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Abstract

In this paper the problem of H2-control of a discrete-time linear system subject to
Markovian jumping and independent random perturbations is considered. Several kinds of
H2 types of performance criteria (often calls H2-norms) are introduced and characterized
via solutions of some suitable linear equations on the spaces of symmetric matrices. The
purpose of such performance criteria is to provide a measure of the effect of additive white
noise perturbations over an output of the controlled system. Different aspects specific to
the discrete-time framework are revealed. The problem of optimization of H2-norms is
solved under the assumption that full state vector is available for measurements. One
shows that among all stabilizing controllers of higher dimension, the best performance
is achieved by a zero order controller. The corresponding feedback gain of the optimal
controller is constructed based on the stabilizing solution of a system of discrete-time
generalized Riccati equations. The case of discrete-time linear stochastic systems with
coefficients depending upon the states both at time t and at time t − 1 of the Markov
chain, is also considered.
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1 Introduction

The problem of optimal control associated to a deterministic or stochastic controlled system
subject to some white noise perturbations has a long history. For the stochastic framework we
refer to [1]-[11], [23],[25]-[35]. A natural performance index for a such optimization problem is
provide by the limit for t tends to infinity of the mean square (second moment) of a suitable
output of the closed-loop system. The value of a such performance criteria is expressed in terms

∗This work was partially supported by Grant no. 2-CEx06-11-18/2006 of the Romanian Ministry of Educa-
tion and Research
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of observability Gramian of the closed-loop system. In [13] was observed that the same formula
based on the observability Gramian corresponds to the state space setting of the H2-norm
of a linear time invariant deterministic system. So, in the literature by H2-control problems
associated to a deterministic or stochastic time invariant or time varying controlled system one
understands any control problem asking the minimization of a quadratic cost functional over
the trajectories of the closed-loop system subject to additive white noise.

In the case of time-varying linear stochastic systems described by Ito differential equations
the H2 optimization problem was solved in [14] for the finite dimensional case and in [11] for
the infinite dimensional case. In the case of continuous-time linear stochastic systems subject
to Markovian jumping the H2-optimization problem was considered in [7] and [22]. In [17, 18]
the H2-optimization problem was investigated in the case of continuous time linear stochastic
systems subject to both multiplicative and additive white noise and Markovian switching.

For the discrete-time framework the H2 optimization problem was considered in [24] and
[25] for systems with independent random perturbations and in [6, 9] and [10] for the systems
affected by Markovian jumping. In [10] a convincing motivation for the applicability of H2-
optimization problem for discrete-time systems with Markovian jumping is given.

In the present paper we consider the problem of H2 optimal control for a wide class of discrete
time linear stochastic systems. We refer to linear stochastic systems subject to Markovian
jumping and independent random perturbations. Our goal is to provide an unified approach of
this optimization problem and to reveal the aspects specific to the discrete time as well to the
presence of a Markov chain in the coefficients of the system. For a such discrete time linear
stochastic system we introduce 3 types of H2 performances (H2- norms). We prove that under
some additional assumptions these performance criteria can be expressed using the solutions of
some linear equations on certain space of symmetric matrices. Since the usual H2 performances
associated to a discrete time linear stochastic system with Markovian jumping are strongly
dependent upon the initial distribution of the Markov chain we proposed a new performance
criteria not depending upon the initial distributions of the Markov chain. Concerning the
problem of optimal control with respect to the H2 performances we restrict our attention
to the case of full state measurements. This is due to the length limitation of the paper.
For the considered optimization problem we show that among all stabilizing controllers of
higher dimension, the best performance is achieved by a zero order controller. That is a state
feedback. It is the same state feedback which solves the linear quadratic optimization problem
(the standard regulator problem) for this class of discrete time linear stochastic systems (see
[20]. In the paper, special attention is paid to the case of discrete-time controlled systems with
coefficients depending upon the state both at time t and a time t-1 of the Markov chain. We
consider that a such class of systems provides a good mathematical model in the case when
some delays in the transmission of the data can arise either on the channel from sensors to
controller or from controllers to actuators.

The outline of the paper is:
Section 2 contains a detailed description of the mathematical model of the controlled systems

under consideration in the paper. Also the definitions of three H2 norms are introduced and the
optimization problems which we want to solve are stated. In section 3 we give formulae of the
those three H2 norms defined in section 2. The obtained formulae are based on solutions of some
suitable linear equations on the certain spaces of symmetric matrices. In the last part of this
section several robustness issues concerning the H2-norms of discrete time linear systems with
Markovian jumping are discussed. We feel that such issues were less discussed in the existing
papers in the field. Section 4 contains the solution of the H2 optimization problem under
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the assumption that the full state vector is available for measurements. The proofs of several
auxiliary results involved in Section 3 are collected in a Appendix. Also a brief discussion of
the problem of the existence of the stabilizing solution of a discrete time stochastic generalized
Riccati equation can be found in the last part of the Appendix.

2 H2 norms of discrete-time linear stochastic systems

2.1 Model setting

Consider the discrete-time linear system (G) described by:

(G) :





x(t + 1) = (A0(ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t) + Bv(ηt)v(t)

z(t) = C(ηt)x(t), t ∈ Z+.
(1)

where x(t) ∈ Rn is the state vector, z(t) ∈ Rnz a controlled output, {wk(t)}t≥0, 1 ≤ k ≤ r, are
sequences of random variables and {v(t)}t≥0 is a sequence of mv-dimensional random vectors
on a given probability space (Ω,F ,P), while {ηt}t≥0 is a homogenous Markov chain with the
set of the states D = {1, 2, ..., N} and the transition probability matrix P . This means that for
each t ≥ 0 we have

P{ηt+1 = j|Gt} = P{ηt+1 = j|ηt} = p(ηt, j) (2)

for all j ∈ D, where p(i, j) are the elements of the N × N stochastic matrix P and Gt =
σ(η0, η1, ..., ηt) (the smallest σ-algebra generated by the random variables ηs, 0 ≤ s ≤ t). For
more details concerning Markov chains we refer to [12].

In (1), Ak(i) ∈ Rn×n, Bv(i) ∈ Rn×mv , C(i) ∈ Rn×nz are given matrices.
Z+ stands for the set of nonnegative integers.
Throughout this paper the following assumptions are made:

H1) If w(t) = (w1(t), w2(t), ..., wr(t))
T then {w(t)}t≥0 is a sequence of independent random

vectors with the following properties:

E[w(t)] = 0, E[w(t)wT (t)] = Ir, t ≥ 0,

Ir being the identity matrix of size r.

H2) The stochastic processes {w(t)}t≥0 and {η(t)}t≥0 are independent.

H3) {v(t)}t≥0 is a sequence of independent random vectors with the properties:

E[v(t)] = 0, E[v(t)vT (t)] = Imv , t ≥ 0

and {v(t)}t≥0 is independent of stochastic processes {w(t)}t≥0 and {ηt}t≥0.

Throughout the paper, the superscript T stands for the transpose of a matrix or a vector,
while E[·] stands for the expectation.
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Related to the Markov chain ηt, we define πt(i) = P(ηt = i), i ∈ D, t ≥ 0 and
πt = (πt(1), πt(2), ..., πt(N)) is known as the distribution of the random variable ηt.

The sequence {πt}t≥0 solves the forward linear equation

πt+1 = πtP. (3)

For each t ≥ 0 we introduce the following subset of D:

Dt = {i ∈ D, πt(i) > 0}. (4)

From (3), one obtains that for a Markov chain is possible to have D\Dt 6= φ for some t ≥ 1,
even if D0 = D.

Let A(t) = A0(ηt) +
r∑

k=1

wk(t)Ak(ηt), t ≥ 0.

Set Φ(t, s) =

{
A(t− 1)A(t− 2)...A(s), if t ≥ s + 1
In, if t=s.

If x(t, t0, x0) is the solution of (1) with the initial value x(t, t0, x0) = x0 then we have the
following representation formula:

x(t, t0, x0) = Φ(t, t0)x0 +
t−1∑

l=t0

Φ(t, l + 1)Bv(ηl)v(l) (5)

for all t ≥ t0 + 1.
We have

x(t, t0, x0) = Φ(t, t0)x0 + x0(t, t0) (6)

with x0(t, t0) = x(t, t0, 0) =
t−1∑
l=t0

Φ(t, l + 1)Bv(ηl)v(l).

The corresponding output is

z(t, t0, x0) = C(ηt)Φ(t, t0)x0 + z0(t, t0) (7)

where z0(t, t0) = C(ηt)x0(t, t0).
In (7) C(ηt)Φ(t, t0)x0 is the transitory component of the output signal while z0(t, t0) is the

answer of the system determined by the exogenous noise v(t).

2.2 H2 type norms

The linear system obtained from (1) is:

x(t + 1) = (A0(ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t). (8)

We recall that the zero state equilibrium of (8) is exponentially stable in mean square (ESMS)
for shortness, if there exist β ≥ 1, q ∈ (0, 1) such that

E[|Φ(t, 0)x0|2] ≤ βqt|x0|2, t ≥ 0 (9)

for all x0 ∈ Rn and for every initial distribution π0 of the Markov chain.
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For other equivalent definitions of (ESMS) related to linear systems of type (8) we refer to
[16].

Under the assumption that the zero state equilibrium of (8) is (ESMS) we introduce the
following performance criteria associated to the system (1):

‖G‖2 = ( lim
l→∞

1

l

l∑
t=0

E[|z(t, 0, x0)|]) 1
2 (10)

|̃|G|̃|2 = ( lim
l→∞

1

l

l∑
t=0

∑
i∈D0

E[|z(t, 0, x0)|2/η0 = i])
1
2 (11)

|||G|||2 = ( lim
t→∞

E[|z(t, s, x0)|2]) 1
2 . (12)

Since in the deterministic framework (i.e. D = {1} and Ak(1) = 0, 1 ≤ k ≤ r), the right
hand side of (10)-(12) provides the state space characterization of the H2 norm of a linear
time invariant deterministic system, we shall preserve the same terminology in this general
framework of stochastic systems (1). That is why we shall call H2-norms the cost functionals
introduced by (10)-(12).

Having in mind (7) and (9) one can see that the transitory component of the output z(t, s, x0)
do not influence the performances (10)-(12). Explicit formulae for the performances (10)-(12)
will be derived in section 3.

2.3 H2 optimization

Consider the discrete time controlled stochastic system (G) described by:

(G) :





x(t + 1) = [A0(ηt) +
∑r

k=1 wk(t)Ak(ηt)]x(t) + [B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)]u(t) + Bv(ηt)v(t)

y(t) = x(t)
z(t) = Cz(ηt)x(t) + Dz(ηt)u(t)

(13)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, y(t) ∈ Rn is the vector of the
measurements, z(t) ∈ Rnz is the controlled output and {wk(t)}t≥0, 1 ≤ k ≤ r, {ηt}t≥0, {v(t)}t≥0

are as before and verify H1)−H3). It is assumed that the whole state vector is available for the
measurements. The coefficients Ak(i), Bk(i), 0 ≤ k ≤ r, Bv(i), Cz(i), Dz(i), i ∈ D are constant
matrices of appropriate dimensions.

