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Abstract

In this paper the problem of the optimization of a quadratic cost functional along the trajec-
tories of a discrete-time affine stochastic system affected by jumping Markov perturbations and
independent random perturbations is investigated. Both the case of finite time horizon as well
as the infinite time horizon are considered. The optimal control is constructed using a suitable
solution for a system of discrete-time Riccati type equations. A set of sufficient conditions assuring
the existence of the desired solutions of the discrete-time Riccati equations is provided. A tracking
problem is also solved.

Keywords: linear quadratic problems, tracking problems, discrete time stochastic systems, Markov
chains, independent random perturbations.

1 Introduction

The state space approach for the problem of minimization of a quadratic cost functional along the
trajectories of a linear (affine) controlled system has a long history. Such an optimization problem is
usually known as linear quadratic optimization problem (LQOP). Starting with the pioneer work of
Kalman [32] the solution of such an optimization problem is closely related to the existence of some
suitable solutions of a matrix differential (difference) equations of Riccati type.

In the continuous time stochastic framework different aspects of the LQOP were investigated in [2,
16, 30, 43, 44] for the case of controlled systems described by Ito differential equations and [9, 29, 35,
37, 42, 44] in the case of controlled systems described by differential equations with Markov jumping.
In [45] the linear quadratic optimization problem for stochastic systems and cost functionals with
indefinite sign was considered and solved.

In [18, 22] it was shown that the solution of the linear quadratic optimization problem strongly depends
upon the class of admissible controls. It was proved that for a given cost functional and for different
sets of admissible controls the solution of the optimization problem is constructed either using the
maximal solution or the minimal solution of the corresponding Riccati differential equation.

In the discrete-time stochastic framework the linear quadratic optimization problem was separately
investigated for systems with independent random perturbations and systems with Markov perturba-
tions, respectively. Thus, for the case of discrete-time stochastic systems with independent random
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perturbations we refer to [40, 38, 46], while for discrete-time systems with Markovian switching we
mention [1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 12, 27, 28, 29, 31, 35, 36, 37, 39, 42].

In the present paper we consider an optimization problem asking the minimization of a quadratic
cost functional along the trajectories of a discrete-time affine stochastic system subject to Markovian
switching and independent random perturbations. Both the case of finite time horizon and the case
of infinite time horizon are studied. Sufficient conditions ensuring the existence of the solutions for
a corresponding system of a discrete-time Riccati type equations involved in the construction of the
optimal control are given. As an application we give the solution of a tracking problem.

Lately there is an increasing interest in the investigation of different control problems related to
discrete-time linear stochastic systems corrupted by independent random perturbations and Markovian
switching. For the readers convenience we refer to a recent paper [15] where several optimization
problems having the cost functional given by the terminal value of the expectation or of the variance
of an output are studied.

The outline of our paper is as follows: Section 2 contains the description of the mathematical model
under consideration as well as the setting of the optimization problem under investigation. The main
results are in section 3. Thus, after some auxiliary results given in subsection 3.1 the solution of LQOP
in the finite time horizon is given in subsection 3.2. Subsection 3.3 contains a detailed investigation
of the problem of the existence of the stabilizing solution for the system of discrete-time Riccati type
equations associated to the considered optimization problem. Finally, in subsection 3.4 we provide
the solution of LQOP in the infinite time horizon case. Section 4 contains the solution of a tracking
problem for a given reference signal. In section 5 we collect the proofs of several results used in the
previous sections but also interesting in themselves.

2 Problem formulation

Let us consider the discrete-time controlled stochastic linear system described by:

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)u(t) + f0(t, ηt) +

+
r∑

k=1

[Ak(t, ηt)x(t) + Bk(t, ηt)u(t) + fk(t, ηt)]wk(t), t ≥ 0, t ∈ Z, (2.1)

where x(t) ∈ Rn, is the state vector and u(t) ∈ Rm is the vector of control inputs, {ηt}t≥0 is
a Markov chain defined on a given probability space (Ω,F ,P) with the state space the finite set
D = {1, 2, ..., N} and the sequence of transition probability matrices {Pt}t≥0. This means that for
t ≥ 0, Pt are stochastic matrices of size N , with the property:

P{ηt+1 = j | Gt} = pt(ηt, j) (2.2)

for all j ∈ D, t ≥ 0, t ∈ Z+, where Gt = σ[η0 η1, ... , ηt] is the σ-algebra generated by the random vari-
ables ηs, 0 ≤ s ≤ t, {w(t)}t≥0 is a sequence of independent random vectors w(t) = (w1(t), ..., wr(t))T .

