MAT 303: Calculus IV with Applications

FALL 2016

Practice problems for Midterm 2
 Solutions

Problem 1:

a) Find the general solution of the ODE $y^{\prime \prime}+4 y=4 \cos (2 t)$.
b) Make a sketch of y_{p} vs. t, where $y_{p}(t)$ denotes the particular solution found in part a). What is the pseudo-period of the oscillation and the time varying amplitude?

Solution. The characteristic equation for the homogeneous ODE is $r^{2}+4=0$, which has solutions $r= \pm 2 i$. The homogeneous solution is $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$. We look for particular solutions $y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$. We compute

$$
\begin{gathered}
y_{p}^{\prime}(t)=A \cos (2 t)+B \sin (2 t)+2 t(-A \sin (2 t)+B \cos (2 t)) \\
y_{p}^{\prime \prime}(t)=-4 A \sin (2 t)+4 B \cos (2 t)-4 t(A \cos (2 t)+B \sin (2 t))
\end{gathered}
$$

Plugging these in the initial ODE we find

$$
y_{p}^{\prime \prime}+4 y_{p}=-4 A \sin (2 t)+4 B \cos (2 t)=4 \cos (2 t),
$$

which gives $A=0$ and $B=1$. Hence a particular solution is $y_{p}(t)=t \sin (2 t)$. The amplitude is $A(t)=t$, the frequency is $\omega=2$, so the period is $T=\frac{2 \pi}{\omega}=\pi$. The general solution is $y=y_{h}+y_{p}=C_{1} \cos (2 t)+\left(C_{2}+t\right) \sin (2 t)$.

Problem 2: Consider the 4th order ODE $y^{(4)}+4 y^{\prime \prime}=f(x)$.
a) Obtain the homogeneous solution.
b) For each case given below, give the general form of the particular solution using the method of undetermined coefficients. Do not evaluate the coefficients.

1. $f(x)=5+8 x^{3}$
2. $f(x)=x \sin (5 x)$
3. $f(x)=\cos (2 x)$
4. $f(x)=2 \sin ^{2}(x)$

Solution.
a) The characteristic equation is $r^{4}+4 r^{2}=0$, which has roots $r=0$ (repeated root of order 2) and $r= \pm 2 i$. The homogeneous solution is

$$
y_{h}(x)=C_{1}+C_{2} x+C_{3} \cos (2 x)+C_{4} \sin (2 x)
$$

b) 1. $y_{p}=x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)$
2. $y_{p}=\left(a_{0}+a_{1} x\right) \cos (5 x)+\left(b_{0}+b_{1} x\right) \sin (5 x)$
3. $y_{p}=x(A \cos (2 x)+B \sin (2 x))$
4. Note that $2 \sin ^{2}(x)=1-\cos (2 x)$, hence $y_{p}=a_{0} x^{2}+x(A \cos (2 x)+B \sin (2 x))$.

Problem 3: Consider the boundary value problem (BVP):

$$
t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+\lambda y=0, \quad 1<t<e, \quad y(1)=\frac{d y}{d t}(e)=0
$$

a) Find all positive values of $\lambda \in(0, \infty)$ such that the BVP has a nontrivial solution.
b) Determine a nontrivial solution corresponding to each of the values of λ found in part a).
c) For what values of $\lambda \in(0, \infty)$ does the BVP admit a unique solution? What is that solution.

Solution. We make the change of variables $x=\ln (t)$. Note that $\ln (1)=0$ and $\ln (e)=1$. The equivalent BVP is

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, \quad 0<x<1, \quad y(0)=y^{\prime}(1)=0
$$

a) Let $\lambda>0$. The general solution is $y=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$. We have $y(0)=$ $c_{1}=0$ and $y^{\prime}(1)=-c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda})=0$. This gives $\sqrt{\lambda}=\frac{(2 n-1) \pi}{2}, n=1,2, \ldots$
b) $y=c_{2} \sin \left(\frac{(2 n-1) \pi x}{2}\right)=c_{2} \sin \left(\frac{(2 n-1) \pi}{2} \ln (t)\right), n=1,2, \ldots$.
c) For $\lambda \neq \frac{(2 n-1) \pi}{2}, n=1,2, \ldots$, the unique solution is $y=0$.