To control the systems of type (13) we consider dynamic controllers of the form:

(Gc) :





xc(t + 1) = [Ac0(ηt) +
r∑

k=1

wk(t)Ack(ηt)]xc(t) + (Bc0(ηt) +
∑r

k=1 wk(t)Bck(ηt))uc(t)

yc(t) = Cc(ηt)xc(t) + Fc(ηt)uc(t),
(14)

t ≥ 0, where xc ∈ Rnc is the vector of the states of the controller, uc(t) ∈ Rn is the vector
of the inputs of the controller and yc(t) ∈ Rm is the output of the controller. The integer nc

often known as the order of the controller is not prefixed. It will be determined together with
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the matrices Ack(i), Bck(i), Cc(i), Fc(i). If nc = 0 the controller (Gc) reduces to a feedback gain
yc(t) = Fc(ηt)uc(t).

Coupling a controller (Gc) of type (14) to a system (G) of type (13) taking uc(t) =
y(t), u(t) = yc(t) one obtains the following closed loop system:

(Gcl) :





xcl(t + 1) = [A0cl
(ηt) +

r∑
k=1

wk(t)Akcl(ηt)]xcl(t) + Bvcl(ηt)v(t)

zcl(t) = Ccl(ηt)xcl(t), t ≥ 0
(15)

where xcl(t) =
(

xT (t) xT
c (t)

)T
,

Akcl(i) =

(
Ak(i) + Bk(i)Fc(i) Bk(i)Cc(i)

Bck(i) Ack(i)

)
, 0 ≤ k ≤ r, Bvcl(i) =

(
Bv(i)

0

)

Ccl(i) =
(

Cz(i) + Dz(i)Fc(i) Dz(i)Cc(i)
)
. (16)

Definition 2.1. We say that a controller (Gc) of type (14) is a stabilizing controller for the
system G of type (13) if the zero state equilibrium of the linear system

xcl(t + 1) = (A0cl(ηt) +
r∑

k=1

wk(t)Akcl(ηt))xcl(t)

is exponentially stable in mean square.
In the sequel we shall denote Ks(G) the class of stabilizing controllers for a given system

(G) of type (13). Now we are in position to state the optimization problems associated to a
system (13):

OP1. Find an admissible controller G̃c such that the corresponding closed-loop system G̃cl

satisfy
||G̃cl||2 = min

Gc∈Ks(G)
||Gcl||2.

OP2. Find an admissible controller G̃c such that the corresponding closed-loop system G̃cl

satisfy |̃|G̃cl |̃|2 = min
Gc∈Ks(G)

|̃|Gcl |̃|2.

OP3. Find an admissible controller G̃c such that the corresponding closed-loop system G̃cl

satisfy |||G̃cl|||2 = min
Gc∈Ks(G)

|||Gcl|||.
Since in the case N = 1 the norm (10)-(11) coincide it follows that for the system subject

to independent random perturbations we have only two H2-optimization problems OP1 and
OP3, respectively.

2.4 Systems with coefficients depending upon ηt and ηt−1

The explicit formulae of the H2-norms (10)-(12) will be derived as special cases of some cor-
responding H2 norms defined for a more general class of discrete-time stochastic systems with
coefficients depending upon ηt and ηt−1.
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Let us consider the discrete-time controlled systems (G) described by:




x(t + 1) = [A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1)]x(t)+

+[B0(ηt, ηt−1) +
r∑

k=1

wk(t)Bk(ηt, ηt−1)]u(t) + Bv(ηt, ηt−1)v(t)

y(t) = [C0(ηt, ηt−1) +
r∑

k=1

wk(t)Ck(ηt, ηt−1)]x(t) + Dv(ηt, ηt−1)v(t)

z(t) = [Cz(ηt, ηt−1)x(t) + Dz(ηt, ηt−1)u(t), t ≥ 1

where x(t), u(t), y(t), z(t) have the same meaning as in the case of the system (13), while
{wk(t)}t≥0, {ηt}t≥0, {v(t)}t≥0 are stochastic processes which satisfy assumptions H1) − H3).
Ak(i, j) ∈ Rn×n, Bk(i, j) ∈ Rn×m, Ck(i, j) ∈ Rny×n, 0 ≤ k ≤ r, Bv(i, j) ∈ Rn×mv , Dv(i, j) ∈
Rny×mv , Cz(i, j) ∈ Rnz×n, Dz(i, j) ∈ Rnz×m, i ∈ D are given matrices.

The above systems can be obtained in a natural way from systems of type (13) if a delay in
the transmission of the measurements is possible between the sensors and controller. Consider
that in (13) an output

ỹ(t) = (C0(ηt) +
r∑

k=1

wk(t)Ck(ηt))x(t) + Dv(ηt)v(t) (17)

instead of y(t) = x(t).
Let us assume that at instance t, in the system (13), the measurement y̌(t) = ỹ(t − 1) is

introduced in the controller instead of ỹ(t).

Setting x̃(t) =
(

xT (t) xT (t− 1)
)T

one obtains the following system derived from (13)with
measurement output (17)

x̃(t + 1) = (Ã0(ηt, ηt−1) +
2r∑

k=1

w̃k(t)Ãk(ηt, ηt−1))x̃(t) +

(B̃0(ηt, ηt−1) +
2r∑

k=1

w̃k(t)B̃k(ηt, ηt−1))u(t) + B̃v(ηt, ηt−1)ṽ(t).

ỹ(t) = [C̃0(ηt, ηt−1) +
2r∑

k=1

w̃k(t)C̃k(ηt, ηt−1)]x̃(t) + D̃v(ηt, ηt−1)ṽ(t) (18)

z(t) = C̃z(ηt, ηt−1)x̃(t) + D̃z(ηt, ηt−1)u(t)

where

Ã0(i, j) =

(
A0(i) 0
In 0

)
, Ãk(i, j) =

(
Ak(i) 0

0 0

)
, 1 ≤ k ≤ r,

Ãk(i, j) = 0, r + 1 ≤ k ≤ 2r, C̃0(i, j) =
(

0 C0(j)
)
, C̃k(i, j) = 0, 1 ≤ k ≤ r,

C̃k(i, j) =
(

0 Ck−r(j)
)
, r + 1 ≤ k ≤ 2r.

B̃k(i, j) =

(
Bk(i)

0

)
, 0 ≤ k ≤ r, B̃k(i, j) = 0 r + 1 ≤ k ≤ 2r. (19)

B̃v(i, j) =

(
Bv(i) 0

0 0

)
∈ R2n×2mv , D̃v(i, j) =

(
0 Dv(j)

)
, C̃z(i, j) =

(
Cz(i) 0

)
,

D̃z(i, j) = Dz(i), w̃k(t) = wk(t), 1 ≤ k ≤ r, w̃k(t) = wk−r(t− 1), r + 1 ≤ k ≤ 2r,

ṽ(t) =
(

vT (t) vT (t− 1)
)T

.
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To redefine the H2 norms of type (10)-(12) in the case of systems with coefficients depending
upon ηt and ηt−1 we consider the uncontrolled system:

(G) :





x(t + 1) = (A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1))x(t) + Bv(ηt, ηt−1)v(t)

z(t) = C(ηt, ηt−1)x(t), t ≥ 1
(20)

As in the case of system (1), x(t, t0, x0), t ≥ t0 ≥ 1, x0 ∈ Rn stands for the trajectory of (20)
with the initial value x(t0, t0, x0) = x0 and z(t, t0, x0) = C(ηt, ηt−1)x(t, t0, x0) is a corresponding
output.

The analogous of norms (10)-(12) defined for the system (20) are:

‖G‖2 = [ lim
l→∞

1

l

l∑
t=1

E[|z(t, 1, x0)|2]] 1
2 (21)

|̃|G|̃|2 = [ lim
l→∞

1

l

l∑
t=1

∑
i∈D0

E[|z(t, 1, x0)|2|η0 = i]]
1
2 (22)

|||G|||2 = [ lim
t→∞

E[|z(t, s, x0)|2]] 1
2 . (23)

In the next section we shall show how we can express the right hand side of (21)-(23) in terms
of solution of some suitable linear equations. Such linear equations extend to this framework
the well known equations of observability Gramian and controllability Gramian from the de-
terministic framework.

3 The computation of H2 type norms

3.1 Some preliminaries

Let Sn ⊂ Rn×n be the linear subspace of n× n real symmetric matrices and SN
n = Sn ⊕ Sn ⊕

...⊕Sn. We have X ∈ Sn iff X = (X(1), X(2), ..., X(N)), X(i) ∈ Sn. SN
n is a real Hilbert space

with the inner product:

< X, Y >=
N∑

i=1

Tr[X(i)Y (i)] (24)

for arbitrary X, Y ∈ SN
n . Tr[·] is the trace operator. Moreover, the Hilbert space SN

n is an
ordered linear space with respect to the order relation ” ≤ ” induced by the convex cone

SN+
n = {X ∈ SN

n |X = (X(1), ..., X(N)), X(i) ≥ 0, 1 ≤ i ≤ N}.

Here X(i) ≥ 0 means that X(i) is positive semidefinite. Together with the norm | · |2 induced
by the inner product (24) we consider the norm | · |1 defined as |X|1 = max

i∈D
max{|λ(i)||λ(i) ∈

σ(X(i))}, where σ(X(i)) stands for the set of the eigenvalues of the matrix X(i).
Consider the discrete-time linear system

x(t + 1) = [A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1)]x(t) (25)
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obtained from (20) taking Bv(i, j) = 0.
Using the matrices Ak(i, j) and the transition probability matrix P we construct the linear

operator Υ : SN
n → SN

n as ΥH = (ΥH(1), ΥH(2), ..., ΥH(N)) with

ΥH(i) =
r∑

k=0

N∑
j=1

p(j, i)Ak(i, j)H(j)AT
k (i, j) (26)

i ∈ D, H ∈ SN
n . The linear operator Υ defined above will be called the Lyapunov type operator

associated to the discrete-time linear system (25).
By direct computation one obtains that the adjoint operator Υ∗ with respect to the inner

product (24) is given by Υ∗H = (Υ∗H(1), Υ∗H(2), ..., Υ∗H(N)),

Υ∗H(i) =
r∑

k=0

N∑
j=1

p(i, j)AT
k (j, i)H(j)Ak(j, i), i ∈ D (27)

H ∈ SN
n . We recall that the zero state equilibrium of (25) is exponentially stable in mean square

(ESMS) if there exist β ≥ 1, q ∈ (0, 1) such that E[|x(t, 1, x0)|2] ≤ βqt−1|x0|2 for all solutions
x(t, x0) of (25). Different equivalent definitions and details concerning the characterization of
the concept of ESMS for systems of type (25) can be found in [19].

