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Abstract. We establish some existence results for the singular elliptic equation −∆u = g(u)+λ|∇u|a+

µf(x, u) either in a smooth bounded domain Ω ⊂ RN or in the whole space. We suppose that λ and µ

are positive parameters, 0 < a ≤ 2, f is a nondecreasing function which is sublinear with respect to the

second variable, and g ∈ C1(0,∞) is a decreasing function such that lims↘0 g(s) = +∞. The analysis we

develop in this paper emphasizes the central role played by the convection term |∇u|a.
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1 Introduction

We are concerned in this paper with singular elliptic equations of the type

−∆u = g(u) + λ|∇u|a + µf(x, u), u > 0 in Ω, (1.1)

where Ω ⊂ RN (N ≥ 2) is either a smooth bounded domain or the whole space, 0 < a ≤ 2 and λ, µ ≥ 0.

We suppose that g ∈ C1(0,∞) is a positive nonincreasing function such that

(g1) lims↘0 g(s) = +∞.

We also assume that f : Ω × [0,∞) → [0,∞) is a Hölder continuous function such that f > 0 on

Ω× (0,∞) and is sub-linear with respect to the second variable, that is,

(f1) the mapping (0, +∞) 3 s 7−→ f(x, s)
s

is nonincreasing for all x ∈ Ω;

(f2) lim
s→∞

f(x, s)
s

= 0, uniformly for x ∈ Ω.

∗This paper has been presented at the International Conference on Applied Analysis and Differential Equations, Iaşi,
September 4-9, 2006.
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Problems of this type arise in the study of non-Newtonian fluids, boundary layer phenomena for vis-

cous fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in electrically

conducting materials.

Our general setting includes some simple prototype models from boundary-layer theory of viscous fluids

(see [18]). If λ = 0 and µ = 0, problem (1.1) is called the Lane-Emden-Fowler equation. Problems of this

type, as well as the associated evolution equations, describe naturally certain physical phenomena. For

example, super-diffusivity equations of this type have been proposed by de Gennes [10] as a model for long

range Van der Waals interactions in thin films spreading on solid surfaces. This equation also appears in

the study of cellular automata and interacting particle systems with self-organized criticality (see [5]), as

well as to describe the flow over an impermeable plate (see [3, 4]).

The main feature of this paper is the presence of the convection term |∇u|a. As remarked in [6, 15],

the requirement that the nonlinearity grows at most quadratically in |∇u| is natural in order to apply the

maximum principle.

In the case where λ = 0, the problem (1.1) subject to Dirichlet boundary condition has a unique

solution for all µ ≥ 0 (see [7, 8, 11, 17] and the references therein).

If λ > 0, the following problem was considered in Zhang and Yu [19]




−∆u = u−α + λ|∇u|a + σ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

where Ω is a smooth bounded domain, λ, σ ≥ 0, α > 0, and a ∈ (0, 2]. By using the change of variable

v = eλu−1 in the case a = 2, it is proved in [19] that problem (1.2) has classical solutions if λσ < λ1, where

λ1 is the first eigenvalue of −∆ in H1
0 (Ω). This will be used to deduce the existence and nonexistence in

the case 0 < a < 2.

If f(x, u) depends on u, the above change of variable does not preserve the sublinearity condition

(f1) − (f2) and the monotony of the nonlinear term g in (1.1). In turn, if f(x, u) does not depend

on u and a = 2, this method successfully applies to our study and we will be able to give a complete

characterization of (1.1).

Due to the singular term g(u) in (1.1), we cannot expect to have solutions in C2(Ω) for (1.1). As it

was pointed out in [19], if α > 1 then the solution of (1.2) is not in C1(Ω). We are seeking in this paper

classical solutions of (1.1), that is, solutions u ∈ C2(Ω) ∩ C(Ω) that verify (1.1).

2 Singular elliptic equations in bounded domains

We present in this section some existence results for the problem




−∆u = g(u) + λ|∇u|a + µf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.1)
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Theorem 2.1. Assume that conditions (f1)− (f2), (g1) are fulfilled and 0 < a ≤ 1. Then for all λ, µ ≥ 0

the problem (2.1) has at least one solution.

