounded

operators on L2(X). In [38], the K-theory of the b-calculus is described. Since the K-theory is
given in terms of the norm completion, the conclusions are equally valid for the cusp calculus.

It turns out that the cusp algebra ΨZ
c (X) has a nice structure of ideals. We shall be, in

fact, more interested in understanding the subquotients of these ideals than in understanding the
algebra ΨZ

c (X). Fortunately, these subquotients are much easier to define than the algebra ΨZ
c (X).

We now proceed to define these ideals. We first need to fix some notation.
If x ∈ C∞(X) is a global boundary defining function fixing the trivialization of the normal

bundle then the Lie algebra of ‘cusp vector fields’ on X is

Vc(X) := {V ∈ C∞(X;TX), V x ∈ x2C∞(X)}.

The subspace Ċ∞(X) ⊂ C∞(X) of functions vanishing to all orders at the boundary is preserved
by the action of Vc(X). Furthermore, conjugation by any complex power xz of a boundary defining
function preserves the algebra ΨZ

c (X) of cusp pseudodifferential operators. Just as we consider
the algebra of all integral order pseudodifferential operators, it is also convenient to consider

x−ZΨZ
c (X) :=

⋃
k∈Z

⋃
m∈Z

xkΨm
c (X) and I := x∞Ψ−∞

c (X) =
⋂
k∈Z

⋂
m∈Z

xkΨm
c (X).

The algebra I turns out to be an H-unital ideal of x−ZΨZ
c (X). Let A := x−ZΨZ

c (X)/I. Then
we obtain a long exact sequence in Hochschild cohomology in which the boundary map ∂ can be
interpreted as an index map [45] in the sense that ∂([A]⊗ [A]−1) = Ind(A) ∈ Z.

To define the other ideals we are interested in, let us first notice that the ideal I := x∞Ψ−∞
c (X)

was defined as the residual ideal for the joint filtration by order and by boundary power. When
considered separately, each of these filtrations gives rise, in turn, to ideals and associated quotients
as follows

I∂ := x−ZΨ−∞
c (X)/I, x−ZΨ−∞

c (X) :=
⋃
k∈Z

( ⋂
m∈Z

xkΨm
c (X)

)
,

Iσ := x∞ΨZ
c (X)/I, x∞ΨZ

c (X) :=
⋂
k∈Z

( ⋃
m∈Z

xkΨm
c (X)

)
,

Aσ = A/I∂ , A∂ := A/Iσ, and A∂,σ := A/(Iσ + I∂).(6)

These algebras give rise to the following commutative diagram in which both the lines and the
columns are exact.
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(7) 0

��

0

��

0

��
0 // I

��

// x∞ΨZ
c (X)

��

// Iσ

��

// 0

0 // x−ZΨ−∞
c (X) //

��

x−ZΨZ
c (X) //

��

Aσ
//

��

0

0 // I∂
//

��

A∂

��

// A∂,σ

��

// 0

0 0 0

The filtrations given by order and, respectively, by the vanishing order at the boundary give
rise to the principal symbol map and to the indicial map. The first is completely analogous
to the principal symbol map in the boundaryless case and reduces to it over the interior as
follows. The choice of a cusp structure defines a modified tangent bundle cTX ' TX such that
Vc(X) = C∞(X; cTX). If cT ∗X is the dual bundle, then the symbol map gives rise, for each m, to
a short exact sequence

0 −→ Ψm−1
c (X) ↪→ Ψm

c (X) σm−→ Gm(cT ∗X) −→ 0 ,

where Gm(cT ∗X) := {a ∈ C∞(cT ∗X \ 0); homogeneous of degree m}.

Let Ψm
sus(∂X) be the ‘suspended algebra’ of pseudodifferential operators introduced in [37]. It

consists of the pseudodifferential operators on R×∂X that are translation-invariant in R and have
convolution kernels vanishing rapidly with all derivatives at infinity. Similarly, the indicial map
gives rise, for each m, to a short exact sequence

0 −→ xΨm
c (X) ↪→ Ψm

c (X) In−→ Ψm
sus(∂X) −→ 0.

Let us fix an operator Q ∈ Ψ1
c(X) that is elliptic and positive with principal symbol q = σ1(Q).

Let cS∗X = (cT ∗X \ 0)/R+ be the sphere bundle associated to cT ∗X. Then Gm(cT ∗X) '
C∞(cS∗X)qm. We can put together all these isomorphisms in a continuous way to obtain iso-
morphisms

Iσ ' Ċ∞(cS∗X)[[q−1], Aσ ' x−ZC∞(cS∗X)[[q−1],

where [[y] stands for Laurent series in y, i.e., for each element there is an upper bound on the
powers of y−1, but no lower bound. Below we shall use a similar notation for Laurent series in
several variables.

Let us denote by Ψm
sus(∂X) the algebra of pseudodifferential operators on R × ∂X that are

translation invariant [37]. Similar descriptions of the algebras I∂ , A∂ , and A∂,σ in terms of
ΨZ

sus(∂X) will be given below in Equation (15).
The same results hold if we consider operators acting between sections of a vector bundle

E → X. This is true also of the results in the following sections. For simplicity, we shall not
include E in our notation.

3. Residue functionals

As in the case of smooth manifolds without boundary, see [18, 57], we consider functionals that
arise as the residue of the analytic continuation of ‘zeta-type’ functions. Let us fix a function
x ∈ C∞(X) defining the boundary M = ∂X and a positive, elliptic, and invertible element
Q ∈ Ψ1

c(X). For example, Q can be taken to be (∆c + 1)1/2, where ∆ is the Laplacian associated
to a cusp metric. Then Qz ∈ Ψz

c(X) [5, 39, 55].
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In this section, we shall proceed to a large extent as in [39]. In particular, we shall need the
following technical lemma from [39]. The proof given here is different.

Lemma 1. Suppose that A = A(τ, z) ∈ xpΨm
c (X) is a holomorphic function on Ω ⊂ C2, then the

function Tr(A(τ, z)xzQ−τ ) is defined and holomorphic in {<z > −p+1}∩{<τ > m+dimX}∩Ω
and extends to a meromorphic function on Ω with at most simple poles on the surfaces z = −p+1−j
and τ = m− k + dimX, j, k ∈ Z+.