From Theorem 3.7 in [19] we have:
Proposition 3.1.Under the assumptions H1)-H2) the following are equivalent:
(i) The zero state equilibrium of the system (25) is (ESMS).
(ii) ρ(Υ) < 1, ρ(·) being the spectral radius.
The above Proposition together with Theorem 3.5 in [15] lead to:
Proposition 3.2. Assume:
a) Assumptions H1)-H2) are fulfilled.
b) The zero state equilibrium of (25) is ESMS.
Then the following hold:
(i) The algebraic equation on SN

n : Y = ΥY + H has a unique solution which is given by

Y =
∞∑

t=0

ΥtH.

(ii) The algebraic equation on SN
n : X = Υ∗X + H has a unique solution which is given by

X =
∞∑

t=0

(Υ∗)tH.

Moreover, if H ∈ SN+
n then the solution X and Y of the above equations belong to SN+

n .
Concerning the stochastic matrices we recall the following result proved in [12]:

Proposition 3.3. If P ∈ RN×N is a stochastic matrix then the Cesaro limit lim
l→∞

1
l

l∑
t=0

P t is

well defined. If

Q = lim
l→∞

1

l

l∑
t=0

P t (28)

then Q is also a stochastic matrix and we have QP = PQ = Q.

Definition 3.1. We say that the stochastic matrix P is a non-degenerate stochastic
matrix if for each j ∈ D there exists i ∈ D such that p(i, j) > 0.
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Based on (3) one can see that πt(i) > 0 for each t ≥ 1 and 1 ≤ i ≤ N , if π0(j) > 0, 1 ≤ j ≤
N .

At the end of this subsection we introduce several σ-algebras generated by the stochastic
processes {w(t)}t≥0, {ηt}t≥0, {v(t)}t≥0.

Thus we denote
Ft = σ(w(0), w(1), ..., w(t))

Gt = σ(η0, η1, ..., ηt)

F̂t = σ(v(0), v(1), ..., v(t))

Ht = Ft ∨ Gt

Ĥt = Ft ∨ Gt ∨ F̂t

H̃t = Ĥt−1 ∨ σ(ηt).

We recall that if F1 and F2 ⊂ F are two σ-algebras then F1∨F2 ⊂ F stands for the smallest
σ-algebra containing F1 and F2.

3.2 The computations of the norm (21) and the norm (22)

We start with the following auxiliary result:
Lemma 3.1.Under the assumptions H1)-H3) we have E[xT (t + 1)H(ηt)x(t + 1)|ηs−1] =

E[xT (t)(Υ∗H)(ηt−1)x(t)|ηs−1]+
N∑

j=1

E[Tr[H(j)Bv(j, ηt−1)B
T
v (j, ηt−1)]p(ηt−1, j)|ηs−1], ∀t ≥ s ≥ 1,

H ∈ SN
n , where x(t) = x(t, s, x0) is a trajectory of the system (20) starting from x0 at t = s.

Proof. (see Appendix A1).

Let A(t) = A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1). We define Θ(t, s) = A(t− 1)A(t− 2)...A(s)

if t > s ≥ 1 and Θ(t, s) = In if t = s. Θ(t, s) will be called the fundamental matrix solution of
the system (25).

The solutions of the affine system (20) have the representation

x(t, s, x0) = Θ(t, s)x0 +
t−1∑

l=s

Θ(t, l + 1)Bv(ηl, ηl−1)v(l) (29)

for all t ≥ s + 1, s ≥ 1, x0 ∈ Rn. Often we shall write x0(t, s) instead of x(t, s, 0).
Lemma 3.2.Under the assumptions H1)-H3) the following hold:

(i) E[x0(t, s)x
T
0 (t, s)] =

t−1∑
l=s

E[Θ(t, l + 1)Bv(ηl, ηl−1)B
T
v (ηl, ηl−1)Θ

T (t, l + 1)];

(ii) E[x0(t, s)x
T
0 (t, s)χ{ηt−1=j}] =

t−1∑
l=s

E[Θ(t, l+1)Bv(ηl, ηl−1)B
T
v (ηl, ηl−1)Θ

T (t, l+1)χ{ηt−1=j}]

for all t > s ≥ 1, where as usual χM is the indicator function of the set M ∈ F .
Proof. Using (29) for x0 = 0 one compute firstly the conditional expectations

E[x0(t, s)x
T
0 (t, s)|Ht−1]

and
E[x0(t, s)x

T
0 (t, s)χ{ηt−1=j}|Ht−1].
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To this end one takes into account that Θ(t, l + 1), Bv(ηl, ηl−1) are Ht−1 measurable while v(l)
are independent of Ht−1. Details are omitted.

Remark 3.1. If together with assumptions H1)-H3) we assume that the zero state equi-
librium of (25) is ESMS then from Lemma 3.2 one obtains that:

sup
t≥s≥1

E[|x0(t, s)|2] ≤ γ < ∞. (30)

On the other hand from the representation formula (29) one deduces that

E[|x(t, s, x0)− x0(t, s)|2] ≤ βqt−s|x|2 (31)

for all t ≥ s ≥ 1, x0 ∈ Rn, β ≥ 1, q ∈ (0, 1).
Combining (30) and (31) we may conclude that

sup
t≥s≥1

E[|x(t, s, x0)|2] ≤ γ1(1 + |x0|2) (32)

for all x0 ∈ Rn.
Lemma 3.3.Assume:
a) The assumptions H1)-H3) are fulfilled.
b) The zero state equilibrium of (25) is ESMS.
Under these conditions we have:

lim
l→∞

1

l

l∑
t=1

E[|C(ηt, ηt−1)x(t, 1, x0)|2|η0 = i] =
N∑

i1,i2=1

Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)]p(i2, i1)q(i, i2)

for all x0 ∈ Rn, i ∈ D0, x(t, 1, x0) is the trajectory of (20) starting from x0 at t = 1, X̃ =
(X̃(1), X̃(2), ..., X̃(N)) is the unique solution of the affine equation on SN

n

X = Υ∗X + C̃ (33)

where C̃ = (C̃(1), C̃(2), ..., C̃(N)) with

C̃(i) =
N∑

j=1

p(i, j)CT (j, i)C(j, i) (34)

and q(i, i2) are the entries of the matrix Q introduced by (28).
Proof. see Appendix A2.
Now we are in position to prove result which provide explicit formula of the H2 norms

(21)-(22).
Theorem 3.1. Assume:
a) The assumptions H1)-H3) are fulfilled.
b) The zero state equilibrium of (25) is ESMS.
Then: (i)

(||G||2)2 =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2, i1)Y
π0(i1)C(i2, i1)]

11



(ii)

(|̃|G|̃|2)2 =
N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2, i1)Y
D0(i1)C(i2, i1)]

where X̃ ∈ SN+
n is the unique solution of the linear equation (33)-(34) while

Y π0 = (Y π0(1), Y π0(2), ..., Y π0(N)) ∈ SN+
n and Y D0 = (Y D0(1), Y D0(2), ..., Y D0(N)) ∈ SN+

n

respectively are the unique solutions of the linear equations:

Y = ΥY + Bπ0 (35)

and

Y = ΥY + BD0 (36)

respectively, with Bπ0 = (Bπ0(1), Bπ0(2), ..., Bπ0(M)),

Bπ0(i) =
N∑

j=1

qπ0(j)p(j, i)Bv(i, j)B
T
v (i, j) (37)

and BD0 = (BD0(1), BD0(2), ..., BD0(N)),

BD0(i) =
N∑

j=1

qD0(j)p(j, i)Bv(i, j)B
T
v (i, j), 1 ≤ i ≤ N (38)

qπ0(i) =
N∑

j=1

π0(j)q(j, i) and qD0(i) =
∑

j∈D0

q(j, i), 1 ≤ i ≤ N .

Proof. We start with the proof of (ii). Directly from the equalities in Lemma 3.3 one
obtains that

(|̃|G|̃|2)2 = lim
l→∞

1

l

l∑
t=1

∑
i∈D0

E[|z(t, 1, x0)|2|η0 = i] =

N∑
i1,i2=1

∑
i∈D0

q(i, i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2)] = (39)

N∑
i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2)]

which confirms the validity of the first equality of (ii).
Further (24) and (38) allow us to write

N∑
i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2)] =

N∑
i1=1

Tr[X̃(i1)B
D0(i1)] =< X̃, BD0 > .

12



Using the equation verified by Y D0 and equality (39) we have:

(|̃|G|̃|2)2 =< X̃, Y D0 > − < X̃, ΥY D0 >=< X̃ −Υ∗X̃, Y D0 >=< C̃, Y D0 > .

Taking into account (24) and (34) we may write finally

|̃|G|̃|2)2 =
N∑

i1,i2=1

p(i1, i2)Tr[CT (i2, i1)C(i2, i1)Y
D0(i1)]

which confirms the second equality of (ii).
To prove (i) we take into account that E[|z(t, 1, x0)|2] =

∑
i∈D0

π0(i)E[|z(t, 1, x0)
2|η0 = i].

Thus, multiplying by π0(i) the equalities proved in Lemma 3.3 and proceeding as in the first
part of the proof one obtains that (i) holds and the proof ends.

Using Lemma 3.1 for H = X̃ one can prove:
Proposition 3.4. Assume:
a) Assumptions H1)-H3) are fulfilled.
b) The zero state equilibrium of (25) is ESMS.
c) P is a non-degenerate stochastic matrix.
d) π0(i) > 0, 1 ≤ i ≤ N .
Under these conditions, the following hold:

(i) lim
l→∞

1
l

s+l−1∑
t=s

N∑
i=1

E[|C(ηt, ηt−1)x(t, s, x0)|2|ηs−1 = i]

=
N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2)

(ii) lim
l→∞

1
l

s+l−1∑
t=s

E[|C(ηt, ηt−1)x(t, s, x0)|2] =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2),

for every solution x(t, s, x0) of the system (20) starting from x0 at t = s, qπ0(i2) is defined as

in Theorem 3.1 while q̃(i2) =
N∑

i=1

q(i, i2).

To prove the equality in (ii) one uses the fact that πs−1(i) =
N∑

j=1

π0(j)p
s−1(j, i), where

ps−1(j, i) are the entries of P s−1. The details are omitted.
From Theorem 3.1 one sees that the H2-norms introduced by (21)-(22) do not depend upon

the initial values x0 of the solutions x(t, 1, x0) of the system (20).
The result stated in the Proposition 3.4 shows that under some additional assumptions the

norms (21)-(22) do not depend upon the initial time t = s, too.

3.3 The computation of the norm (23)

We start by:
Lemma 3.4.Assume:
a) the assumptions H1)-H3) are fulfilled.
b) the transition probability matrix P is a non-degenerate stochastic matrix
c) π0(i) > 0, 1 ≤ i ≤ N .

13



Under these conditions we have:

E[x0(t, s)x
T
0 (t, s)χ{ηt−1=j}] =

t−1∑

l=s

(Υt−l−1Hl)(j)

where Hl = (Hl(1), Hl(2), ..., Hl(N)), Hl(i) =
N∑

i1,i2=1

π0(i1)p
l−1(i1, i2)p(i2, i1)Bv(i1, i2)B

T
v (i1, i2),

with pl−1(i1, i2) as in Proposition 3.4.
Proof. see Appendix A.4.
Before to state the next result we introduce an additional assumption:

H4) The transition probability matrix P has the following property: lim
l→∞

P l exists.