Proof (Sketch). The proof relies on the sub and super-solution argument. Let us first notice that, by [9],

there exists v ∈ C2(Ω) ∩ C(Ω) a solution of the problem




−∆v = g(v) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(2.2)

Then uλµ = v is a sub-solution of (2.1). The main point is to find a super-solution uλµ ∈ C2(Ω) ∩ C(Ω)

of (2.1). This will be done separately for 0 < a < 1 and a = 1. Since g is decreasing, we can easily obtain

that uλµ ≤ uλµ in Ω so (2.1) has at least one solution.

Case 0 < a < 1. Let h ∈ C2(0, η] ∩ C[0, η] be such that




h′′(t) = −g(h(t)), for all 0 < t < η,

h(0) = 0,

h > 0 in (0, η].

(2.3)

The existence of h follows by classical arguments of ODE. Since h is concave, there exists h′(0+) ∈ (0, +∞].

By taking η > 0 small enough, we can assume that h′ > 0 in (0, η], so h is increasing on [0, η]. We also

have

Lemma 2.1. (i) h ∈ C1[0, η] if and only if
∫ 1

0
g(s)ds < +∞;

(ii) If 0 < p ≤ 2, then there exist c1, c2 > 0 such that

(h′)p(t) ≤ c1g(h(t)) + c2, for all 0 < t < η. (2.4)

Now we construct a super-solution in the form uλµ = Mh(ϕ1) for M > 1 large enough, where ϕ1

represents the first eigenfunction of −∆ in H1
0 (Ω).

Case a = 1. This case was left as an open problem in [12]. Note that the method used in Case 0 < a < 1

applies here only for small values of λ and µ. Let R > 0 be large enough such that Ω ⊂ BR(0), where

BR(0) = {x ∈ RN ; |x| < R}. We consider the problem




−∆u = g(u) + λ|∇u|+ µf(x, u) |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(2.5)

In order to provide a super-solution for (2.5) let us first consider the problem




−∆u = g(u) + λ|∇u|+ 1 |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(2.6)
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We need the following auxiliary result.

Lemma 2.2. Problem (2.6) has at least one solution.

Proof. We are looking for radially symmetric solution u of (2.6), that is, u = u(r), 0 ≤ r = |x| ≤ R and




−u′′ − N − 1
r

u′(r) = g(u(r)) + λ|u′(r)|+ 1 0 ≤ r < R,

u > 0 0 ≤ r < R,

u(R) = 0.

(2.7)

This implies −(rN−1u′(r))′ ≥ 0 for all 0 ≤ r < R, which yields u′(r) ≤ 0 for all 0 ≤ r < R. Then (2.7)

gives

−
(

u′′ +
N − 1

r
u′(r) + λu′(r)

)
= g(u(r)) + 1, 0 ≤ r < R.

We obtain

−(eλrrN−1u′(r))′ = eλrrN−1(g(u(r)) + 1), 0 ≤ r < R, (2.8)

From (2.8) we get

u(r) = u(0)−
∫ r

0

e−λtt−N+1

∫ t

0

eλssN−1(g(u(s)) + 1)dsdt, 0 ≤ r < R. (2.9)

Let w ∈ C2(BR(0)) ∩ C(BR(0)) be the unique radial solution of the problem




−∆w = g(w) + 1 |x| < R,

w > 0 |x| < R,

w = 0 |x| = R.

(2.10)

Clearly, w is a sub-solution of (2.6). As above we get

w(r) = w(0)−
∫ r

0

t−N+1

∫ t

0

sN−1(g(w(s)) + 1)dsdt, 0 ≤ r < R. (2.11)

We claim that there exists a solution v ∈ C2[0, R) ∩ C[0, R] of (2.9) such that v > 0 in [0, R).

Let A = w(0) and define the sequence (vk)k≥1 inductively by




vk(r) = A−
∫ r

0

e−λtt−N+1

∫ t

0

eλssN−1(g(vk−1(s)) + 1)dsdt, 0 ≤ r < R, k ≥ 1,

v0 = w.

(2.12)

Note that vk is decreasing in [0, R) for all k ≥ 0. From (2.11) and (2.12) we easily check that v1 ≥ v0 and

by induction we deduce vk ≥ vk−1 for all k ≥ 1. Hence

w = v0 ≤ v1 ≤ ... ≤ vk ≤ ... ≤ A in BR(0).