It can be seen that if P{ηt = i} > 0 then

P{ηt+1 = j | ηt = i} = pt(i, j) (2.3)

pt(i, j) being the entries of the transition probability matrix Pt. For more details regarding the
properties of Markov chains and sequences {Pt}t≥0 of stochastic matrices we refer to [17].

If Pt = P for all t ≥ 0 then the Markov chain is known as a homogeneous Markov chain.

For each t ∈ Z+, Ak(t, i) ∈ Rn×n, Bk(t, i) ∈ Rn×m and fk(t, i) ∈ Rn are known.

Different properties of the sequences {Ak(t, i)}t≥0, {Bk(t, i)}t≥0, {fk(t, i)}t≥0, 0 ≤ k ≤ r, will be
emphasized later.
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Together with the σ-algebras Gt we introduce the following new σ-algebras Ft = σ[w(s), 0 ≤ s ≤ t],
Ht = Gt ∨ Ft, H̃t = Ht−1 ∨ σ[ηt] if t ≥ 1 and H̃t = G0 if t = 0.

We recall that if F and G are two σ-algebras then F∨G stands for the smallest σ-algebra containing F
and G. Throughout the paper the following assumptions regarding the processes {ηt}t≥0and {w(t)}t≥0

are made:

H1) The processes {ηt}t≥0 and {w(t)}t≥0 are independent stochastic processes.

H2) E[w(t)] = 0, t ≥ 0, E[w(t)wT (t)] = Ir, t ≥ 0, Ir being the identity matrix of size r.

H3) For each t ≥ 0, Pt is a nondegenerate stochastic matrix. We recall that a stochastic matrix Pt is
a nondegenerate stochastic matrix if for every j ∈ D, there exists i ∈ D such that pt(i, j) > 0.

In terms of σ-algebras the assumption H1 asserts that for each t ∈ Z+, Ft is independent of Gt.

The following two classes of admissible controls will be involved in the paper.

a) If 0 ≤ t0 < tf ∈ Z, Ut0,tf consists of the stochastic processes u = {u(t), t0 ≤ t ≤ tf}, where u(t) is
a m-dimensional random vector with finite second moments and H̃t- measurable.

b) If tf = ∞ and x0 ∈ Rn, Ut0,∞(x0) consists of all stochastic processes u = u(t), t0 ≤ t < ∞ where
for each t, u(t) is a m-dimensional random vector which is H̃t-measurable having the following two
additional properties:

α) E[|u(t)|2] < ∞, t ≥ t0

β) sup
t≥t0

E[|xu(t, t0, x0)|2] < ∞ (2.4)

xu(·, t0, x0) being the solution of (2.1) determined by the control u and starting from x0 at t = t0.

It must be remarked that in the case tf < +∞ the initial value x0 does not play any role in the definition
of the admissible controls Ut0tf . On the other hand in the infinite time horizon case (tf = +∞) it
is expected that the set of admissible controls be dependent upon the initial state x0. This could
happened due to condition (2.4).

That is why the dependence with respect to the initial state x0 is emphasized writing Ut0,∞(x0).

We associate the following two cost functionals to the system (2.1): J(t0, tf , x0, ·) : Ut0,tf → R and
J(t0,∞, x0, ·) : Ut0,∞(x0) → R̄ by

J(t0, tf , x0, u) = E[xT (tf )Kf (ηtf )x(tf ) +
tf−1∑

t=t0

|y(t)|2] (2.5)

J(t0,∞, x0, u) = lim
T→∞

1
T − t0

T∑

t=t0

E[|y(t)|2] (2.6)

where

y(t) = C(t, ηt)xu(t, t0, x0) + D(t, ηt)u(t) (2.7)

and xu(t, t0, x0) is as before.