Proof. The proof is standard, see [48], for example, so we shall be short. Using a partition of unity
argument, we can assume X = [0, 1] × Y , with Y smooth, without boundary. Let Sm(cT ∗X) be
the space of classical symbols of order m and S∞(cT ∗X) := ∪mS

m(cT ∗X). Let us fix in what
follows a map

(8) ρ : S∞(cT ∗X) → Ψ∞
c (X), ρ(Sm(cT ∗X)) ⊂ Ψm

c (X), and σm(ρ(a)) = a+ Sm−1(cT ∗X).

(A map with these properties will be called a quantization map.) We can further assume that
X = Rn and that ρ is the standard quantization corresponding to the product cusp metric. With
this metric, the interior (0, 1)×Rn is identified to R×Rn with the standard Euclidean metric and
the formula for ρ becomes

(9) ρ(a)u(p) = (2π)−n−1

∫
Rn+1

eı(p−q)·ξa(p, ξ)u(q)dqdξ.

To prove our result, it is enough to estimate Tr(ρ(az,τ )), where az,τ (p, ξ) = pz
1b(p, ξ)|ξ|τ for some

symbol b(p, ξ). (In our notation, we have p = (p1, p2, . . . , pn) with p1 = x.) The result then follows
using the relation

Tr(ρ(a)) = (2π)−n−1

∫
Rn+1

a(p, ξ)dpdξ

and integration in polar coordinates in ξ. �

Let us fix the auxiliary operator Q and the boundary defining function x as in Lemma 1. We
are interested in the following zeta-type function for a holomorphic family of operators A : C2 →
xpΨm

c (X)
Z(A; τ, z) = Zx,Q(A; τ, z) := Tr(A(z, τ)xzQ−τ ).

Lemma 1 shows that τzZx,Q(A; τ, z) is holomorphic in a neighborhood of 0 ∈ C2. We shall examine
the four functionals Tr∂,σ(A), T̂r∂(A), T̂rσ(A), T̂r(A) ∈ C defined by

(10) τzZ(A; τ, z) = Tr∂,σ(A) + τ T̂r∂(A) + zT̂rσ(A) + τzT̂r(A) + τ2W + z2W ′,

where W and W ′ are holomorphic near 0. It will be crucial in what follows that we allow A to be
a holomorphic function. The functionals Tr∂,σ(A), T̂r∂(A), T̂rσ(A), and T̂r(A) are hence defined
for A a holomorphic function C2 → xpΨm

c (X). Occasionally, A will be a constant function. For
example, if A1 ∈ xpΨm

c (X), the we define Tr∂,σ(A1), T̂r∂(A1), T̂rσ(A1), and T̂r(A1) by regarding
A1 as a constant function.

For further reference, let us record the following simple lemma.

Lemma 2. Let A : C2 → xpΨm
c (X) be a holomorphic function, then

T̂r(zA) = T̂r∂(A) and T̂r(τA) = T̂rσ(A).

Proof. The coefficients (functionals) Tr∂,σ(A), T̂r∂(A), T̂rσ(A), T̂r(A) ∈ C are uniquely determined
by Equation (10). For example,

T̂r(A) =
[
∂τ∂z

(
τzZ(A; τ, z)

)]
τ=0,z=0

.

The lemma follows from this uniqueness by substituting in Equation (10) zA or τA for A and
then comparing the coefficients. �

Note that Z(A; τ, z) is entire for A ∈ I, and hence Tr∂,σ, T̂r∂ , and T̂rσ descend to linear maps
on A by identifying an element in xpΨm

c (X) with a constant function.
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Lemma 3. Assume A(z, τ) = A ∈ x−ZΨZ
c (X). The double residue Tr∂,σ(A) of Z(A; τ, z) at

τ = z = 0 defines a trace functional on the algebra x−ZΨZ
c (X). The value Tr∂,σ(A) is independent

of the choice of Q or x, vanishes on Iσ + I∂ and therefore descends to a trace functional on A∂,σ.

Proof. Let x′ be another defining function for the boundary M of X. Then the function

B(τ, z) = A−A(x′/x)z

is holomorphic and vanishes at z = 0, which gives

Zx,Q(A; τ, z)− Zx′,Q(A; τ, z) = Tr(AxzQ−τ −A(x′)zQ−τ ) = zTr
(
B(τ, z)xzQ−τ

)
,

where B(τ, z) is entire, with values in xpΨm
c (X). Thus Lemma 1 shows that the difference of the

zeta functions Z(A; τ, z) for different choices of the boundary defining function x is regular at
z = 0. Therefore the functional Tr∂,σ(A) does not depend on the choice of the boundary defining
function. A similar argument shows independence on the choice of Q.

To prove that Tr∂,σ is a trace, consider A,B ∈ x−ZΨZ
c (X). The trace property of Tr gives, for

large real values of z and τ ,

(11) Zx,Q([A,B]; τ, z) = Tr(A(B − xzQ−τBx−zQτ )xzQ−τ ).

Since the family A(B − xzQ−τBx−zQτ ) is holomorphic as a family of classical pseudodifferential
operators and vanishes at z = τ = 0, Lemma 1 shows that the double residue at z = τ = 0 of the
right-hand side of Equation (11) vanishes so Tr∂,σ([A,B]) = 0. �

Before deriving an explicit formula for the functional Tr∂,σ(A), let us consider the functional
T̂rσ. Let 2X be the compact manifold without boundary obtained by doubling X across its bound-
ary, as before. Then

x∞ΨZ
c (X) ⊂ ΨZ(2X)

is an ideal, consisting precisely of those elements of ΨZ(2X) that have Schwartz kernels supported
in the set X × X ⊂ 2X × 2X. The smaller ideal ΨZ(X◦) ⊂ ΨZ(2X) of operators with kernels
supported in the interior of X × X, i.e., in X◦ × X◦, is dense in x∞ΨZ

c (X). The Guillemin–
Wodzicki residue trace for 2X is defined on the latter space; we shall denote it TrR .

Lemma 4. The restriction Trσ of T̂rσ to Iσ is a trace functional. The map Trσ coincides with the
extension by continuity of the Guillemin–Wodzicki residue trace TrR from ΨZ(X◦) to x∞ΨZ

c (X).

Proof. If A ∈ Iσ then Axz is entire with values in Iσ, as a family of fixed order. It follows that
Zx,Q(A; τ, z) is entire in z. Thus we only need consider the simpler function

ZQ(A; τ) = Tr(AQ−τ ), A ∈ Iσ.