Remark 3.2. Under the assumption H4) if Q = lim
l→∞

P l then the matrix Q is the same as

that in (28).
Lemma 3.5.Assume:
a) the assumptions H1)-H4) are fulfilled.
b) the zero state equilibrium of the system (25) is ESMS.
c) the transition probability matrix P is a non-degenerate stochastic matrix.
d) π0(i) > 0, i ∈ D.
Under these conditions we have:

lim
t→∞

E[x(t, s, x0)x
T (t, s, x0)χ{ηt−1=j}] = Y π0(j)

for all j ∈ D, where Y π0 = (Y π0(1), Y π0(2), ..., Y π0(N)) ∈ SN+
n is a unique solution of the linear

equation (35), (37).
Proof. see Appendix A5.
The main result of this subsection is:
Theorem 3.2. Under the assumptions of Lemma 3.5 we have the following formula for the

H2-norm (23):

(|||G|||22 =
N∑

i1,i2=1

Tr[C(i1, i2)Y
π0(i2)C

T (i1, i2)]p(i2, i1) =

N∑
i1,i2=1

qπ0(i2)p(i2, i1)Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)]

where X̃ = (X̃(1), X̃(2), ..., X̃(N)) ∈ SN+
n is the unique solution of the linear equation (33)-

(34) and Y π0 = (Y π0(1), Y π0(2), ..., Y π0(N)) ∈ SN+
n is the unique solution of the linear equation

(35)-(37) and qπ0 is defined as in Theorem 3.1.
Proof. Set x(t) = x(t, s, x0) and z(t) = z(t, s, x0), t ≥ s ≥ 1, x0 ∈ Rn. Since x(t) is

Ĥt−1-measurable we may write successively

E[|z(t)|2|Ĥt−1] = E[Tr(C(ηt, ηt−1)x(t)xT (t)CT (ηt, ηt−1))|Ĥt−1] =

N∑
i1,i2=1

E[Tr(C(i1, i2)x(t)xT (t)CT (i1, i2))χ{ηt=i1}χ{ηt−1=i2}|Ĥt−1] =

14



N∑
i1,i2=1

Tr[C(i1, i2)x(t)xT (t)CT (i1, i2)]χ{ηt−1=i2}E[χ{ηt=i1}|Ĥt−1].

Using Corollary A1 from below with Ĥt−1 instead of Ht we obtain E[χ{ηt=i1}|Ĥt−1] =
p(ηt−1, i1).

Thus we have

E[|z(t)|2|Ĥt−1] =
N∑

i1,i2=1

p(i2, i1)Tr[C(i1, i2)x(t)xT (t)CT (i1, i2)]χ{ηt−1=i2}.

Taking the expectation in the last equality one gets:

E[|z(t)|2] =
N∑

i1,i2=1

p(i2, i1)Tr{C(i1, i2)E[x(t)xT (t)χ{ηt−1=i2}]C
T (i1, i2)}, t ≥ s ≥ 1, x0 ∈ Rn.

Based on Lemma 3.5 we may conclude

lim
t→∞

E[|z(t, s, x0)|2] =
N∑

i1,i2=1

p(i2, i1)Tr[C(i1, i2)Y
π0(i1)C

T (i1, i2)], s ≥ 1, x0 ∈ Rn.

This confirms the validity of the first equality in the statement. The second equality may be
proved in the same way as in Theorem 3.1. Thus the proof ends.

3.4 The computation of the H2-norms for the system of type (1)

The systems described by (1) can be regarded as systems of type (20) in two ways.
First we may transform the system (1) as:

(G̃) :





x̃(t + 1) = (Ã0(ηt, ηt−1) +
r∑

k=1

wk(t)Ãk(ηt, ηt−1))x̃(t) + B̃v(ηt, ηt−1))v(t)

z̃(t) = C̃(ηt, ηt−1)x̃(t)
(40)

t ≥ 1, where

Ãk(i, j) = Ak(i), 0 ≤ k ≤ r,

B̃v(i, j) = Bv(i), C̃(i, j) = C(i), i, j ∈ D. (41)

Also, (1) could be view as system of type (20) as follows:

(Ĝ) :





x̂(t + 1) = [Â0(ηt, ηt−1) +
r∑

k=1

ŵk(t)Âk(ηt, ηt−1)]x̂(t) + B̂v(ηt, ηt−1)v̂(t)

ẑ(t) = Ĉ(ηt, ηt−1)x̂(t), t ≥ 1
(42)

where

Âk(i, j) = Ak(j), 0 ≤ k ≤ r, B̂v(i, j) = Bv(j),

Ĉ(i, j) = C(j), i, j ∈ D (43)

x̂(t) = x(t− 1), ŵk(t) = wk(t− 1), v̂(t) = v(t− 1), t ≥ 1.
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For each s ≥ 1, x0 ∈ Rn, let x̃(t, s, x0), x̂(t, s, x0), x(t, s, x0) be the solutions of (40), (42), (1)
respectively, starting from x0, at t = s. It is easy to see that:

x̃(t, s, x0) = x(t, s, x0), t ≥ s ≥ 1, x0 ∈ Rn (44)

x̂(t, s, x0) = x(t− 1, s− 1, x0), t ≥ s ≥ 1, x0 ∈ Rn. (45)

Further if z̃(t, s, x0) = C̃(ηt, ηt−1)x̃(t, s, x0), ẑ(t, s, x0) = Ĉ(ηt, ηt−1)x̂(t, s, x0), z(t, s, x0) =
C(ηt)x(t, s, x0), t ≥ s ≥ 1, then from (41), (43), (44), (45) we have

z̃(t, s, x0) = z(t, s, x0), t ≥ s ≥ 1, x0 ∈ Rn (46)

ẑ(t, s, x0) = z(t− 1, s− 1, x0), t ≥ s ≥ 1, x0 ∈ Rn. (47)

If Υ̃ : SN
n → SN

n , Υ̂ : SN
n → SN

n are the Lyapunov operators associated to system (40), (42),
respectively then from (26), (41) and (43) we have:

(Υ̃H)(i) =
r∑

k=0

N∑
j=1

p(j, i)Ak(i)H(j)AT
k (i) = (ΛH)(i) (48)

(Υ̂H)(i) =
r∑

k=0

N∑
j=1

p(j, i)Ak(j)H(j)AT
k (j) = (LH)(i) (49)

for all i ∈ D, H ∈ SN
n where Λ and L are the Lyapunov type operators associated to the linear

system (8) (see [16]).
These two operators play an important role in characterization of the exponential stability

in mean square for discrete-time linear systems with independent random perturbations and
Markovian jumping.

Using equality (47) and Theorem 3.1 specialized to system (Ĝ) we obtain:
Theorem 3.3. Assume:
a) the assumptions H1)−H3) are fulfilled.
b) the zero state equilibrium of the system (8) is ESMS.
Under these conditions the H2-norms of the system (1) defined by (10) and (11) are given

by

(i) ||G||22 =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃ (i1)Bv(i2)B
T
v (i2)] =

N∑
i=1

Tr[C(i)Yπ0(i)CT (i)]

(ii) |̃|G|̃|22 =
N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃ (i1)Bv(i2)B
T
v (i2)] =

N∑
i=1

Tr[C(i)YD0(i)CT (i)]

where X̃ = (X̃ (1), X̃ (2), ..., X̃ (N)) ∈ SN+
n is the unique solution of the algebraic equation

X = L∗X + C̃ (50)

where C̃ = (C̃(1), C̃(2), ..., C̃(N)),

C̃(i) = CT (i)C(i), i ∈ D (51)
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Yπ0 = (Yπ0(1),Yπ0(2), ...,Yπ0(N)) ∈ SN+
n and YD0 = (YD0(1),YD0(2), ...,YD0(N)) inSN+

n are
the unique solutions of the algebraic equations

Y = LY + Bπ0 (52)

Y = LY + BD0 (53)

where Bπ0 =)(Bπ0(1),Bπ0(2), ...,Bπ0(N)),

Bπ0(i) =
N∑

j=1

qπ0(j)p(j, i)Bv(j)B
T
v (j) (54)

and BD0 = (BD0(1),BD0(2), ...,BD0(N)),

BD0(i) =
N∑

j=1

qD0(j)p(j, i)Bv(j)B
T
v (j), i ∈ D (55)

qπ0(j) =
N∑

i=1

π0(i)q(i, j) and qD0(j) =
∑

i∈D0

q(i, j).

It must be remarked that if D0 = D then the H2-norm defined by (11) does not depend
upon the initial distribution of the Markov chain.

From Theorem 3.2 we obtain:
Theorem 3.4. Assume:
a) Assumptions H1)−H4) are fulfilled.
b) The zero state equilibrium of the system (8) is (ESMS).
c) The transition probability matrix P is a non-degenerate stochastic matrix.
d) π0(i) > 0, 1 ≤ i ≤ N .
Under these conditions the H2-norm of the system (1) defined by (12) is given by

|||G|||22 =
N∑

j=1

Tr[C(j)Yπ0(j)CT (j)] =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃ (i1)Bv(i2)B
T
v (i2)]

where Yπ0 is the unique solution of the equation (52)-(54) while X̃ is the unique solution of the
equation (50)-(51) and qπ0 is defined as before.

Remark 3.3.
a) In the special case Ak(i) = 0, 1 ≤ k ≤ r, i ∈ D the equality proved in Theorem 3.4

reduces to the one proved in [10]
b)The H2-norms defined by (10)-(12) in the discrete-time context have analogous in the

continuous time framework for linear stochastic systems with multiplicative and additive white
noise and Markovian jumping (see [18, 17]).

In the afore mentioned works was shown that the continuous time counterpart of H2-norms
(10) and (12) are well defined under the same assumptions and they coincide. Unlike the
continuous time case, in the discrete-time case we proved the well definiteness of H2-norm
defined by (12) under some stronger assumptions than the norm defined by (10). It remains as
a challenge for further research to prove the well-possedness of the H2-norm (12) under weaker
assumptions than the ones in Theorem 3.4 from above.
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At the end of this subsection we remark that the equality (46) together with Theorem 3.1
and Theorem 3.2 lead to some expressions of the H2-norms (10)-(12) which do not have a
correspondent in the continuous time framework. Thus we have:

Theorem 3.5. Under the assumptions of Theorem 3.4 the following hold:

(i) (||G||2)2 = (|||G|||2)2 =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[BT
v (i1)X (i1)Bv(i1)] =

N∑
i1,i2=1

p(i1, i2)Tr[C(i2)Zπ0(i1)C
T (i2)]

(ii) (|̃|G|̃|2)2 =
N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[BT
v (i1)X (i1)Bv(i1)] =

N∑
i1,i2=1

p(i1, i2)Tr[C(i2)ZD0(i1)C
T (i2)]

where X = (X (1),X (2), ...,X (N)) ∈ SN+
n is the unique solution of the algebraic equation

X = Λ∗X + C (56)

where C = (C(1), C(2), ..., C(N)),

C(i) =
N∑

j=1

p(i, j)CT (j)C(j), i ∈ D (57)

while Zπ0 = (Zπ0(1),Zπ0(2), ...,Zπ0(N)) and ZD0 = (ZD0(1),ZD0(2), ...,ZD0(N)) are the
unique solutions of the algebraic equations

Z = ΛZ + Bπ0 (58)

Z = ΛZ + BD0 (59)

respectively, with Bπ0 and BD0 are given by (54)-(55).
Remark 3.4 The result stated in Theorem 3.5 confirms the importance of the consideration

of the class of systems with the coefficients depending upon both ηt and ηt−1. The study of the
H2 norms for such systems performed in subsection 3.2 and subsection 3.3 allows us to derive
new formulae for H2 norms of system (1). The formulae of H2 norms derived in Theorem 3.5
are specific to the discrete-time framework; they have not analogous in the continuous time
case.