Now we are in position to formulate the two optimization problems which are solved in this paper.

OP 1. Given 0 ≤ t0 < tf ∈ Z and x0 ∈ Rn, find an admissible control ũ ∈ Ut0,tf which satisfies
J(t0, tf , x0, ũ) ≤ J(t0, tf , x0, u) for all u ∈ Ut0,tf .

OP 2. Given t0 ≥ 0, x0 ∈ Rn find a control ũ ∈ Ut0,∞(x0) such that J(t0,∞, x0, ũ) < ∞ and
J(t0,∞, x0, ũ) ≤ J(t0,∞, x0, u) for all u ∈ Ut0,∞(x0).
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In the case of the cost functional (2.6) it is not known that there exists u ∈ Ut0,∞(x0) such that

J(t0,∞, x0, u) < +∞. (2.8)

That is why it is natural to introduce the following definition:

Definition 2.1

We say that the optimization problem OP 2 is well posed if for every x0 ∈ Rn and t0 ∈ Z+ there
exists u ∈ Ut0,∞(x0) such that (2.8) is fulfilled.

In the construction of the optimal control ũ in the above optimization problems a crucial role is
played by the solutions of the following system of discrete time stochastic generalized Riccati equations
(DTSGRE):

X(t, i) =
r∑

k=0

AT
k (t, i)Πi(t, X(t + 1))Ak(t, i) + CT (t, i)C(t, i)−

−[
r∑

k=0

AT
k (t, i)Πi(t,X(t + 1))Bk(t, i) + CT (t, i)D(t, i)][DT (t, i)D(t, i) +

r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))Bk(t, i)]−1[

r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))Ak(t, i) + DT (t, i)C(t, i)] (2.9)

where

Πi(t, Y ) =
N∑

j=1

pt(i, j)Y (j) (2.10)

for all Y = (Y (1), ..., Y (N)).

For the problem OP 1 we need the solution of (2.9) with the terminal condition X(tf , i) = Kf (i),
while in the case of problem OP 2 a global solution of (2.9), called stabilizing solution, is involved.

Later we will provide a set of conditions which guarantee the existence of the above mentioned solutions
of (2.9). Finally we mention that (2.9) contains different types of discrete-time Riccati equations
involved in the solution of the linear quadratic optimization problems, as particular cases, and H2-
control problems both in deterministic framework and stochastic framework [1, 4, 27, 28, 29, 30, 38,
39, 43, 44, 46].

3 The solution of the optimization problems

3.1 Some preliminaries:

Let V : Z+×Rn×D → R be a quadratic function in x of the form V (t, x, i) = xT X(t, i)x+2xT κ(t, i)
where X(t, i) = XT (t, i) ∈ Rn×n and κ(t, i) ∈ Rn are given. For the readers convenience we recall the
following result (see [21]):

Lemma 3.1 Under the assumption H1 and H2 we have

E[χ{ηt+1=j}|Ht] = pt(ηt, j) (3.1)

a.s. for all t ∈ Z+ and j ∈ D.

We remark that (3.1) is the extension of (2.2) to the joint process {w(t), ηt}t≥0.

Now we prove:

Lemma 3.2 Let 0 ≤ t0 < tf and u ∈ Ut0,tf . If x(t), t0 ≤ t ≤ tf is a trajectory of the system (2.1)
determined by the input u with x(t0) H̃t0-measurable and E|x(t0)|2 < ∞, then we have:

E[V (t + 1, x(t + 1), ηt+1)|ηt0 ] = E[W (t, x(t), u(t), ηt)|ηt0 ] (3.2)
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for all t0 ≤ t ≤ tf−1, where W (t, x, u, i) =
r∑

k=0
{xT AT

k (t, i)Πi(t,X(t+1))Ak(t, i)x+uT BT
k (t, i)Πi(t,X(t+

1))Bk(t, i)u+fT
k (t, i)Πi(t,X(t+1))fk(t, i)+2xT AT

k (t, i)Πi(t, X(t+1))Bk(t, i)u+2xT AT
k (t, i)Π(t,X(t+

1))fk(t, i) + 2uT BT
k (t, i)Π(t,X(t + 1))fk(t, i)} + 2[A0(t, i)x + B0(t, i)u + f0(t, i)]T Πi(t, κ(t + 1)) with

Πi(t,X(t + 1)) and Πi(t, κ(t + 1)) are defined as in (2.10) with X(t + 1, i) and κ(t + 1, i) instead of
Y (i).

