MAT324: Real Analysis – Fall 2016 ASSIGNMENT 7

Due Thursday, November 10, in class.

Problem 1: Which of the following statements are true and which are false? Explain.

- a) $L^1(\mathbb{R}) \subset L^2(\mathbb{R})$
- b) $L^2(\mathbb{R}) \subset L^1(\mathbb{R})$
- c) $L^1[3,5] \subset L^2[3,5]$
- d) $L^2[3,5] \subset L^1[3,5]$

Problem 2: Let f be a positive measurable function defined on a measurable set $E \subset \mathbb{R}$ with $m(E) < \infty$. Prove that

$$\left(\int_E f \, dm\right) \left(\int_E \frac{1}{f} \, dm\right) \ge m(E)^2.$$

Hint: Apply Cauchy-Schwarz inequality.

Problem 3: Let $f_n \in L^1(0,1) \cap L^2(0,1)$ for all $n \ge 1$. Prove or disprove the following:

- a) If $||f_n||_1 \to 0$ then $||f_n||_2 \to 0$.
- b) If $||f_n||_2 \to 0$ then $||f_n||_1 \to 0$.

Problem 4: Show that it is impossible to define an inner product on the space C([0,1]) of continuous function $f:[0,1] \to \mathbb{R}$ which will induce the sup norm $||f||_{\sup} = \sup\{|f(x)| : x \in [0,1]\}$.

Problem 5: Decide whether each of the following is Cauchy as a sequence in $L^2(0,\infty)$.

a) $f_n = \frac{1}{n^2} \chi_{[0, \frac{1}{n^3}]}$ b) $f_n = \frac{1}{x^2} \chi_{(n, \infty)}.$