Problem 4: Consider the ODE

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}+\lambda y=0, t>0 \tag{1}
\end{equation*}
$$

a) For $\lambda=4$, find two solutions of (1), calculate their Wronskian and thus deduce that they form a fundamental set of solutions.
b) Verify your answer for the Wronskian using Abel's Theorem and a convenient initial condition from part a).
c) Solve the eigenvalue problem (1) on $1<t<e$, subject to $y(1)=y^{\prime}(e)=0$, that is find all values of λ such that the boundary value problem has a nontrivial solution and in that case determine the latter.

Solution.

a) For $\lambda=4$, the equation becomes $t^{2} y^{\prime \prime}+t y^{\prime}+\lambda y=0, t>0$. We make a change of variables $x=\ln (t)$ and obtain the ODE $y^{\prime \prime}+4 y=0$. The fundamental solutions are $y_{1}=\cos (2 x)$ and $y_{2}=\sin (2 x)$ or $y_{1}(t)=\cos (2 \ln (t))$ and $y_{2}(t)=\sin (2 \ln (t))$. By differentiating with respect to t, we find $y_{1}^{\prime}(t)=-\frac{2}{t} \sin (2 \ln (t))$ and $y_{2}^{\prime}(t)=\frac{2}{t} \cos (2 \ln (t))$. For $t>0$, the Wronskian is

$$
W\left(y_{1}, y_{2}\right)=\frac{2}{t} \cos ^{2}(2 \ln (t))+\frac{2}{t} \sin ^{2}(2 \ln (t))=\frac{2}{t} .
$$

Clearly $W \neq 0$ so y_{1}, and y_{2} are linearly independent and form a fundamental set of solutions.
b) We put the original ODE in the form

$$
y^{\prime \prime}+\frac{1}{t} y^{\prime}+\frac{4}{t^{2}} y=0, t>0
$$

By Abel's theorem we get $W=C \exp \left(-\int \frac{1}{t} d t\right)=C \exp (-\ln (t))=\frac{C}{t}$. From part a), $W(1)=2$, which gives $C=2$.
c) By making a change of variables $x=\ln (t)$, we have to solve the eigenvalue problem

$$
y^{\prime \prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(1)=0
$$

We find eigenvalues $\lambda_{n}=\left(\frac{(2 n-1) \pi}{2}\right)^{2}$, for $n=1,2, \ldots$ and corresponding eigenfunctions $y_{n}(x)=\sin \left(\frac{(2 n-1) \pi x}{2}\right), n=1,2, \ldots$.

Problem 5: Find the general solution of the system

$$
\begin{aligned}
x_{1}^{\prime} & =4 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime} & =x_{1}+4 x_{2}+x_{3} \\
x_{3}^{\prime} & =4 x_{1}+x_{2}+4 x_{3} .
\end{aligned}
$$

Solution. The system can be written as $X^{\prime}=A X$, where

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right)
$$

The characteristic polynomial of A is

$$
\begin{aligned}
\left|\begin{array}{ccc}
4-\lambda & 1 & 1 \\
1 & 4-\lambda & 1 \\
1 & 1 & 4-\lambda
\end{array}\right| & =\left|\begin{array}{ccc}
6-\lambda & 6-\lambda & 6-\lambda \\
1 & 4-\lambda & 1 \\
1 & 1 & 4-\lambda
\end{array}\right|=(6-\lambda)\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 4-\lambda & 1 \\
1 & 1 & 4-\lambda
\end{array}\right| \\
& =(6-\lambda)\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right|=(6-\lambda)(3-\lambda)^{2} .
\end{aligned}
$$

The eigenvalues are $\lambda_{1}=6$ (of algebraic multiplicity 1) and $\lambda_{2}=3$ (of algebraic multiplicity $2)$. The eigenvectors for the eigenvalue $\lambda_{2}=3$ are given by the equation $\left(A-3 I_{3}\right) v=0$. We write

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and obtain $v_{1}+v_{2}+v_{3}=0$, hence $v_{3}=-v_{1}-v_{2}$. Thus

$$
\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
-v_{1}-v_{2}
\end{array}\right)=v_{1}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+v_{2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) .
$$