A particular case of Lemma 1 shows that this function meromorphic in τ , with at most a simple
pole at τ = 0. By (10), the residue of this function at 0 is simply T̂rσ(A) = Trσ(A). This shows
that there exists a function U(τ) holomorphic near 0 such that

(12) τZQ(A; τ) = Trσ(A) + τU(τ), for A ∈ Iσ.

Let A ∈ ΨZ(X◦) ⊂ ΨZ(2X). If Q were positive and elliptic in Ψ1(2X), then (12) would be
exactly the definition of the Guillemin–Wodzicki residue trace. The definition of ellipticity in
the cusp calculus implies that, for any given B with kernel supported in X◦ × X◦, there exists
Q′ ∈ Ψ1(2X) positive, elliptic, and satisfying Q′B − QB ∈ Ψ−∞(2X). Since the residue trace
vanishes on regularizing operators, we obtain that

Trσ(A) = TrR(A), for A ∈ ΨZ(X◦).

Since Trσ is continuous in the topology of Iσ and TrR is a trace, it follows that Trσ is a trace as
well. (This can also be proved by a simple computation similar to that of (11).) �

Let A ∈ Iσ and
∑m

j=−∞ aj be the full symbol expansion of A in a coordinate system. Lemma
4 and the usual formula for the Guillemin–Wodzicki residue then give

(13) Trσ(A) = (2π)−n

∫
cS∗X

a−n
cν,
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where cν is the symplectic volume volume form on cS∗X.
Let us denote by Ψm

sus(∂X) the algebra of pseudodifferential operators on R × ∂X that are
translation invariant, as before. We fix a tubular neighborhood V = M × [0, ε) of the boundary.
Then a cutoff function with support in V allows us to identify Ψm

sus(∂X) with a subspace of ΨZ
c (X).

Let A ∈ x−ZΨZ
c (X), so A ∈ xpΨm

c (X) for some p and m ∈ Z. Then

(14) A ∼
−p∑

j=−∞
x−jAj , Aj ∈ Ψm

sus(∂X).

Let us notice, for later use that for p = 0, A0 is the indicial operator of A. We shall denote the
indicial operator of A by N (A) := A0.

This gives

(15) I∂ ' Ψ−∞
sus (∂X)[[x], A∂ ' ΨZ

sus(∂X)[[x], and A∂,σ ' C∞(cS∗∂XX)[[x, q−1].

In terms of the expansion in Equation (14), we can now write a formula for Tr∂,σ(A).

Lemma 5. Let A ∈ x−ZΨZ
c (X), A ∼

−p∑
j=−∞

x−jAj as in (14) and let ak,l be the term homogeneous

of degree k in the asymptotic expansion of the symbol of Al. Let ωn−1
∂ be the symplectic measure

on T ∗M = T ∗(∂X). Then

Tr∂,σ(A) = (2π)−n

∫
cS∗

∂XX

a−n,−1
cν∂ ,

where cν∂ is the measure obtained by contracting the form ωn−1
∂ dξ with the radial vector field on

cT ∗∂X = T ∗∂X × Rξ.

Proof. Comparing the definitions of various functionals, it follows directly that Tr∂,σ(A) is the
residue at z = 0 of the meromorphic function Trσ(xzA). Thus our result follows from (13). �

A similar argument gives

T̂rσ(A) = lim
ε↓0

(
(2π)−n

∫
cS∗X∩{x>ε}

a−n
cν + (log ε) Tr∂,σ(A) +

∑
l>0

γlε
−l

)
,

where the constants γl are chosen to ensure that the limit exists. In particular, the functional T̂rσ

vanishes on I∂ and so defines a continuous functional on Aσ that is independent of the choice of
Q. If x′ = ax, with 0 < a ∈ C∞(X), is another boundary defining functions, then the difference of
the resulting two boundary functionals is given by the formula

T̂rσ(A;x′)− T̂rσ(A;x) = Tr∂,σ(A log a), A ∈ x−ZΨZ
c (X).

Let us now reverse the roles of x and Q and proceed to consider the functional T̂r∂ , defined
on x−ZΨZ

c (X) by (10). We proceed as in [39]. Since Z(A; τ, z) is entire in z for any fixed τ and
A ∈ I, the functional T̂r∂ is descends to a linear map on the quotient A∂ := A/Iσ (see Equation
(6)). We shall denote by Tr∂ the restriction of T̂r∂ to I∂ . If A ∈ Ψ−∞

c (X), then Z(A; τ, z) is
entire in τ. It follows that Tr∂(A) is the residue at z = 0 of Tr(Axz). Recall from [37] that on the
indicial algebra Ψ−∞

sus (∂X) ' S(R)⊗̂Ψ−∞(∂X) there is a trace functional given by integration of
the trace of the indicial family

(16) Tr(B) = (2π)−1

∫
R

Tr B̂(ξ)dξ.

Lemma 6. The functional T̂r∂ is a trace on I∂ , is independent of the choice of x or Q, and is
determined in terms of the trace (16) by

T̂r∂(A) = Tr(A−1), A ∈ I∂ ,

if A ∼
−p∑

j=−∞
x−jAj, with Aj ∈ Ψ−∞

sus (∂X).
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Proof. This follows from a simple calculation based on the formula for the trace as the integral of
the Schwartz kernel over the diagonal. �

4. An index 1-cocycle and index formulas

Recall that we consider operators acting on sections of a vector bundle E, although we do
not include E in the notation. For any pair of elements A,B ∈ x−ZΨZ

c (X), we examine the
“regularized trace” at τ = 0, z = 0 of the commutator [A,B] := AB − BA and interpret it in
terms of the functionals introduced in Equation (10)

(17) IF(A,B) = T̂r([A,B]), A,B ∈ x−ZΨZ
c (X).

We shall denote by Hm
c (X;E) the cusp Sobolev spaces on X. Recall that for m ≥ 0, this space

is defined as the domain of (∆c +1)m/2, where ∆c is the Laplacean associated to a cusp-metric on
X. For m ≤ 0, Hm

c (X;E) can be defined as the dual of H−m
c (X;E) with pivot L2 (see [2, 4] and

the references therein for more results on the cusp Sobolev spaces, as well as on generalizations of
these spaces and applications to boundary value problems and numerical methods. In particular,
the various mapping properties needed below are easy results that can be found, for example,
in [4]).

