MAT 303: Calculus IV with Applications

FALL 2016

Practice problems for Midterm 2

Problem 1:

a) Find the general solution of the ODE $y^{\prime \prime}+4 y=4 \cos (2 t)$.
b) Make a sketch of y_{p} vs. t, where $y_{p}(t)$ denotes the particular solution found in part a). What is the pseudo-period of the oscillation and the time varying amplitude?

Problem 2: Consider the 4th order ODE $y^{(4)}+4 y^{\prime \prime}=f(x)$.
a) Obtain the homogeneous solution.
b) For each case given below, give the general form of the particular solution using the method of undetermined coefficients. Do not evaluate the coefficients.

1. $f(x)=5+8 x^{3}$
2. $f(x)=x \sin (5 x)$
3. $f(x)=\cos (2 x)$
4. $f(x)=2 \sin ^{2}(x)$

Problem 3: Consider the boundary value problem (BVP):

$$
t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+\lambda y=0, \quad 1<t<e, \quad y(1)=\frac{d y}{d t}(e)=0
$$

a) Find all positive values of $\lambda \in(0, \infty)$ such that the BVP has a nontrivial solution.
b) Determine a nontrivial solution corresponding to each of the values of λ found in part a).
c) For what values of $\lambda \in(0, \infty)$ does the BVP admit a unique solution? What is that solution.

Problem 4: Consider the ODE

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}+\lambda y=0, t>0 \tag{1}
\end{equation*}
$$

a) For $\lambda=4$, find two solutions of (1), calculate their Wronskian and thus deduce that they form a fundamental set of solutions.
b) Verify your answer for the Wronskian using Abel's Theorem and a convenient initial condition from part a).
c) Solve the eigenvalue problem (1) on $1<t<e$, subject to $y(1)=y^{\prime}(e)=0$, that is find all values of λ such that the boundary value problem has a nontrivial solution and in that case determine the latter.

Problem 5: Find the general solution of the system

$$
\begin{aligned}
x_{1}^{\prime} & =4 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime} & =x_{1}+4 x_{2}+x_{3} \\
x_{3}^{\prime} & =4 x_{1}+x_{2}+4 x_{3} .
\end{aligned}
$$

Problem 6: Consider the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-9 y=0, \quad x>0 .
$$

We know that $y_{1}(x)=x^{3}$ is a solution to this ODE. Use the method of reduction of order to find a second solution y_{2}. Show that y_{1} and y_{2} form a fundamental set of solutions of the differential equation (that is, show that they are linearly independent).

Problem 7: Find the critical value of λ in which bifurcations occur in the system

$$
\dot{x}=1+\lambda x+x^{2} .
$$

Sketch the phase portrait for various values of λ and the bifurcation diagram. Classify the bifurcation.