Thus, there exists v(r) := limk→∞ vk(r), for all 0 ≤ r < R and v > 0 in [0, R). We can now pass to the

limit in (2.12) in order to get that v is a solution of (2.9). By classical regularity results we also obtain

v ∈ C2[0, R) ∩ C[0, R]. This proves the claim.
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We have obtained a super-solution v of (2.6) such that v ≥ w in BR(0). Hence, the problem (2.6) has

at least one solution and the proof of our Lemma is now complete.

Let u ∈ C2(Ω) ∩ C(Ω) be a solution of the problem (2.6). For M > 1 we have −∆(Mu) ≥ g(Mu) +

λ|∇(Mu)|+ M in Ω. Since f is sublinear, we can choose M = M(µ) > 1 such that M ≥ µf(x,M |u|∞) in

BR(0). Then uλµ := Mu is a super-solution for (1.1).

This finishes the proof of Theorem 2.1.

In the case 1 < a ≤ 2 we prove the following result.

Theorem 2.2. Assume µ = 1 and f , g satisfy (f1)− (f2) and (g1) respectively. Then there exists λ∗ > 0

such that (1.1) has at least one classical solution for 0 ≤ λ < λ∗ and no solutions exist if λ > λ∗.

Proof. For small values of λ > 0 we can construct a super-solution of (2.1) in the same manner as in the

proof of Theorem 2.1.

Set

A = { λ ≥ 0 : problem (1.1) has at least one classical solution}.

From the above arguments, A is nonempty. Let λ∗ = sup A. First we claim that if λ ∈ A, then [0, λ) ⊆ A.

For this purpose, let λ1 ∈ A and 0 ≤ λ2 < λ1. If uλ1 is a solution of (1.1) with λ = λ1, then uλ1 is a

super-solution for (1.1) with λ = λ2 while v defined in (2.2) is a sub-solution. Hence, the problem (1.1)

with λ = λ2 has at least one classical solution. This proves the claim. Since λ ∈ A was arbitrary chosen,

we conclude that [0, λ∗) ⊂ A.

Let us prove that λ∗ < +∞. For this purpose we use the following result

Lemma 2.3. (see [1]). If a > 1, then there exists a real number σ̄ > 0 such that the problem




−∆u ≥ |∇u|a + σ in Ω,

u = 0 on ∂Ω,
(2.13)

has no solutions for σ > σ̄.

Set

τ := inf
(x,s)∈Ω×(0,+∞)

(
g(s) + f(x, s)

)
.

Since lims↘0 g(s) = +∞ and the mapping (0, +∞) 3 s 7−→ min
x∈Ω

f(x, s) is positive and nondecreasing, we

deduce that m is positive. Let λ > 0 be such that (2.1) has a solution uλ. If w = λ1/(p−1)uλ, then v verifies




−∆w ≥ |∇w|p + λ1/(a−1)τ in Ω,

w > 0 in Ω,

w = 0 on ∂Ω.

(2.14)

By Lemma 2.3 it follows that λ1/(a−1)τ ≤ σ̄ which gives λ ≤ (σ̄/τ)a−1. This means that λ∗ is finite. This

completes the proof.
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Theorems 2.1 and 2.2 show the importance of the convection term λ|∇u|a in (2.1). Indeed, according

to [11, Theorem 1.3], for any µ > 0, the boundary value problem




−∆u = u−α + λ|∇u|a + µuβ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.15)

has a unique solution, provided λ = 0 and α, β ∈ (0, 1). The above theorems show that if λ is not

necessarily 0, then the following situations may occur : (i) problem (2.15) has solutions if a ∈ (0, 1] and

for all λ ≥ 0; (ii) if a ∈ (1, 2) then there exists λ∗ > 0 such that problem (2.15) has a solution for any

λ < λ∗ and no solution exists if λ > λ∗.

To better understand the dependence between λ and µ in (2.1), let us consider the special case f ≡ 1

and let

m := lim
s→∞

g(s) ∈ (0,+∞).

In this case the result concerning (2.1) is the following.

Theorem 2.3. Assume that a = 2 and f ≡ 1. Then the following properties hold.