Lemma 7. If A ∈ xpΨm
c (X) is elliptic and invertible in A (i.e. invertible modulo I), then it

defines a Fredholm operator xrHs
c (X;E) → xr+pHs−m

c (X;E), with index

Ind(A) = IF(A,B), for any B ∈ x−ZΨZ
c (X), AB − I ∈ I.

An elliptic element A ∈ x−ZΨZ
c (X) that is invertible in A will be called fully elliptic in what

follows.

Proof. From the definition of B, we have that [A,B] ∈ I, and hence Z([A,B]; τ, z) is holomorphic
on C2. By standard arguments, A acts on the above Sobolev spaces. Since the operators in I are
compact on every Sobolev space, it follows that A is Fredholm. The fact that Ind(A) is the value
at τ = 0, z = 0 is nothing but Calderòn’s formula. Indeed, if A ∈ x−ZΨZ

c (X) is invertible modulo
I, then we can choose B to be the generalized inverse that satisfies

AB − Id = −pcokerA, BA− Id = −pker A,

where pker A and pcokerA are projections onto the null space and a complement to the range
respectively. Thus AB − Id and BA− Id are both in I and

Ind(A) = Tr(pker A)− Tr(pcokerA) = −Tr(BA− Id) + Tr(AB − Id)

= −T̂r(BA− Id) + T̂r(AB − Id) = IF(A,B).

This completes the proof. �

The previous lemma can be viewed as expressing the compatibility between the boundary map
in Hochschild and cyclic homologies and the boundary (or index) map in K-theory for a particular
cocycle, namely for the Fredholm trace. This compatibility is proved in general in [45].

For any fully elliptic A ∈ x−ZΨZ
c (X) (i.e. elliptic and invertible in A) we set

(18) η(A) = 2T̂r∂(A[log x,A−1]) and AS(A) = T̂rσ([logQ,A−1]A).

In fact, η(A) is defined for all invertible elements of A∂ while AS(A) is defined for all invertible
elements of Aσ. Occasionally, we shall write η(B) = 2T̂r∂(B[log x,B−1]) for an invertible B ∈ A∂ .
The notation is supposed to suggest that AS(A) is a generalization of the Atiyah-Singer integrand
involving a characteristic form, and that η(A) is a generalization of the eta invariant. Formally, it
is certainly the case that AS(A) only depends on the (full) symbol of A whereas η(A) only depends
on the (full) indicial family of A, i.e. on the respective images of A in the quotients Aσ and A∂ .
However, both AS(A) and η(A) depend on the choice of Q, and on the tacitly fixed cusp metric
of the form (1) on X. To obtain more explicit formulas, we shall remove the ambiguity and we
choose B and Q in terms of A in Proposition 12.
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Proposition 8. The index functional IF defined by (17) descends from x−ZΨZ
c (X) to a cocycle

on A and

(19) IF(A,B) = T̂rσ([logQ,B]A)− T̂r∂(A[log x,B]).

In particular, if A ∈ x−ZΨZ
c (X) is invertible in A, then

(20) Ind(A) = IF(A,A−1) = AS(A)− η(A)/2.

Proof. If A ∈ x−ZΨZ
c (X) and C ∈ I, then Tr([A,C]) = 0, and hence IF(A,B) = IF(A,B + C).

This shows that IF(A,B) depends only on the classes of A and B in A. The ideal property of I
and the fact that T̂r∂ and T̂rσ vanish on I, implies that both bilinear functionals from Equation
(19) descend to bilinear functionals on A. Then

[A,B]xzQ−τ =A(B − xzBx−z)xzQ−τ + (QτBQ−τ −B)AxzQ−τ

− [QτBQ−τ , AxzQ−τ ].
(21)

We have B − xzBx−z = −z[log x,B] + z2C1(z) and QτBQ−τ −B = τ [logQ,B] + τ2C2(τ) where
C1, C2 are entire functions of cusp operators of fixed order. By taking the trace in (21), we get

Z([A,B]; τ, z) =− Z(Az[log x,B]; τ, z) + Z(τ [logQ,B])A; τ, z)

+ Z(Az2C1(z); τ, z) + Z(τ2C2(τ)A; τ, z).
(22)

From Lemma 1, we see that both T̂r(Az2C1(z)) and T̂r(τ2C2(τ)A) vanish. Thus (22) gives

T̂r([A,B]) = −T̂r(Az[log x,B]) + T̂r(τ [logQ,B])A).

The proof is completed then by using the relations in Lemma 2. �

Let us notice that assuming that our elliptic cusp pseudodifferential operator A on X is in
x−ZΨZ

c (X) is not a loss of generality, because A must act between isomorphic bundles, in view of
the following remark.

Remark 9. Let P be an elliptic cusp operator acting between sections of two smooth vector bundles
E+ and E− over the connected compact manifold X with nonempty boundary. Then E+ ∼= E−

overX. Indeed, the ellipticity assumption on P implies that E+ and E− have isomorphic pull-backs
to the cusp-cosphere bundle cS∗X. Recall now that if X is connected with nonempty boundary,
then cS∗ has a section; the principal symbol of P evaluated on this section gives an isomorphism
between E+ and E−.

Let us make another simple, but important remark.

Remark 10. The Q and x terms appearing in the index formula of Proposition 8 are the same as
the ones appearing in the definition of the functionals T̂r∂ and T̂rσ (Equation (10)).

We now proceed to simplify the index formula of Equation (20). We assume for simplicity that
A ∈ Ψ1

c(X;E). Following [27, 29], we set

Q1 :=(AA∗ + pker A∗)1/2,

Q2 :=(A∗A+ pker A)1/2,

B :=A∗Q−2
1 = Q−2

2 A∗,

(23)

where pV denotes the orthogonal projection onto the space V . We note the commutation relation

(24) BQ−τ
1 = Q−τ

2 B.

For a meromorphic function Z(τ, z) with only simple poles as in Lemma 1 we shall denote
Z(τ, z)τ=0,z=0 = Z(0, 0) if Z is holomorphic in a neighborhood of (0, 0), and, otherwise

Z(τ, z)τ=0,z=0 =
[
∂τ∂z

(
τzZ(τ, z)

)]
τ=0,z=0

.
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We use the above operator Q1 in the definition (10) of the trace functionals to obtain

AS(A) = T̂rσ

(
[logQ1, B]A

)
= T̂r

(
(Qτ

1BQ
−τ
1 −B)A

)
by Lemma 2

= Tr
(
(Qτ

1BQ
−τ
1 −B)AxzQ−τ

1

)
z=0,τ=0

by definition

=
(
Tr([B,Q−τ

1 ]Axz)
)
z=0,τ=0

by the trace property

=
(
Tr((Q−τ

2 −Q−τ
1 )BAxz)

)
z=0,τ=0

by Equation (24)

=
(
Tr((Q−τ

2 −Q−τ
1 )xz)

)
z=0,τ=0

.(25)

The last equality follows since (Q−τ
2 −Q−τ

1 )(BA − Id)xz is a holomorphic family of operators in
I which vanishes at τ = 0.