3.5 Some robustness issues

As we can see from Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4, respectively,
if N ≥ 2 the H2-norms associated to stochastic systems (20), (1) respectively, are strongly
dependent upon the initial distributions π0 of the Markov chain, or upon the subset D0 of the
states i, such that P{η0 = i} > 0. Unfortunately, the initial distributions of the Markov chain
are not known apriori. To avoid such inconvenient specific to the stochastic systems subject to
Markovian jumping, one could made the additional assumption: for each i ∈ D, lim

t→∞
P{ηt = i}

exists and it does not depend upon the initial distribution P{η0 = j}, j ∈ D.
One can check using (3) that the above assumption is equivalent to the fact that assumption

H4) is fulfilled and additionally the matrix Q = lim
t→∞

P t has the property q(i, j) = q(j), i, j ∈ D.
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Another idea to overcome the problems due to the presence of the initial distribution of the
Markov chain in the formula of the H2-norms is to introduce a suitable upper-bound of these
norms.

Thus in the case of the system (20) we define

(|̂|G|̂|)2
2 =

N∑
i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)] (60)

where q̃(i2) =
∑N

i1=1 q(i1, i2). We have

qπ0(i2) ≤ q̃(i2)

qD0(i2) ≤ q̃(i2) (61)

for every initial distribution π0 and for all subsets D0 ⊂ D. So, under the assumptions of
Theorem 3.1 we have:

||G||2 ≤ |̂|G|̂|2, |̃|G|̃|2 ≤ |̂|G|̂|2. (62)

Under the assumptions of Theorem 3.2 also we have

|||G|||2 ≤ |̂|G|̂|2. (63)

Reasoning as in the proof of Theorem 3.1 we may obtain

(|̂|G|̂|2)2 =
N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2, i1)Ỹ (i1)C
T (i2, i1)] (64)

where X̃ is the solution of (33)-(34), while Ỹ = (Ỹ (1), Ỹ (2), ..., Ỹ (N)) ∈ SN+
n is the unique

solution of the algebraic equation

Y = ΥY + B̃ (65)

with B̃ = (B̃(1), B̃(2), ..., B̃(N)),

B̃(i) =
N∑

j=1

q̃(j)p(j, i)Bv(i, j)B
T
v (i, j). (66)

Using Lemma 3.3 we may prove:
Proposition 3.5. Under the assumptions in Theorem 3.1

(|̂|G|̂|2)2 = lim
l→∞

1

l

l∑
t=1

N∑
i=1

E[|zi(t, 1, x0)|2]

where zi(t, 1, x0) = C(ηt, ηt−1)x
i(t, 1, x0).
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xi(t, 1, x0), t ≥ 1 being the solution of the system (20) corresponding to the Markov chain
with the initial distribution P{η0 = i} = 1 and P{η0 = j} = 0 if j 6= i.

In the case of system (1) the equality (64) becomes:

(|̂|G|̂|2)2 =
N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
v (i2)X̃ (i1)Bv(i2)] =

N∑
i=1

Tr[C(i)Ỹ(i)CT (i)] (67)

where X̃ = (X̃ (1), X̃ (2), ..., X̃ (N)) is the unique solution of the equation (50)-(51) and Ỹ =
(Ỹ(1), Ỹ(2), ..., Ỹ(N)) ∈ SN+

n , is the unique solution of the algebraic equation

Y = LY + B̃ (68)

where B̃ = (B̃(1), B̃(2), ..., B̃(N)),

B̃(i) =
N∑

j=1

q̃(j)p(j, i)Bv(j)B
T
v (j) (69)

q̃(j) being as before.
In the process of the designing of a H2-optimal controller one may add to the list of H2

performances criteria another one which is asking the minimization of |̂| · |̂|2 of the closed-loop
system.

4 H2-optimal controllers

In this section we illustrate how the results proved in the previous section can be used to solve
the H2-optimization problems stated before.

In the first part of this section we focus our attention in minimizing the H2 performance
criteria associated to system (13). The general case when only an output of type (17) is available
for measurements will be considered in a future paper.

To have an unified approach of the four optimization problems we want to solve we introduce
the notation || · ||2.µ, µ ∈ {1, 2, 3, 4} as || · ||21 instead of || · ||2 defined by (10), || · ||22 instead

of ‖̃ · ‖̃2, defined by (11), || · ||23 instead of ||| · |||2 defined by (12) and || · ||24 instead of ‖̂ · ‖̂2

defined by (67).
From Theorem 3.3, Theorem 3.4 and (67)-(69) applied to the closed-loop system (15) we

have

||Gcl||22,µ =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr[BT
vcl(i2)Xcl(i1)Bvcl(i2)] (70)

where Xcl = (Xcl(1),Xcl(2), ...,Xcl(N)) ∈ SN+
n+nc

is the unique solution of the linear equation:

Xcl(i) =
r∑

k=0

N∑
j=1

p(i, j)AT
kcl(i)Xcl(j)Akcl(i) + CT

cl(i)Ccl(i), i ∈ D (71)
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with εµ(i2) =





qπ0(i2), forµ ∈ {1, 3};
qD0(i2), forµ = 2;
q̃(i2), forµ = 4.

Consider the system of nonlinear algebraic equations

which extends to this framework the well known discrete-time algebraic Riccati equations:

X(i) =
r∑

k=0

AT
k (i)Ei(X)Ak(i) + CT

z (i)Cz(i)− (
r∑

k=0

AT
k (i)Ei(X)Bk(i) + CT

z (i)Dz(i))

(DT
z (i)Dz(i) +

r∑

k=0

BT
k (i)Ei(X)Bk(i))

−1(
r∑

k=0

BT
k (i)Ei(X)Ak(i) + DT

z (i)Cz(i)), i ∈ D (72)

where

Ei(X) =
N∑

j=1

p(i, j)X(j) (73)

for all X = (X(1), X(2), ..., X(N)) ∈ SN
n .

We shall refer to such systems as discrete-time systems of generalized Riccati equations
(DTSGRE). We recall that a solution Xs = (Xs(1), Xs(2), ..., Xs(N)) of DTSGRE (72) is
called stabilizing solution if the zero state equilibrium of the closed-loop system:

xs(t + 1) = [A0(ηt) + B0(ηt)Fs(ηt) +
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)Fs(ηt))]xs(t), t ≥ 0 (74)

is ESMS, where

Fs(i) = −(DT
z (i)Dz(i) +

r∑

k=0

BT
k (i)Ei(Xs)Bk(i))

−1(
r∑

k=0

BT
k (i)Ei(Xs)Ak(i) + DT

z (i)Cz(i)), i ∈ D.(75)

A set of sufficient conditions for the existence of a stabilizing solution of DTSGRE (72) were
provided in [20] and they are expressed in terms of stochastic stabilizability and stochastic
detectability.

In [21] a set of necessary and sufficient conditions for the existence of stabilizing solution of
(72) which satisfy

DT
z (i)Dz(i) +

r∑

k=0

BT
k (i)Ei(Xs)Bk(i) > 0, i ∈ D (76)

are given.
For each controller Gc of type (14) we introduce the following performances

Jµ(Gc) =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr[BT
vcl(i2)Xcl(i1)Bvcl(i2)], µ ∈ {1, 2, 3, 4}. (77)

To be sure that (77) is well defined we need only the fact that the controller Gc is stabilizing.
Further under some additional assumptions which are as in Theorem 3.3 and Theorem 3.4,

respectively, Jµ(Gc) will be just the H2-norm ‖ · ‖2µ of the corresponding closed-loop system.
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In the process of the designing of a H2-optimal controller we try to minimize Jµ(Gc) for some
µ ∈ {1, 2, 3, 4}.

Now we are in position to prove:
Theorem 4.1. Assume that (72) has a stabilizing solution Xs = (Xs(1), Xs(2), ..., Xs(N))

which satisfies (76). Then

min
Gc∈Ks(G)

Jµ(Gc) =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr[BT
v (i2)Xs(i1)Bv(i2)], µ ∈ {1, 2, 3, 4}

. The optimal value is achieved for the zero order controller

G̃ : us(t) = Fs(ηt)xs(t) (78)

where Fs(i), i ∈ D are as in (75) and xs(t) is the solution of (74).
Proof. Let us remark that in the case of the zero order controller (78) the corresponding

closed-loop system is:

xcl(t + 1) = [A0(ηt) + B0(ηt)Fs(ηt) +
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)Fs(ηt))]x(t) + Bv(ηt)v(t) (79)

zcl(t) = (Cz(ηt) + Dz(ηt)Fs(ηt))xcl(t), t ≥ 0.

On the other hand, by direct calculation one obtains that DTSGRE (72) verified by Xs can be
rewritten as:

Xs(i) =
r∑

k=0

N∑
j=1

p(i, j)(Ak(i) + Bk(i)Fs(i))
T Xs(j)(Ak(i) + Bk(i)Fs(i)) +

(Cz(i) + Dz(i)Fs(i))
T (Cz(i) + Dz(i)Fs(i)), i ∈ D. (80)

One sees that the linear equation (71) corresponding to the closed-loop system (79) is just (80).
Therefore the value of the corresponding performance is

Jµ(G̃c) =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr[BT
v (i2)Xs(i1)Bv(i2)]. (81)

Let Gc be an arbitrary admissible controller of type (14). Let Xcl(i) =

(
X11(i) X12(i)
XT

12(i) X22(i)

)
be

a partition of the solution of (71) according to the partition of the coefficients of the closed-loop
system.
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Using (16) we obtain the following partition of (71):

X11(i) =
r∑

k=0

N∑
j=1

p(i, j)[(Ak(i) + Bk(i)Fc(i))
T X11(j)(Ak(i) + Bk(i)Fc(i)) +

BT
ck(i)X

T
12(j)(Ak(i) + Bk(i)Fc(i)) + (Ak(i) + Bk(i)Fc(i))

T X12(j)Bck(i) +

BT
ck(i)X22(j)Bck(i)] + [Cz(i) + Dz(i)Fc(i)]

T [Cz(i) + Dz(i)Fc(i)] (82)

X12(i) =
r∑

k=0

N∑
j=1

p(i, j)[(Ak(i) + Bk(i)Fc(i))
T X11(j)Bk(i)Cc(i) +

BT
ck(i)X

T
12(j)Bk(i)Cc(i) + (Ak(i) + Bk(i)Fc(i))

T X12(j)Ack(i) +

BT
ck(i)X22(j)Ack(i)] + (Cz(i) + Dz(i)Fc(i))

T Dz(i)Cc(i)

X22(i) =
r∑

k=0

N∑
j=1

p(i, j)[CT
c (i)BT

k (i)X11(j)Bk(i)Cc(i) + AT
ck(i)X

T
12(j)Bk(i)Cc(i)

+CT
c (i)BT

k (i)X12(j)Ack(i) + AT
ck(i)X22(j)Ack(i)] + CT

c (i)DT
z (i)Dz(i)Cc(i).