Proof. Taking into-account that x(t + 1) is Ht- measurable we have via Lemma 3.1: E[V (t + 1, x(t +
1), j)χ{ηt+1=j}|Ht] = V (t + 1, x(t + 1), j)E[χ{ηt+1=j}|Ht] = V (t + 1, x(t + 1), j)pt(ηt, j) a.s.

Since H̃t ⊆ Ht and ηt is H̃t-measurable, we get

E[V (t + 1, x(t + 1), j)χ{ηt+1=j}|H̃t] = pt(ηt, j)E[V (t + 1, x(t + 1), j)|H̃t]a.s. (3.3)

On the other hand from the assumption H1 and H2 one obtains that: E[wk(t)|H̃t] = E[wk(t)] = 0
and E[wk(t)wl(t)|H̃t] = E[wk(t)wl(t)] = δkl where δkl = 1 if k = l and δkl = 0 if k 6= l. Thus from
(2.1), (3.3) and the equality

V (t + 1, x(t + 1), ηt+1) =
N∑

j=1

V (t + 1, x(t + 1), j)χ{ηt+1=j} (3.4)

we obtain:

E[V (t + 1, x(t + 1), ηt+1)|H̃t] = W (t, x(t), u(t), ηt). (3.5)

Since σ[ηt0 ] ⊂ H̃t the conclusion follows taking the conditional expectation with respect to ηt0 in (3.5).
Thus the proof is complete.

From the above lemma we obtain:

Corollary 3.3 Under the assumptions of Lemma 3.2 we have the following equality:

E[V (tf , x(tf ), ηtf )|ηt0 ] +
tf−1∑

t=t0

E[|C(t, ηt)x(t) + D(t, ηt)u(t)|2|ηt0 ] =

= E[V (t0, x(t0), ηt0)|ηt0 ] +
tf−1∑

t=t0

E[(xT (t), 1, 1, uT (t)]W̃ (t, ηt)(xT (t), 1, 1, uT (t))T |ηt0 ] (3.6)

where

W̃ (t, i) =




W11(t, i) W12(t, i) W13(t, i) Gi(t,X(t + 1))
W T

12(t, i) W22(t, i) W23(t, i) W24(t, i)
W T

13(t, i) W T
23(t, i) 0 W34(t, i)

GT
i (t,X(t + 1)) W T

24(t, i) W T
34(t, i) Ri(t,X(t + 1))


 (3.7)

with

W11(t, i) =
∑r

k=0 AT
k (t, i)Πi(t,X(t + 1))Ak(t, i)−X(t, i) + CT (t, i)C(t, i)

W12(t, i) =
∑r

k=0 AT
k (t, i)Πi(t,X(t + 1)fk(t, i)

W13(t, i) = AT
0 (t, i)Πi(t, κ(t + 1))− κ(t, i)

Gi(t,X(t + 1)) = CT (t, i)D(t, i) +
∑r

k=0 AT
k (t, i)Πi(t,X(t + 1))Bk(t, i)

W22(t, i) =
∑r

k=0 fT
k (t, i)Πi(t,X(t + 1))fk(t, i)

W23(t, i) = fT
0 (t, i)Πi(t, κ(t + 1))

W24(t, i) =
∑r

k=0 fT
k (t, i)Πi(t,X(t + 1))Bk(t, i)

W34(t, i) = ΠT
i (t, κ(t + 1))B0(t, i)
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Ri(t, X(t + 1)) = DT (t, i)D(t, i) +
∑r

k=0 BT
k (t, i)Πi(t,X(t + 1))Bk(t, i).