Remark 11. Note here that in the boundaryless case, from Proposition 8 and the above computa-
tion we recover the well-known identity

Ind(A) = Tr((Q−τ
2 −Q−τ

1 ))τ=0.

However, one must assume that A acts on a fixed vector bundle, which excludes the case of the
Dirac operator, in general. One can make sense of the formula without this assumption, as the
difference of the traces of Q−τ

2 and Q−τ
1 , namely Ind(A) =

(
Tr(Q−τ

2 )− Tr(Q−τ
1 )
)

τ=0
.

Using (25), we can give a more familiar interpretation of the local term AS: it is (not surpris-
ingly) the integral on X of the index density, another local density defined in terms of heat kernel
expansions. The word “local” means that, like AS(A) itself, the index density is a density which
at every point depends only on the jets of the full symbol of A and of the metric at that point.
Since this quantity is locally computable, we need no property of the heat operator on X to give
it a meaning.

Proposition 12. If A ∈ Ψ1
c(X;E), choose Q = Q1 = (AA∗ + pker A∗)1/2 in the definition (10).

Then

AS(A) =
(∫

X

a0

)
z=0

,

where a0 is the density locally defined on X as the constant term in the asymptotics as t → 0 of
the supertrace of the restriction to the diagonal of the distributional kernel of the heat operator
(Equation 26). Moreover, the regularization is not necessary, in the sense that

lim
ε→0

∫
{x>ε}

a0

exists (and thus equals AS(A)).

More precisely, let us denote by k(x, y) the distribution kernel of a pseudodifferential opera-
tor of low order, and by “tr” (respectively “Str”) the trace (respectively the supertrace) of an
endomorphism of a finite dimensional space. Moreover, denote by LIM the constant term in an
asymptotic expansion. Then

Str
(

exp

(
−t
[
0 A∗

A 0

]2)
(x, x)

)
= tr

(
exp(−tA∗A)(x, x)− exp(−tAA∗)(x, x)

)
and a0(x) = LIMt→0 tr

(
exp(−tA∗A)(x, x)− exp(−tAA∗)(x, x)

)
.

(26)

The density a0 is a cusp density, i.e. a smooth density on X times x−2. We do not claim that
the diverging terms vanish; however their integrals on the slices {x = constant} vanish.

Proof. The first statement is a particular case of [27, Proposition 16]; we recall the argument
briefly. Let q1(τ) and q2(τ) denote the meromorphic extension of the restriction to the diagonal
of the Schwartz kernel of Q−τ

1 and Q−τ
2 :

qj(τ)(x) := Q−τ
j (x, x).
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These meromorphic families of densities are easily seen to be regular at τ = 0. Indeed, as in Lemma
1, the possible residue at τ = 0 of qj(τ)(x) can be computed in terms of the −nth homogeneous
component of the full symbol of the identity operator:

Resτ=0qj(τ)(x) =
1

(2π)n

∫
S∗

xX

I−n(x, ξ)dξ.

But of course the full symbol of the identity is concentrated in homogeneity 0. Hence (25) gives

AS(A) =
(∫

X

(q2(0)− q1(0))xz

)
z=0

.

By (25), the density q2(0) − q1(0) is locally defined and depends only on the homogeneous com-
ponents of the full symbol of A of homogeneity at least −n. Since the constant term in the heat
expansion is also locally defined, we can consider that we work on a closed manifold (we can
achieve this by deforming the operator A outside a ball centered at a fixed point p, and then using
the so-called double construction, in which we glue two copies of X along the boundary to obtain
a smooth manifold without boundary).

Then the relationship between complex powers and the heat semigroup is given by the Mellin
transform:

Γ(τ/2)Q−τ
j =

∫ ∞

0

tτ/2−1e−tQ2
jdt.

In particular, on the diagonal for <(τ) > n, the Schwartz kernels are related by

Γ(τ/2)(q2(τ)(x)− q1(τ)(x)) =
∫ ∞

0

tτ/2−1 tr(e−t(A∗A+pker A)(x, x)− e−t(AA∗+pker A∗ )(x, x))dt.

We are interested in the residue at τ = 0 of both sides. Since the Gamma function has a pole
with residue 1, the left-hand side equals twice the zeta-function density from (25). The residue at
the pole τ = 0 in the integral from the right-hand side equals precisely twice the constant term in
the pointwise supertrace of the heat asymptotics. Since e−t(A∗A+pker A) = e−tA∗A + (et − 1)pker A,
we see that the projections on kerA, kerA∗ do not contribute to this constant term. We conclude
that q2(0)− q1(0) equals the heat density a0 defined above.

Let us now show that the density f(ε) :=
∫
{x=ε} a0 is integrable as a function of ε (this is of

course weaker than claiming that a0 is integrable). We know that a0 is a smooth multiple of
x−2dx. This gives the following Laurent expansion for f at ε = 0:

f(ε) = ε−2f−2 + ε−1f−1 + h(ε)

where fj ∈ R and h is smooth at ε = 0.
By Lemma 6, the sub-leading term f−1 equals the coefficient of z−1τ0 in the Laurent expansion

of the meromorphic function Tr
(
(Q−τ

2 −Q−τ
1 )xz

)
at τ = 0, z = 0. Arguing as in Equation (25),

Resz=0

(
Tr((Q−τ

2 −Q−τ
1 )xz)τ=0

)
= Resz=0

(
Tr((Q−τ

2 −Q−τ
1 )ABxz)τ=0

)
= Resz=0

(
Tr((Q−τ

2 AB −BQ−τ
2 A)xz)τ=0

)
= Resz=0

(
Tr(Q−τ

2 (AB −BA)xz)τ=0

)
(we can freely commute across xz because every commutator with xz vanishes at z = 0, so such
a commutation introduces a factor of z which annihilates the residue at z = 0). This residue
vanishes by Lemma 3 because [A,B] ∈ I.