On the other hand the DTSGRE (72) verified by the stabilizing solution Xs can be rewritten
as:

Xs(i) =
r∑

k=0

N∑
j=1

p(i, j)[Ak(i) + Bk(i)Fc(i)]
T Xs(j)[Ak(i) + Bk(i)Fc(i)]

+[Cz(i) + Dz(i)Fc(i)]
T [Cz(i) + Dz(i)Fc(i)]− [Fs(i)− Fc(i)]

T ∆(i)[Fs(i)− Fc(i)] (83)

where

∆(i) = DT
z (i)Dz(i) +

r∑

k=0

N∑
j=1

p(i, j)BT
k (i)Xs(j)Bk(i) > 0. (84)

Set X̂cl(i) = Xcl(i)−
(

Xs(i) 0
0 0

)
, i ∈ D. Subtracting (83) from (82) and taking into account

(75) and (84) one obtains that X̂cl = (X̂cl(1), X̂cl(2), ..., X̂cl(N)) is the solution of the following
equation:

X̂cl(i) =
r∑

k=0

N∑
j=1

p(i, j)AT
kcl(i)X̂cl(j)Akcl(i) + ΨT (i)∆(i)Ψ(i), i ∈ D (85)

where Ψ(i) =
(

Fs(i)− Fc(i) −Cc(i)
)
. Since Gc is a stabilizing controller and ∆(i) > 0, it

follows that the unique solution of (85) satisfies

X̂cl(i) ≥ 0, i ∈ D. (86)

The value of the performance Jµ(Gc) from (77) can be rewritten as:

Jµ(Gc) =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr[Bv(i2)Xs(i1)Bv(i2)] +

N∑
i1,i2=1

εµ(i2)p(i2, i1)Tr[BT
vcl(i2)X̂cl(i1)Bvcl(i2)]. (87)
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Based on (81), (86), (87) one obtains that Jµ(Gc) ≥ Jµ(G̃c) and thus the proof is complete.
Remark 4.1. The result proved in the above theorem shows that in the case of full access to

the measurements of the states, the best performance with respect to all four H2-performance
criteria, is provided by the same zero order controller. In fact it is the same state feedback
which provides the optimal control in the linear quadratic optimization problem.

In the second part of this section we briefly show how can be solved H2-optimal control
problems for the systems with coefficients depending upon ηt, ηt−1.

Let us consider the controlled system:

(G) :





x(t + 1) = (A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1))x(t) + (B0(ηt, ηt−1)+

r∑
k=1

wk(t)Bk(ηt, ηt−1))u(t) + Bv(ηt, ηt−1)v(t)

y(t) = x(t)
z(t) = Cz(ηt, ηt−1)x(t) + Dz(ηt, ηt−1)u(t), t ≥ 1

(88)

The class of admissible controllers consist of the family of dynamic compensators of the form:

(Gc)





xc(t + 1) = (Ac0(ηt, ηt−1) +
r∑

k=1

wk(t)Ack(ηt, ηt−1))xc(t) + (Bc0(ηt, ηt−1)+

r∑
k=1

wk(t)Bck(ηt, ηt−1))uc(t)

yc(t) = Cc(ηt−1)xc(t) + Fc(ηt−1)uc(t)
xc ∈ Rnc , uc ∈ Rn, yc ∈ Rm

(89)

The fact that the output of the admissible controller depends only upon ηt−1 is a constraint
impose by our technique of the proof of the main result.

It remains an open problem the extension of the family of the admissible controllers to the
case of those with the output depending both upon ηt and ηt−1.

Coupling (89) with (88), taking uc(t) = y(t), u(t) = yc(t) one obtains the following closed-
loop system:

(Gcl) :





xcl(t + 1) = (A0cl(ηt, ηt−1) +
r∑

k=1

wk(t)Akcl(ηt, ηt−1))xcl(t) + Bvcl(ηt, ηt−1)v(t)

zcl(t) = Ccl(ηt, ηt−1)xcl(t), t ≥ 1
(90)

where xcl(t) =
(

xT (t) xT
c (t)

)T ∈ Rn+nc , Akcl(i, j) =

(
Ak(i, j) + Bk(i, j)Fc(j) Bk(i, j)Cc(j)

Bck(i, j) Ack(i, j)

)
,

0 ≤ k ≤ r, Bvcl(i, j) =

(
Bv(i, j)

0

)
, Ccl(i, j) =

(
Cz(i, j) + Dz(i, j)Fc(j) Dz(i, j)Cc(j)

)
,

i, j ∈ D.
Let us remark if we consider system (13) with a controller of type (14) and a delay occurs on

the channel between controllers and actuators (i.e. yc(t− 1) is used instead of yc(t)), then the
closed-loop system is of the form (90). Hence it is natural to consider a H2-control problem for
system with coefficients depending upon ηt, ηt−1. A such problem is specific to the discrete-time
framework. It has not an analogous in the continuous time case.

As in the first part of this section we denote ||Gcl||2µ, µ ∈ {1, 2, 3, 4} the four type of H2-
norms defined for the closed-loop system by (21), (22), (23) and (64). Based on Theorem 3.1,
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Theorem 3.2 and equality (64) one deduces that

||Gcl||2µ =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr[BT
vcl(i1, i2)Xcl(i1)Bvcl(i1, i2), µ ∈ {1, 2, 3, 4} (91)

where εµ(i2) are defined as before and Xcl = (Xcl(1), Xcl(2), ..., Xcl(N)) ∈ SN+
n+nc

is the unique
solution of:

Xcl(i) =
r∑

k=0

N∑
j=1

p(i, j)AT
kcl(j, i)Xcl(j)Akcl(j, i) +

N∑
j=1

p(i, j)CT
cl(j, i)Ccl(j, i), i ∈ D. (92)

As before we introduce the performances of an admissible controller (89) by

Jµ(Gc) =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr[BT
vcl(i1, i2)Xcl(i1)Bvcl(i1, i2)]. (93)

It must be remarked that to be sure that (93) is well defined we need to know that the assump-
tions H1)−H3) are fulfilled and the zero state equilibrium of the linear closed-loop system:

xcl(t + 1) = [A0cl(ηt, ηt−1) +
r∑

k=1

wk(t)Akcl(ηt, ηt−1)]xcl(t)

is ESMS. As we proceed in the first part of this section we will minimize Hµ(Gcl) in order to
obtain the solution of H2-optimization problem for systems of type (88).

Let us consider the following discrete time system of generalized Riccati equations DTSGRE
associated to (88):

X(i) =
r∑

k=0

N∑
j=1

p(i, j)AT
k (j, i)X(j)Ak(j, i) +

N∑
j=1

p(i, j)CT
z (j, i)Cz(j, i)

−[
N∑

j=1

p(i, j)(CT
z (j, i)Dz(j, i) +

r∑

k=0

AT
k (j, i)X(j)Bk(j, i))][

N∑
j=1

p(i, j)(DT
z (j, i)Dz(j, i)

+
r∑

k=0

BT
k (j, i)X(j)Bk(j, i))]

−1[
N∑

j=1

p(i, j)(DT
z (j, i)Cz(j, i) +

r∑

k=0

BT
k (j, i)X(j)Ak(j, i))]. (94)

A solution Xs = (Xs(1), Xs(2), ..., Xs(N)) of DTSGRE (94) is called stabilizing solution if the
zero state equilibrium of the corresponding closed-loop system

xs(t + 1) = [A0(ηt, ηt−1) + B0(ηt, ηt−1)Fs(ηt−1) +
r∑

k=1

wk(t)(Ak(ηt, ηt−1) + Bk(ηt, ηt−1)Fs(ηt−1))]xs(t) (95)

is ESMS where

Fs(i) = −[
N∑

j=1

p(i, j)(DT
z (j, i)Dz(j, i) +

r∑

k=0

BT
k (j, i)X(j)Bk(j, i))]

−1

·[
N∑

j=1

p(i, j)(DT
z (j, i)Cz(j, i) +

r∑

k=0

BT
k (j, i)X(j)Ak(j, i))]. (96)
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A set of conditions which are equivalent with the existence of a stabilizing solution of DTSGRE
(94) with the additional property:

N∑
j=1

p(i, j)(DT
z (j, i)Dz(j, i) +

r∑

k=1

BT
k (j, i)Xs(j)Bk(j, i) > 0, i ∈ D (97)

can be found in [21]. Those conditions are expressed in terms of solvability of some suitable
systems of LMI (see Appendix A6 from below).

Remark 4.2 One can sees that if system (88) is in the special case of (42)-(43) then
DTSGRE (94) reduces to (72) and the corresponding stabilizing feedback gain (96) reduces to
(75).

The next result provides the solution of the H2-optimal control problems associated to the
systems (88).

Theorem 4.2. Assume that DTSGRE (94) has a stabilizing solution
Xs = (Xs(1), Xs(2), ..., Xs(N)) which satisfy the condition (97). Then

min
Gc∈Ks(G)

Jµ(Gc) =
N∑

i1,i2=1

εµ(i2)p(i2, i1)Tr(BT
v (i1, i2)Xs(i1)Bv(i1, i2)).

The optimal value is achieved by the zero order controller

G̃c : us(t) = Fs(ηt−1)xs(t)

where Fs(i), i ∈ D are constructed in (96) and xs(t) is the solution of the closed loop system
(95).

The proof is similar to the one of Theorem 4.1. It is omitted for shortness.
Remark 4.3. Due to the important role played by the stabilizing solutions of DTSGREs

(72) and (94), respectively, in construction of the optimal controller in the H2-control problems
it follows that it is important to have efficient numerical procedures for computation of the sta-
bilizing solutions. In Theorem 4.2 in [21] an iterative procedure based on Newton-Kantorovich
algorithm was proposed to prove existence of the maximal solution and consequently of the
stabilizing solution. That iterative procedure could be used in order to compute the stabilizing
solution of (72) and (94), respectively. However, a procedure based on Newton-Kantorovich
method consists in solving linear systems of high dimension at each iteration.