(i) The problem (1.1) has a solution if and only if λ(m + µ) < λ1;

(ii) Assume µ > 0 is fixed and let λ∗ = λ1
m+µ . Then (1.1) has a unique solution uλ for every 0 < λ < λ∗

and the sequence (uλ)0<λ<λ∗ is increasing with respect to λ. Moreover, if lim sups↘0 sαg(s) < +∞,

for some α ∈ (0, 1), then the sequence of solutions (uλ)0<λ<λ∗ has the following properties

(ii1) uλ ∈ C1,1−α(Ω) ∩ C2(Ω);

(ii2) limλ↗λ∗ uλ = +∞ uniformly on compact subsets of Ω.

Remark. The assumption lim sup
s↘0

sαg(s) < +∞, for some α ∈ (0, 1), has been used in [7, 11] and it

implies the following Keller-Osserman-type growth condition around the origin

∫ 1

0

(∫ t

0

g(s)ds

)−1/2

dt < +∞. (2.16)

As proved by Bénilan, Brezis and Crandall in [2], condition (2.16) is equivalent to the property of compact

support, that is, for any h ∈ L1(RN ) with compact support, there exists a unique u ∈ W 1,1(RN ) with

compact support such that ∆u ∈ L1(RN ) and −∆u = g(u) + h a.e. in RN .

Proof of Theorem 2.3. With the change of variable v = eλu − 1, the problem (1.1) takes the form




−∆v = Ψλµ(x, u) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(2.17)

where

Ψλµ(x, s) = λ(s + 1)g
(

1
λ

ln(s + 1)
)

+ λµ(s + 1)f
(

x,
1
λ

ln(s + 1)
)

,
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for all (x, s) ∈ Ω× (0,∞). The existence and nonexistence results follows now from [12, Theorem 2.4].

In order to prove the asymptotic behavior of the solution near λ∗ we use the following alternative which

is due to Hörmander (see [14, Theorem 4.1.9])

Proposition 2.1. Let (uλ)0<λ<λ∗ be a sequence of positive super-harmonic functions which are increasing

with respect to λ. Then the following alternative holds

(i) either uλ converges in L1
loc(Ω);

(ii) or uλ →∞ uniformly on compact subsets of Ω.

3 Ground state solutions for singular elliptic problems

We consider in this section the following singular problem




−∆u = p(x)(g(u) + f(u) + |∇u|a) in RN , (N ≥ 3),

u > 0 in RN ,

u(x) → 0 as |x| → ∞,

(3.1)

where f and g satisfy (f1)−(f2) and (g1), 0 < a < 1, and p : RN → (0,∞) is a Hölder continuous function

of exponent γ ∈ (0, 1).

We are concerned here with ground state solutions, that is, positive solutions defined in the whole space

and decaying to zero at infinity.

The case f ≡ 0 and a = 0 was considered in Lair and Shaker [16]. More exactly, it was proved in [16]

that a necessary condition in order to have solution for the problem




−∆u = p(x)g(u) in RN ,

u > 0 in RN ,

u(x) → 0 as |x| → ∞,

(3.2)

is ∫ ∞

1

tψ(t)dt < ∞, (3.3)

where ψ(r) = min|x|=r p(x), r ≥ 0. Note that condition (3.3) is also necessary for our problem (3.1), since

any solution of (3.1) is a super-solution of (3.2). The sufficient condition for existence supplied in [16] is
∫ ∞

1

tφ(t)dt < ∞, (3.4)

where φ(r) = max|x|=r p(x), r ≥ 0. Hence, when p is radially symmetric, the problem (3.2) has solutions

if and only if
∫∞
1

tp(t)dt < ∞ (see [16]).

Our result concerning the problem (3.1) is the following.

Theorem 3.1. Assume that (f1)− (f2), (g1) and (3.4) are fulfilled. Then problem (3.1) has at least one

solution.
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Proof. The solution of problem (3.1) is obtained as a limit in C2,γ
loc (RN ) of a monotone sequence of solutions

associated to (3.1) in smooth bounded domains. Let Bn := {x ∈ RN ; |x| < n}. According to Theorem

2.1, for all n ≥ 1 there exists un ∈ C2,γ(Bn) ∩ C(Bn) such that




−∆un = p(x)(g(un) + f(un) + |∇un|a) in Bn,

un > 0 in Bn,

un = 0 on ∂Bn.

(3.5)

We extend un by zero outside of Bn. We claim that un ≤ un+1 in Bn. Assume by contradiction that the

inequality un ≤ un+1 does not hold throughout Bn and let

ζ(x) =
un(x)

un+1(x)
, x ∈ Bn.