From Equation (16) for <(τ) > n and then by meromorphic extension, the leading term f−2

equals

(27)
∫

∂X

(
q2(0)− q1(0)

)
=

1
2π

(∫
R

Tr
(
N (Q2)−τ (ξ)−N (Q1)−τ (ξ)

)
dξ

)
τ=0

.

Denote by A0 the indicial operator N (A) of A (cf. Equation 14). For every fixed ξ, the operators

N (Q2)−τ (ξ) = (A∗
0(ξ)A0(ξ))−τ/2 and N (Q1)−τ (ξ) = (A0(ξ)A∗

0(ξ))
−τ/2
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are conjugate via the invertible operator A0(ξ) ∈ Ψ1(∂X), that is,

N (Q1)−τ = A0N (Q2)−τA−1
0 .

Hence the traces in (27) vanish for each ξ when <(τ) >> 0. The unique continuation property
then gives f−2 = 0. �

Let us now analyze the ‘eta’ contribution η(A) from the index formula (20).

Proposition 13. Let A ∈ xpΨm
c (X,E) have invertible image in A∂ . The boundary contribution

T̂r∂(A[log x,A−1]) from the index formula (20) depends only on the indicial families of A and Q,
and is given explicitly by

T̂r∂(A[log x,A−1]) =
1
πi

(∫
R

Tr(A0∂ξ(A−1
0 )Q−τ

0 )dξ
)

τ=0

.

Proof. Notice that [log x,A−1] ∈ x−p+1Ψ−m−1
c (X,E), therefore

A[log x,A−1] ∈ xΨ−1
c (X).

Set A0 := N (x−pA). Then
N (xp−1[log x,A−1]) = −i∂ξ(A−1

0 ).
The formula follows from Equation (16) and Lemma 6 �

Again, for this to have any significance we fix the auxiliary operator Q in terms of A. If
A ∈ Ψm

c (X,E), we take Q = Q1 defined by Equation (23).

Lemma 14. Let M := ∂X. Assume that A is a first-order cusp differential operator “of Dirac
type” near the boundary, in the sense that the indicial operator N (A) satisfies

N (A)(ξ) = ν(iξ +D)

where ν is a unitary transformation of E|M , and D is a self-adjoint first-order differential operator
on C∞(M,E). Then η(A), defined with the auxiliary operator Q1 from (23), equals the Atiyah-
Patodi-Singer η-invariant of D.

Proof. Implicitly we have fixed a metric h on M . Define a cusp metric on the interior of X by

g =
dx2

x4
+ h.

Then N (A∗) = A∗
0 = (−iξ + D)ν−1 and A−1

0 = A∗
0Q

−2
0 . From the definition, N (Q) = Q0 =

ν(ξ2 +D2)1/2ν∗. From Proposition 13, η(A) = η(A, τ)τ=0, where

η(A, τ) =
1
πi

∫
R

Tr(−iνA−1
0 Q−τ

0 )dξ

=
1
π

∫
R

Tr((iξ +D)(ξ2 +D2)−
τ
2−1)dξ

=
1
π

∫
R

Tr
(
D(ξ2 +D2)−

τ
2−1
)
dξ

since the remainder is an integral odd in ξ. By decomposing the trace onto the eigenspaces of D
we get

η(A, τ) =
1
π

∑
λ∈Spec(D)

∫
R
λ(ξ2 + λ2)−

τ
2−1dξ

=η(D, τ)
h(τ)
π

where h(τ) :=
∫

R(1 + ξ2)−
τ
2−1dξ. Clearly h is regular at τ = 0 and h(0) = π. From (22) we

know that η(A, τ) is regular at τ = 0 (or in other words, the residue at 0 of the eta function
is cobordism-invariant; in fact this residue always vanishes on closed manifolds). This gives the
result. �
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Remark 15. Examples of operators A as in Lemma 14 are the Dirac operators associated to a
product-type cusp metric

g =
dx2

x4
+ gM (x).

In even dimensions, the automorphism ν is not Clifford multiplication by the normal unit vector
field (or equivalently, unit 1-form) to M . Indeed, let Σ+ ⊕ Σ− be the spin bundle over M . Close
to the boundary, we can write the chiral Dirac operator D+

g associated to the metric g and the
given spin structure as

D+
g = c(dx/x2)(x2∂x +DM ),

acting from Σ+ to Σ−. We need additionally to identify the positive and the negative spinor
bundles through Clifford multiplication by a unit-length cusp vector field v in cTX (such a vector
field exists by Remark 9). Then c(v)D+

g acts in C∞(X,Σ+) and satisfies the hypothesis of Lemma
14 for ν = c(v)c(dx/x2) on M , and D = DM . Note that for index purposes, multiplication by
c(v) does not matter.

Thus the index formula (20) has, for operators as in Lemma 14, the same form as the Atiyah-
Patodi-Singer formula. It is more general since we assume neither that we have a product decompo-
sition near the boundary like Atiyah-Patodi-Singer do, nor that the operator has “b-asymptotics”
near the boundary as in Melrose [35]. We remark here that Taylor series in the cusp setting
correspond to power series in the logarithm of the boundary defining function y in the b-setting,
by the change of variables y = exp(−1/x).

For spin Dirac operators, we arrive at an index formula which generalizes that of Melrose [35].
We assume that g is as in Equation (1), namely, g = a

(
(x−2dx+ α(x))2 + gM (x)

)
, M = ∂X. We

assume that the function a was extended to a positive function on X.

Theorem 16. Let X be a compact (even-dimensional) Spin manifold with boundary, with a rie-
mannian metric in the interior of the form x2pg, with g as in Equation (1) and p ≥ 0 a real
parameter.

Assume that the metric is closed in the sense that α(0) is a closed 1-form on M = ∂X. Assume
moreover that the Dirac operator DM on M with respect to the induced spin structure and the
metric gM := gM (0) is invertible. Then the Dirac operator on (X◦, gp) is essentially self-adjoint
and Fredholm as an unbounded operator in L2(X◦,Σ, gp); its kernel is independent of p, and the
index of its chiral part D+

g equals

Ind(D+
g ) =

∫
X

Â(gp)−
1
2
η(DM ).