Therefore, it is useful to obtain numerical procedures based on solutions of some Stein
equations as it happens in Kleiman procedure known in the deterministic framework. A such
procedure will be provided in a future paper.

5 Appendix

For each (t, s) ∈ Z+ × Z+, we denote

Ȟt,s = σ[ηµ, w̌(ν); 0 ≤ µ ≤ t, 0 ≤ ν ≤ s]

where either w̌(ν) = w(ν) or w̌(ν) = (w(ν), v(ν)), ν ≥ 0.
In the special case t = s we write Ȟt instead of Ȟtt. It is obvious that Ȟt = Ht if w̌(ν) = w(ν)

and Ȟt = Ĥt if w̌(ν) = (w(ν), v(ν)), ν ≥ 0. the next result can be proved following step by
step the proof of Lemma 7.1 in [16].
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Lemma A1. Under the assumptions H1)−H3) if Ψ : Ω → R is an integrable random
variable which is measurable with respect to σ[ηµ, w̌(ν); µ ≥ t, ν ≥ s + 1] then

E[Ψ|Ȟts] = E[Ψ|ηt], a.s.

From the previous lemma one obtains directly:
Corollary A1.Under the assumptions H1)−H3) the following equality holds:

E[χ{ηt+1=j}|Ȟt] = E[χ{ηt+1=j}|ηt] = p(ηt, j) a.s.

for all j ∈ D, t ≥ 0, where H̆t = Ht or H̆t = Ĥt.
It must be remarked that equality in the previous Corollary extends (2) to the joint process

{ηt, w(t)}t≥0 or {ηt, w(t), v(t)}t≥0.
A1. Proof of Lemma 3.1.
First we write

xT (t + 1)H(ηt)x(t + 1) = xT (t)AT
0 (ηt, ηt−1)H(ηt)A0(ηt, ηt−1)x(t) +

r∑

k,l=1

wk(t)wl(t)x
T (t)AT

k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t) + vT (t)BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)

+2
r∑

k=1

wk(t)x
T (t)AT

0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t) + 2xT (t)AT
0 (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)

+2
r∑

k=1

wk(t)x
T (t)AT

k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t). (98)

If we take into account that x(t) is Ĥt−1-measurable, Ĥt−1 ⊂ H̃t and wk(t), v(t) are independent
of H̃t one obtains

E[xT (t)AT
0 (ηt, ηt−1)H(ηt)A0(ηt, ηt−1)x(t)|H̃t] =

xT (t)AT
0 (ηt, ηt−1)H(ηt)A0(ηt, ηt−1)x(t) (99)

E[
r∑

k,l=1

wk(t)wl(t)x
T (t)AT

k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t)|H̃t] =

r∑

k,l=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t)E[wk(t)wl(t)|H̃t] =

r∑

k,l=1

xT (t)AT
k (ηtηt−1)H(ηt)Al(ηt, ηt−1)x(t)E[wk(t)wl(t)].

27



Based on H1) one obtains:

E[
r∑

k,l=1

wk(t)wl(t)x
T (t)AT

k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t)|H̃t] =

r∑

k=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t) (100)

E[
r∑

k=1

wk(t)x
T (t)AT

0 (ηt, ηt−1)H(ηt)A(ηt, ηt−1)x(t)|H̃t] =

r∑

k=1

xT (t)AT
0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)E[wk(t)|H̃t] =

r∑

k=1

xT (t)AT
0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)E[wk(t)]

Invoking again the assumption H1) we conclude:

E[
r∑

k=1

wk(t)x
T (t)AT

0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)|H̃t] = 0 (101)

E[
r∑

k=1

wk(t)x
T (t)AT

k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t] =

r∑

k=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[wk(t)v(t)|H̃t] =

r∑

k=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[wk(t)v(t)].

Based on the assumptions H1)−H3) we deduce:

E[
r∑

k=1

wk(t)x
T (t)AT

k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t] = 0. (102)

Similarly

E[xT (t)AT
0 (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t] = 0. (103)

Invoking again H3) we write:

E[vT (t)BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t] =

E[Tr(BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)vT (t))|H̃t] = (104)

Tr[BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[v(t)vT (t)|H̃t]] =

Tr[BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[v(t)vT (t)]] =

Tr[BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)]

Combining (98)-(104) one obtains

E[xT (t + 1)H(ηt)x(t + 1)|H̃t] = (105)
r∑

k=0

xT (t)AT
k (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t) + Tr[BT

v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)]
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Further taking the conditional expectation with respect to Ĥt−1 in (105) one obtains:

E[xT (t + 1)H(ηt)x(t + 1)|Ĥt−1] =
r∑

k=0

N∑
j=1

AT
k (j, ηt−1)H(j)Ak(j, ηt−1)x(t)E[χ{ηt=j}|Ĥt−1] +

Tr[
N∑

j=1

H(j)Bv(j, ηt−1)B
T
v (j, ηt−1)E[χ{ηt=j}|Ĥt−1]]. (106)

Applying Corollary A1 one obtains

E[χ{ηt=j}|Ĥt−1] = E[χ{ηt=j}|ηt−1] = p(ηt−1, j) a.s. (107)

Combining (106)-(107) and taking the conditional expectation with respect to σ[ηs−1] ⊂ Ĥt−1

we obtain the equality in the statement and thus the proof is complete.

A2. Proof of Lemma 3.3.

Under the considered assumptions the linear equation (33)-(34) has a unique solution X̃ =
(X̃(1), X̃(2), ..., X̃(N)) ∈ SN+

n (see also Proposition 3.2). Applying Lemma 3.1 for H(i) = X̃(i)
one obtains for i ∈ D0

E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i] = E[xT (t)(Υ∗X̃)(ηt−1)x(t)|η0 = i)]

+
N∑

j=1

E[Tr[X̃(j)Bv(j, ηt−1)B
T
v (j, ηt−1)]p(ηt−1, j)|η0 = i]

∀x(t) = x(t, 1, x0) solution of (20) with the initial value x0 at t = 1.
Based on (33) we deduce

E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i]− E[xT (t)X̃(ηt−1)x(t)|η0 = i] =

−E[xT (t)C̃(ηt−1)x(t)|η0 = i] +
N∑

j=1

E[Tr[X̃(j)Bv(j, ηt−1)B
T
v (j, ηt−1)]p(ηt−1, j)|η0 = i]

where C̃(i) is defined in (34).
Further we have

E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i]− E[xT (t)X̃(ηt−1)x(t)|η0 = i] =

−E[xT (t)C̃(ηt−1)x(t)|η0 = i] +
N∑

j,i2=1

Tr[X̃(j)Bv(j, i2)B
T
v (j, i2)]p(i2, j)p

t−1(i, i2) (108)

where pt−1(i, i2) is an element of P t−1. On the other hand,

E[|C(ηt, ηt−1)x(t)|2|Ĥt−1] =
N∑

j=1

E[|C(j, ηt−1)x(t)χ{ηt=j}|2|Ĥt−1]

=
N∑

j=1

|C(j, ηt−1)x(t)|2E[χ{ηt=j}|Ĥt−1]. (109)
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Using again Corollary A1 one deduces that

E[χ{ηt=j}|Ĥt−1] = p(ηt−1, j). (110)

Combining (109)-(110) together with (34) we may write

E[|C(ηt, ηt−1)x(t)|2|Ĥt−1] = xT (t)C̃(ηt−1)x(t).

Taking the conditional expectation with respect to the event {η0 = i} in the last equality and
replacing the obtained result in (108) we have

E[|C(ηt, ηt−1)x(t)|2|η0 = i] =
N∑

j,i2=1

Tr[X̃(j)Bv(j, i2)B
T
v (j, i2)]p(i2, j)p

t−1(i, i2)+

E[xT (t)X̃(ηt−1)x(t)|η0 = i]− E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i].

Thus

1

l

l∑
t=1

E[|C(ηt, ηt−1)x(t)|2|η0 = i] =

N∑
i1,i2=1

[Tr[X̃(i1)Bv(i1, i2)B
T
v (i1, i2)]p(i2, i1)

1

l

l∑
t=1

pt−1(i, i2)] (111)

+
1

l
[xT

0 X̃(i)x0 − E[xT (l + 1)X̃(ηl)x(l + 1)|η0 = i]]

Based on Remark 3.1 we obtain E[xT (l + 1)X̃(ηl)x(l + 1)|η0 = i] ≤ γ̂ 1
π0(i)

(1 + |x0|2). Therefore

lim
l→∞

1

l
[xT

0 X̃(i)x0 − E[xT (l + 1)X̃(ηl)x(l + 1)|η0 = i] = 0. (112)

On the other hand from Proposition 3.3 we obtain

lim
l→∞

1

l

l∑
t=1

pt−1(i, i2) = q(i, i2). (113)

Taking the limit for l →∞ in (111) and taking into account (112)-(113) one obtains the equal-
ity in the statement and thus the proof is complete.

A3. Some representation formulae

The next result is a special version of the Theorem 2.2 in [19].
Proposition A1. Under the assumptions H1)−H2) the following equality holds:

((Υ∗)t−sH)(i) = E[ΘT (t, s)H(ηt−1)Θ(t, s)|ηs−1 = i]

for all H = (H(1), H(2), ..., H(N)) ∈ SN
n , t ≥ s ≥ 1, i ∈ Ds−1.

The equality from the above proposition together with (24) and the definition of the adjoint
operator allows us to obtain:

Corollary A2.Assume that:
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a)H1)−H2) are fulfilled.
b) The transition probability matrix P is a non-degenerate stochastic matrix.
c) π0(i) > 0, i ∈ D.
Then the following representation formula hold:

(Υt−sS)(j) =
N∑

i=1

E[Θ(t, s)S(i)ΘT (t, s)χ{ηt−1=j}|ηs−1 = i] (114)

for all j ∈ D, and S = (S(1), S(2), ..., S(N)) ∈ SN
n .

A4. Proof of Lemma 3.4.

Based on the assumptions H1)−H3) we may write

E[Θ(t, l + 1)Bv(ηl, ηl−1)B
T
v (ηl, ηl−1)Θ

T (t, l + 1)χ{ηt−1=j}|Hl] =
N∑

i1,i2=1

E[χ{ηl=i1}χ{ηl−1=i2}Θ(t, l + 1)Bv(i1, i2)B
T
v (i1, i2)Θ

T (t, l + 1)χ{ηt−1=j}|Hl] (115)

=
N∑

i1,i2=1

χ{ηl=i1}χ{ηl−1=i2}E[Θ(t, l + 1)Bv(i1, i2)B
T
v (i1, i2)Θ

T (t, l + 1)χ{ηt−1=j}|Hl]

for all s ≤ l ≤ t− 1.
Since Θ(t, l + 1), χ{ηt−1=j} are measurable with respect to σ[ηs1 , w(s2); s1 ≥ l, s2 ≥ l + 1], we

obtain from Lemma A1 that

E[Θ(t, l + 1)Bv(i1, i2)B
T
v (i1, i2)Θ

T (t, l + 1)χ{ηt−1=j}|Hl] = (116)

E[Θ(t, l + 1)Bv(i1, i2)B
T
v (i1, i2)Θ

T (t, l + 1)χ{ηt−1=j}|ηl].