Clearly ζ = 0 on ∂Bn, so that ζ achieves its maximum in a point x0 ∈ Bn. At this point we have

∇ζ(x0) = 0 and ∆ζ(x0) ≤ 0. This yields

−div(u2
n+1∇ζ)(x0) = −

(
div(u2

n+1)∇ζ + u2
n+1∆ζ

)
(x0) ≥ 0.

A straightforward computation shows that

−div(u2
n+1∇ζ) = −un+1∆un + un∆un+1.

Hence (
− un+1∆un + un∆un+1

)
(x0) ≥ 0.

The above relation produces
(

g(un) + f(un)
un

− g(un+1) + f(un+1)
un+1

)
(x0) +

( |∇un|a
un

− |∇un+1|a
un+1

)
(x0) ≥ 0. (3.6)

Since t 7−→ g(t)+f(t)
t is decreasing on (0,∞) and un(x0) > un+1(x0), from (3.6) we obtain

( |∇un|a
un

− |∇un+1|a
un+1

)
(x0) > 0. (3.7)

On the other hand, ∇ζ(x0) = 0 implies un+1(x0)∇un(x0) = un(x0)∇un+1(x0). Furthermore, relation

(3.7) leads us to ua−1
n (x0)− ua−1

n+1(x0) > 0, which is a contradiction since 0 < a < 1. Hence un ≤ un+1 in

Bn which means that

0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ . . . in RN .

The main point is to find an upper bound for the sequence (un)n≥1. To this aim, set

Φ(r) = r1−N

∫ r

0

tN−1φ(t)dt, for all r > 0.

Using the assumption (3.4) and L’Hôpital’s rule, we get limr→∞ Φ(r) = limr↘0 Φ(r) = 0 and

lim
r→∞

Φ(r) =
1

N − 2

∫ ∞

0

rφ(r)dr < ∞.

8



Let k > 2 be such that k1−a ≥ 2maxr≥0 Φa(r) and define

ξ(x) = k

∫ ∞

|x|
Φ(t)dt, for all x ∈ RN .

Then ξ satisfies 



−∆ξ = kφ(|x|) in RN ,

ξ > 0 in RN ,

ξ(x) → 0 as |x| → ∞.

Since the mapping [0,∞) 3 t 7−→ ∫ t

0
1

g(s)+1ds ∈ [0,∞) is bijective, we can implicitly define w : RN → (0,∞)

by ∫ w(x)

0

1
g(t) + 1

dt = ξ(x), for all x ∈ RN .

It is easy to see that w ∈ C2(RN ) and w(x) → 0 as |x| → ∞. Furthermore, we have




−∆w ≥ p(x)(g(w) + 1 + |∇w|a) in RN ,

w > 0 in RN ,

w(x) → 0 as |x| → ∞.

(3.8)

Using the assumption (f1), we can find M > 1 large enough such that M > f(Mw) in RN . Multiplying

by M in (3.8) we deduce that v := Mw satisfies




−∆v ≥ p(x)(g(v) + f(v) + |∇v|a) in RN ,

v > 0 in RN ,

v(x) → 0 as |x| → ∞.

With the same proof as above we deduce that un ≤ v in Bn, for all n ≥ 1. This implies 0 ≤ u1 ≤ · · · ≤
un ≤ v in RN . Thus, there exists u(x) = limn→∞ un(x), for all x ∈ RN and un ≤ u ≤ v in RN . Since

v(x) → 0 as |x| → ∞, we deduce that u(x) → 0 as |x| → ∞. A standard bootstrap argument (see Gilbarg

and Trudinger [13]) implies that un → u in C2,γ
loc (RN ) and that u is a solution of problem (3.1).

This completes the proof of Theorem 3.1.
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[14] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin Heidelberg New York,
1983.

[15] J. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975),
567-597.

[16] A. V. Lair and A. W. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal.
Appl. 211 (1997), 371-385.

[17] J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Royal Soc. Edinburgh Sect. A 128 (1998),
1389-1401.

[18] J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Review 17 (1975), 339-360.

[19] Z. Zhang and J. Yu, On a singular nonlinear Dirichlet problem with a convection term, SIAM J. Math. Anal. 4 (2000),

916-927.

10