Before proceeding to the proof of Theorem 16, we need to prove some Lemmas. We begin with
the following lemma from [41] (see also [35, 48]).

Lemma 17. The indicial operator N (D+
g ) of D+

g is invertible for all ξ ∈ R if, and only if, the
boundary operator DM is invertible.

Proof. Recall that g = a2
(
(x−2dx + α(x))2 + gM (x)

)
, with a > 0 a smooth function on X. The

“conformal invariance” of the Dirac operator gives Dg = a−
n+1

2 Da
n−1

2 , where D is the Dirac
operator associated to the metric a−2g (see also [1, 19, 20, 47]).

Therefore the normal operator of Dg equals

N (D+
g ) = a−

n+1
2 N (D+

a−2g)a
n−1

2 .

Clearly, N (D+
g ) is invertible if, and only if, N (D+

a−2g) is invertible. The normal operator of D+
a−2g

was computed in [41]

(28) N (D+
a−2g) = c(x2∂x)(DM + iξ(1− c(α))).

Thus N (D+
g ) is invertible if, and only if, DM + iξ(1 − c(α)) is invertible for all ξ. Now the

self-adjoint part DM
0 − iξc(α) clearly commutes with the skew-adjoint component iξ; thus

(DM + iξ(1− c(α)))∗(DM + iξ(1− c(α)) = (DM − iξc(α))2 + ξ2.
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This is strictly positive for R 3 ξ 6= 0, and is invertible for ξ = 0 if and only if DM is invertible. �

Lemma 18. It is enough to prove Theorem 16 for p = 0 and a ≡ 1.

Proof. The form Â is conformally invariant, so the right-hand side does not depend on p and a.
We proved that Dg is fully elliptic (i.e.elliptic with invertible image in A). Then by the main
result of [42], the kernel of the Dirac operator (and thus also the index) does not change when
we pass from g to gp for positive p, and even less when we multiply the metric by the innocuous
factor a. Let us recall the argument briefly: after a unitary conjugation, we can write

D+
gp

= x−p/2D+
g x

−p/2.

Thus the map
ker(D+

g ) → ker(D+
gp

), ψ 7→ xp/2ψ

is formally an isomorphism. On general L2 spinors, the inverse of this map may be ill-defined;
however, since our operators are fully elliptic, elements in their L2 null-space decay faster than
any power of x. �

Let φ(x) be a smooth function which equals 0 near x = 1 and φ ≡ 1 near x = 0. Consider the
family of metrics on X given by

gε :=
(
dx

x2
+ εφ(x)α

)2

+ gM .

This provides a smooth deformation of g = g1 into g0 = dx2/x4 +gM through closed cusp metrics;
by Lemma 19 applied to gε, the associated Dirac operators are fully elliptic for every ε, thus the
index is constant under this deformation. From Equation (20) and Proposition 12 applied to the
operator c(v)D+

gε
(where c(v) is the Clifford multiplication from Remark 15), we deduce that

(29) Ind(Dgε) =
∫

X

Â(gε)−
1
2
η(c(v)Dgε).

For ε = 0, the metric g0 is a product cusp metric near the boundary. By Lemma 14 and Remark
15, the term η(c(v)Dg0) equals η(DM ), the eta invariant of the metric gM .

Lemma 19. The contraction of the differential form Â(gε) with x2∂x vanishes on M × [0, 1].

Proof. For notational simplicity work with ε = 1. Also for simplicity, we perform the change of
variables y := 1/x ∈ [1,∞) to obtain

g = (dy − φ(y)α)2 + gM .

The inclusion of M := ∂X ⊂ X defines an embedding TM ⊂ TX of tangent spaces. Let
M × [0, 1) ' U ⊂ X be a tubular neighborhood of M such that φ = 0 outside U . The embedding
TM ⊂ TX then allows us to extend sections of M to be constant in the t ∈ [0, 1) variable to
obtain an inclusion Γ(TM) ⊂ Γ(TU). Next, we regard α ∈ Γ(Λ2T ∗X) ⊂ End(TX) using the
Riemannian metric on X to identify T ∗X with TX. This leads to the embedding

Γ(TM) ↪→ Γ(TX), U 7→ Ũ := U + φ(y)α(U)∂y.

We remark that Ũ is perpendicular to ∂y at every point. Note that

[∂y, Ũ ] = φ′(y)α(U)∂y.

We compute

[Ũ , Ṽ ] = [U, V ] + φ(y)U(α(V )− V (α(U))∂y = [̃U, V ] + φ(y)dα(U, V ).

The fact that α is closed is therefore equivalent to

[Ũ , Ṽ ] = [̃U, V ].

We claim that

(30) ∇Ũ∂y = 0.
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Indeed, ∂y has constant length 1 so g(∇Ũ∂y, ∂y) = 0. Moreover, for every vector fields U, V on M
(constant in y) we have

g(Ũ , ∂y) = 0, g(Ũ , Ṽ ) = gM (U, V ), [∂y, Ũ ] ⊥ Ṽ , and [Ũ , Ṽ ] ⊥ ∂y.

From the Cartan formula for the Levi-Civita connection we see that g(∇Ũ∂y, Ṽ ) = 0. Thus
∇Ũ∂y = 0 as claimed. This implies that

(31) RŨṼ ∂y = 0.

We now show that Equation (31) implies ∂yy tr(R2k) = 0.
We shall compute ∂yy tr(R2k) using an orthonormal frame {Yj} on M and the induced or-

thonormal frame {∂y, Ỹj} on M × [0, 1]. We denote the curvature coefficients in this frame by

Rijkl := 〈RỸiỸj
Ỹk, Ỹl〉, Ryjkl := 〈R∂yỸj

Ỹk, ∂y〉,

etc. For the contraction ∂yy tr(R2k) to be nonzero, we need the contribution of a curvature
endomorphism Ryj := R∂yỸj

for some j. However, by (31) and the curvature identities, Ryjkl = 0.
Thus any nonzero contribution must come from a monomial which contains Ryjyk or Ryjky for
some k. Now for the trace of such a monomial to be nonzero, at least one coefficient y must appear
among the last two coefficients of another curvature term appearing in the monomial. Moreover,
for the product in the exterior algebra to be nonzero, y is not allowed to appear among the first
two coefficients of such a term. Then again by (31), such a coefficient vanishes, so the lemma
follows. �

We are ready now to prove Theorem 16.