Using (116)and (115) and taking into account the second equality in Lemma 3.2 we have

E[x0(t, s)x
T
0 (t, s)χ{ηt−1=j}] = (117)

t−1∑

l=s

N∑
i1,i2=1

P{ηl−1 = i2, ηl = i1}E[Θ(t, l + 1)Bv(i1, i2)B
T
v (i1, i2)Θ

T (t, l + 1)χ{ηt−1=j}|ηl = i1]

=
t−1∑

l=s

N∑
i1,i2=1

P{ηl−1 = i2}p(i2, i1)E[Θ(t, l + 1)Bv(i1, i2)B
T
v (i1, i2)Θ

T (t, l + 1)χ{ηt−1=j}|ηl = i1].

From (3) one obtains

P{ηl−1 = i2} =
N∑

i=1

π0(i)p
l−1(i, i2) (118)

where pl−1(i, i2), 1 ≤ i, i2 ≤ N are the elements of P l−1. Using (118) in (117), one gets:

E[x0(t, s)x
T
0 (t, s)χ{ηt−1=j}] =

t−1∑

l=s

N∑
i1,i2=1

E[Θ(t, l + 1)Hl(i1)Θ
T (t, l + 1)χ{ηt−1=j}|ηl = i1] (119)
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where Hl(i1) is defined in the statement.
Now conclusion follows transforming the right hand side of (119) using the representation

formula (114) for S = Hl. Thus the proof is complete.

A5. The proof of Lemma 3.5.

If the assumption H4) is fulfilled it follows that lim
l→∞

Hl(i1) = Bπ0(i1), ∀i1 ∈ D.

Using the equality proved in Lemma 3.4 we may write successively

E[x0(t, s)x
T
0 (t, s)χ{ηt−1=j}] =

t−1∑

l=s

[(Υt−l−1Hl)(j) =

t−1∑

l=s

[(Υt−l−1Bπ0)(j) +
t−1∑

l=s

(Υt−l−1(Hl −Bπ0))(j) = (120)

t−s−1∑

l=0

(ΥlBπ0)(j) +
t−1∑

l=s

(Υt−l−1(Hl −Bπ0))(j).

From the assumption b) in the statement we deduce firstly that

lim
t→∞

t−s−1∑

l=0

(ΥlBπ0)(j) =
∞∑

l=0

(ΥlBπ0)(j) = Y π0(j). (121)

Also from assumption b) we deduce that there exists β ≥ 1, q ∈ (0, 1) such that

‖Υl‖1 ≤ βql, ∀l ≥ 0 (122)

where ‖ · ‖1 is the norm induced by | · |1.
If |M | is the spectral norm of a symmetric matrix then based on definition of | · |1 in section

3.1 we deduce

|
t−1∑

l=s

[Υt−l−1(Hl −Bπ0)](j)| ≤ |
t−l−1∑

l=s

Υt−l−1(Hl −Bπ0)|1 ≤
t−1∑

l=s

‖Υt−l−1‖1|Hl −Bπ0|1.

Further (122) allows us to write

|
t−1∑

l=s

[Υt−l−1(Hl −Bπ0)](j)| ≤
t−1∑

l=s

βqt−l−1|Hl −Bπ0|1. (123)

Since lim
l→∞

|Hl −Bπ0|1 = 0 and q ∈ (0, 1) one obtains from (123) that

lim
t→∞

t−1∑

l=s

[Υt−l−1(Hl −Bπ0)](j) = 0. (124)

Taking the limit for t →∞ in (120) and using (121), (124) one obtains

lim
t→∞

E[x0(t, s)x
T
0 (t, s)χ{ηt−1=j}] = Y π0(j) (125)
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∀j ∈ D, s ≥ 1.
Further the representation formula (29) together with the assumption b) in the statement

allows us to write
E[|x(t, s, x0)− x0(t, s)|2] ≤ βqt−s|x0|2

f∀t ≥ s ≥ 1, x0 ∈ Rn, where β ≥ 1, q ∈ (0, 1).
Hence

lim
t→∞

E[x(t, s, x0)x
T (t, s, x0)χ{ηt−1=j}] = lim

t→∞
E[x0(t, s)x

T
0 (t, s)χ{ηt−1=j}] (126)

for all t ≥ s ≥ 1, x0 ∈ Rn. The equality in the statement follows now from (125), (126) and
thus the proof ends.

A6. Stabilizing solution of DTSGRE (94)

In this subsection we briefly show how we can use the result proved in [21] to obtain a set of
conditions which guarantee the existence of a stabilizing solution of DTSGRE (94). We remark
that in the special case of (43) the conclusions derived for (94) provide conditions which are
equivalent to the existence of the stabilizing solution of DTSGRE (72).

Consider the system

x(t + 1) = [A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1)]x(t) + [B0(ηt, ηt−1) +
r∑

k=1

wk(t)Bk(ηt, ηt−1)]u(t)(127)

obtained from (88) by taking Bv(i, j) = 0.
Definition A1. We say that the system (127) is stochastic stabilizable if there exist

F = (F (1), F (2), ..., F (N)), F (i) ∈ Rm×n, i ∈ D such that the zero state equilibrium of the
closed loop system:

x(t + 1) = [A0(ηt, ηt−1) + B0(ηt, ηt−1)F (ηt−1) +
r∑

k=1

wk(t)(Ak(ηt, ηt−1) + Bk(ηt, ηt−1)F (ηt−1))]x(t)(128)

t ≥ 1 is ESMS.
Let ΥF : SN

n → SN
n be the Lyapunov type operator associated to (128). Using (26) we have

ΥF H = (ΥF H(1), ΥF H(2), ..., ΥF H(N)),

ΥF H(i) =
r∑

k=0

N∑
j=1

p(j, i)[Ak(i, j) + Bk(i, j)F (j)]H(j)[Ak(i, j) + Bk(i, j)F (j)]T (129)

for all H ∈ SN
n , i ∈ D.

Using Corollary 4.8 in [19] and some Schur complement techniques one obtains the following
criteria for stochastic stabilizablity:

Lemma A2. Under the assumptions H1)−H2) the following are equivalent:
(i) The system (127) is stochastic stabilizable.
(ii) There exist F = (F (1), F (2), ..., F (N)), F (i) ∈ Rm×n, i ∈ D, X = (X(1), X(2), ..., X(N)) ∈

SN
n , X(i) > 0, i ∈ D which solve:

ΥF X(i)−X(i) < 0, i ∈ D. (130)
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(iii) There exist X = (X(1), X(2), ..., X(N)) ∈ SN
n , Γ = (Γ(1), Γ(2), ..., Γ(N)), Γ(i) ∈

Rm×n, i ∈ D which solve the following system of LMIs:



−X(i) M0(i) M1(i) ... Mr(i)
MT

0 (i) −X 0 ... 0
MT

1 (i) 0 −X ... 0
... ... ... ... ...

MT
r (i) 0 0 ... −X




< 0 (131)

i ∈ D whereMk(i) = (
√

p(1, i)(Ak(i, 1)X(1)+Bk(i, 1)Γ(1))
√

p(2, i)(Ak(i, 2)X(2)+Bk(i, 2)Γ(2))

...
√

p(N, i)(Ak(i, N)X(N)+Bk(i, N)Γ(N))), 0 ≤ k ≤ r, X = diag(X(1), X(2), ...X(N)) ∈
Rn×N .

Moreover if (X, Γ) is a solution of (131) then F (i) = Γ(i)X−1(i), i ∈ D provide a stabilizing
feedback gain for (127).

The adjoint operator of ΥF with respect to the inner product (24) is given by: Υ∗
F H =

((Υ∗
F H)(1), (Υ∗

F H)(2), ..., (Υ∗
F H)(N)),

(Υ∗
F H)(i) =

r∑

k=0

N∑
j=1

p(i, j)(Ak(j, i) + Bk(j, i)F (i))T H(j)(Ak(j, i) + Bk(j, i)F (i)). (132)

One sees that

(Υ∗
F H)(i) =

(
In

F (i)

)T (
(Π1H)(i) (Π2H)(i)

((Π2H)(i))T (Π3H)(i)

)(
In

F (i)

)
(133)

where

(Π1H)(i) =
r∑

k=0

N∑
j=1

p(i, j)AT
k (j, i)H(j)Ak(j.i)

(Π2H)(i) =
r∑

k=0

N∑
j=1

p(i, j)AT
k (j, i)H(j)Bk(j, i)

(Π3H)(i) =
r∑

k=0

N∑
j=1

p(i, j)BT
k (j, i)H(j)Bk(j.i)

i ∈ D, H ∈ SN
n . Setting ΠkH = ((ΠkH)(1), (ΠkH)(2), ..., (ΠkH)(N)) we may define the opera-

tor Π : SN
n → SN

n+m by

ΠH =

(
Π1H Π2H

(Π2H)T Π3H

)
(134)

here we use the convention of notation BT = (BT (1), BT (2), ..., BT (N)) if B = (B(1), B(2), ..., B(N))
with B(i) ∈ Rn×m, i ∈ D. Using the above operators the equation (94) can be rewritten in a
compact form as:

X = Π1X + M − (Π2X + L)(R + Π3X)−1(Π2X + L)T (135)

where M = (M(1),M(2), ..., M(N)),

M(i) =
N∑

j=1

p(i, j)CT
z (j, i)Cz(j, i),
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L = (L(1), L(2), ..., L(N)),

L(i) =
N∑

j=1

p(i, j)CT
z (j, i)Dz(j, i),

R = (R(1), R(2), ..., R(N)),

R(i) =
N∑

j=1

p(i, j)DT
z (j, i)Dz(j, i), i ∈ D.

Hence (135) is the time invariant version of the nonlinear equation investigated in [21]. Also
the equalities (133), (134) show that the system (127) is stochastic stabilizable iff the linear
positive operator Π is stabilizable in the sense of Definition 2.3 in [21].

With the above notations we may introduce the so called dissipation operator associated to
(135): D : SN

n → SN
n+m by

(DX)(i) =

(
(Π1X)(i) + M(i)−X(i) (Π2X)(i) + L(i)

((Π2X)(i) + L(i))T (Π3X)(i) + R(i)

)
(136)

i ∈ D, X ∈ SN
n .

The following is the time invariant version of Theorem 5.4 in [21].
Theorem A1. Under the assumptions H1)−H2) the following are equivalent:
(i) The system (127) is stochastic stabilizable and there exist X̂ = (X̂(1), X̂(2), ..., X̂(N)) ∈

SN
n such that

(DX̂)(i) < 0, i ∈ D. (137)

(ii) The DTSGRE (94) has a stabilizing solution Xs which satisfies (96).
We remark that a set of conditions equivalent with the existence of a stabilizing solution

of (94) which verify condition (96) consist of the solvability of the systems of LMIs (131) and
(137).
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