The geometric multiplicity is 2 . Two linearly independent eigenvectors of $\lambda_{2}=3$ are

$$
w_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \quad \text { and } \quad w_{2}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

The eigenvectors for $\lambda_{1}=6$ are solutions of

$$
\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

We find the following system of equations:

$$
\begin{array}{r}
-2 v_{1}+v_{2}+v_{3}=0 \\
v_{1}-2 v_{2}+v_{3}=0 \\
v_{1}+v_{2}-2 v_{3}=0
\end{array}
$$

The third equation is redundant. Subtracting the second equation from the first we get $-3 v_{1}+3 v_{2}=0$, so $v_{1}=v_{2}$. Substituting this in the first equation yields $v_{3}=v_{1}$. It follows that

$$
w_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

is an eigenvector for $\lambda_{1}=6$. The general solution for the given system of equations is

$$
x(t)=c_{1} e^{3 t} w_{1}+c_{2} e^{3 t} w_{2}+c_{3} w_{3} e^{6 t} .
$$

Problem 6: Consider the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-9 y=0, \quad x>0
$$

We know that $y_{1}(x)=x^{3}$ is a solution to this ODE. Use the method of reduction of order to find a second solution y_{2}. Show that y_{1} and y_{2} are linearly independent.
Solution. Substitute $y=v x^{3}$ in the given equation and simplify. We get the differential equation $x v^{\prime \prime}+7 v^{\prime}=0$, which is separable. We write $\frac{v^{\prime \prime}}{v^{\prime}}=-\frac{7}{x}$ and integrate. This gives $\ln v^{\prime}=-7 \ln x+\ln A$, which yields $v^{\prime}=\frac{A}{x^{7}}$ and finally $v(x)=-\frac{A}{6 x^{6}}+B$. With $A=-6$ and $B=0$ we get $v(x)=\frac{1}{x^{6}}$, so $y_{2}(x)=\frac{1}{x^{3}}$.

To show linear independence, assume that $a x^{3}+b \frac{1}{x^{3}}=0$ for all $x>0$. This is equivalent to $a x^{6}+b=0$. When $x=1$ we get $a+b=0$. When $x=2$ we get $64 a+b=0$, so the only values of a and b for which both conditions are satisfied is $a=b=0$. In conclusion, y_{1} and y_{2} are two linearly independent solutions.

Problem 7: Find the critical value of λ in which bifurcations occur in the system

$$
\dot{x}=1+\lambda x+x^{2} .
$$

Sketch the phase portrait for various values of λ and the bifurcation diagram. Classify the bifurcation.
Solution. The critical points c_{1} and c_{2} of the system verify $1+\lambda x+x^{2}=0$, so

$$
c_{1,2}=\frac{-\lambda \pm \sqrt{\lambda^{2}-4}}{2} .
$$

Figure 1: The graph of $\lambda^{2}-4$.

We have three cases to consider. First, suppose $\lambda^{2}=4$. Then $\lambda= \pm 2$. For $\lambda=2$, the system has one critical point $c=-\frac{\lambda}{2}=-1$, which is semi-stable, since $f(x)=1+2 x+x^{2}=$ $(1+x)^{2} \geq 0$ for all x. Similarly, for $\lambda=-2$, the system has one critical point $c=-\frac{\lambda}{2}=1$, which is semi-stable, since $f(x)=1-2 x+x^{2}=(1-x)^{2} \geq 0$ for all x.

If $\lambda^{2}<4$, then $-2<\lambda<2$ and there are no critical points.
If $\lambda^{2}>4$, then $\lambda>2$ or $\lambda<-2$. The system has two distinct critical points:

$$
\begin{aligned}
& c_{1}=\frac{-\lambda-\sqrt{\lambda^{2}-4}}{2} \text { (stable) } \\
& c_{2}=\frac{-\lambda+\sqrt{\lambda^{2}-4}}{2} \text { (unstable) }
\end{aligned}
$$

The function $f(x)=1+\lambda x+x^{2}$ is positive when $x<c_{1}$ or $x>c_{2}$, and negative when $c_{1}<x<c_{2}$.

Figure 2: The bifurcation diagram.

The system undergoes a saddle-node bifurcation.