Proof. By Lemma 17, the Dirac operator of our metric is fully elliptic and hence it is Fredholm.
For p ≥ 0, Dp is essentially self-adjoint (see [41, 42]) and its domain is precisely the Sobolev space
xpH1

c (X,Σ). So there is no ambiguity when speaking of the index of D+.
By Lemma 18, it is enough to prove the theorem for p = 0 and a ≡ 1 near the boundary.
We now make an additional simplification. Let φ(x) be a smooth function which equals 0 near

x = 1 and φ ≡ 1 near x = 0, as above. Let us deform smoothly g as follows: we linearly deform the
family of metrics gM (x) into the constant family gM for x ∈ [0, 1], and we linearly deform α(x) into
φ(x)α (recall that we denoted gM = gM (0), α = α(0)). This deformation leads to a deformation
of the Dirac operator through Fredholm operators, since the normal operator depends only on gM

and α at the boundary so it is left unchanged. We deduce that the index does not change during
this deformation. The ’eta’ boundary contribution depends only on gM and α so it is also left
unchanged. From the abstract index formula of proposition 8, we conclude that the integral of
the local density is also left unchanged. Thus it is enough to assume in the rest of the proof that
the metric near the boundary equals

g =
(
dx

x2
+ φ(x)α

)2

+ gM ,

where α, gM are independent of x.
By Lemma 19, we see that the volume form component of Â(gε) does not depend on ε, since

it is supported outside the support of φ. Thus Ind(Dgε) (which is constant in ε) is computed by
our abstract index formula as an integral independent of ε, plus a boundary term. It follows that
the boundary term itself is constant in ε and can be computed at ε = 0, where it yields η(DM ).
The local density is independent of ε so it can be computed at ε = 1 where it gives Â(g). This
completes the proof. �

5. Homology groups results

The spectral sequence methods of [11] allow us to determine the Hochschild homology groups of
most of the algebras introduced in the previous section as appropriate cohomology groups. Morita
invariance of Hochschild homology shows the calculations are the same for scalar algebras and for
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algebras of operators acting between sections of a smooth vector bundle E → X. The results from
[39] are

HHp(Iσ) ' Hp(cS∗X × Sσ),

HHp(Aσ) ' Hp
rel(

cS∗X × Sσ)⊕Hp(cS∗∂XX × Sσ),

HHp(I∂) '

{
C for k = 0, 1,
0 otherwise

HHp(A∂) '

{
Hp(cS∗∂XX × Sσ × S∂)/C for p = 1, 2,
Hp(cS∗∂XX × Sσ × S∂) otherwise

HHp(A∂,σ) ' Hp(cS∗∂XX × Sσ × S∂)

HHp(A) '

{
C⊕Hp

rel(
cS∗X × Sσ)⊕Hp(cS∗∂XX × Sσ)/C for p = 1

Hp
rel(

cS∗X × Sσ)⊕Hp(cS∗∂XX × Sσ) otherwise.

(32)

Inspired by [39], similar results were obtained in [9, 10, 28, 29, 40]. The paper [29] computes the
Hochschild homology for the fibered cusp algebra, of which the cusp algebra is a particular case.
We will therefore omit the proofs of the above homology computations and focus our attention
on the fact that in each case, HH0 is 1-dimensional for X has dimension ≥ 2 and connected (to
ensure that S∗X is connected). The isomorphism of these spaces to C is realized by suitable trace
functionals. These trace functionals are:

• for I the ordinary trace,
• for Aσ, A∂ and A∂,σ a “double residue trace” Tr∂,σ, which we define by analytic contin-

uation,
• for Iσ the Guillemin–Wodzicki residue trace denoted Trσ, and
• for I∂ a functional Tr∂ induced from the trace functional Tr defined in [37] on ΨZ

sus(Y ) for
any boundaryless manifold Y (its definition is recalled below).

Analytic continuation arguments give extensions of the last two functionals to T̂rσ on Aσ and T̂r∂

on A∂ . These are not trace functionals. Rather, commutation with the operators logQ and log x
defines derivations, and the Hochschild boundaries of these functionals are given by

(33)
(∂ Tr∂)(A,B) = T̂r∂([A,B]) = Tr∂,σ(A[logQ,B]) = (ilog Q Tr∂,σ)(A,B)

(∂ Trσ)(A,B) = T̂rσ([A,B]) = −Tr∂,σ(A[log x,B]) = −(ilog x Tr∂,σ)(A,B),

for all A,B ∈ A. The ideals Iσ and I∂ are H-unital and, in (33), ∂ Trσ and ∂ Tr∂ represent the
images under the respective boundary maps of the functionals Trσ and Tr∂ in the long exact
sequences

0 −→ HH0(A∂,σ) −→ HH0(Aσ) −→ HH0(Iσ) ∂−→ HH1(A∂,σ) −→ · · ·

0 −→ HH0(A∂,σ) −→ HH0(A∂) −→ HH0(I∂) ∂−→ HH1(A∂,σ) −→ · · · .

These maps give rise to an analog of the index formula (20). Indeed their sum gives a homotopy
invariant of invertible elements of A∂,σ, which we call the “boundary index”:

Ind∂(A) = Bf(A,A−1), Bf(A,B) = (−ilog x Tr∂,σ +ilog Q Tr∂,σ)(A,B).

This represents an obstruction for lifting an invertible element A ∈ A∂,σ to an invertible element
of A.

The index functional itself, defined as the image of Tr under the boundary map ∂ : HH0(I) →
HH1(A), can be expressed in terms of derivations in Hochschild homology

IF(A,B) = T̂rσ([logQ,B]A)− T̂r∂(A[log x,B]).

The cyclic homology groups are obtained from the SBI exact sequence [13, 21, 31, 56] using the
computations of Hochschild homology groups.
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The homological approach to index formulas on singular or non-compact spaces has the advan-
tage that it shows (based on excision in periodic cyclic homology) that the index can be expressed
as the sum of an interior, local term and a term that depends only on the behavior of our oper-
ator at infinity. The local term can then be identified with the Atiyah-Singer integrand as in the
present paper. The term at infinity will also depend on suitable indicial operators. In general,
these indicial operators are defined using groupoids [3, 23, 46].
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