If X(t) = (X(t, 1), ..., X(t,N)), t0 ≤ t ≤ tf are such that Ri(t,X(t, i)) are invertible then we define:

FX(t, i) = −R−1
i (t,X(t + 1))GT

i (t,X(t + 1)), i ∈ D. (3.8)

For each sequence {X(t)}t≥t0 , X(t) = (X(t, 1), ..., X(t,N)) such that Ri(t,X(t + 1)) is invertible, we
associate the following backward affine equation:

κ(t, i) = (A0(t, i) + B0(t, i)FX(t, i))T Πi(t, κ(t + 1)) + g(t, i) (3.9)

where g(t, i) =
∑r

k=0(Ak(t, i) + Bk(t, i)FX(t, i))T Πi(t,X(t + 1))fk(t, i),i ∈ D,t0 ≤ t ≤ tf − 1.

Now we recall the following straightforward fact:

Lemma 3.4 Let F(ξ, u) = (ξT uT )

(
M1 M2

MT
2 M3

) (
ξ
u

)
be a quadratic form where detM3 6 =0.

Then

F(ξ, u) = ξT (M1 −M2M−1
3 MT

2 )ξ + (u +M−1
3 MT

2 ξ)TM3(u +M−1
3 MT

2 ξ). (3.10)

Combining Corollary 3.3 and Lemma 3.4 one obtains:

Proposition 3.5 Let X(t) = (X(t, 1), ..., X(t,N)) be a solution of the system of Riccati type equations
(2.9). Let κ(t) = (κ(t, 1), ..., κ(t,N)), κ(t, i) ∈ Rn be a solution of the corresponding backward affine
equation (3.9). We have:

E[V (tf , x(tf ), ηtf )|ηt0 ] +
tf−1∑

t=t0

E[|y(t)|2|ηt0 ] = E[V (t0, x(t0), ηt0)|ηt0 ] +
tf−1∑

t=t0

E[µ(t, ηt)|ηt0 ]

+
tf−1∑

t=t0

E[(u(t)− FX(t, ηt)x(t)− ψ(t, ηt))TRηt(t,X(t + 1))(u(t)− FX(t, ηt)x(t)− ψ(t, ηt))|ηt0 ]

for all u ∈ Ut0,tf , with

µ(t, i) =
r∑

k=0

fT
k (t, i)Πi(t,X(t + 1))fk(t, i)− (ΠT

i (t, κ(t + 1))B0(t, i) +

r∑

k=0

fT
k (t, i)Πi(t,X(t + 1))Bk(t, i))R−1

i (t,X(t + 1))(BT
0 (t, i)Πi(t, κ(t + 1)) +

r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))fk(t, i)) + 2fT

0 (t, i)Πi(t, κ(t, i)) (3.11)

ψ(t, i) = −R−1
i (t,X(t + 1))[BT

0 (t, i)Πi(t, κ(t + 1)) +
r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))fk(t, i)] (3.12)

and FX(t, i) is as in (3.8), x(t) being the solution with the properties as in Lemma 3.2 .

The proof follows immediately applying Lemma 3.4 with M3 = Rηt(t,X(t+1)). It must be remarked
that if X(t) is a solution of (2.9) then it is tacitly assumed that Ri(t,X(t + 1)) is invertible.

3.2 Solution of the problem OP1

With regards to the optimization problem OP1, we prove:

Theorem 3.6 Assume that in the cost functional (2.5) we have:
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a) Kf (i) ≥ 0, i ∈ D.

b) DT (t, i)D(t, i) > 0, t0 ≤ t ≤ tf − 1, i ∈ D.

Let X̂(t) = (X̂(t, 1), ..., X̂(t,N)) be the solution of the system (2.9) which verifies the terminal condi-
tion X̂(tf , i) = Kf (i), i ∈ D.

Let κ̂(t) = (κ̂(t, 1), ..., κ̂(t,N)) be the solution of the corresponding backward affine equation (3.9),
with the terminal condition κ̂(tf , i) = 0, i ∈ D. Under these conditions the optimal control in the
optimization problem OP1 is given by

û(t) = F̂ (t, ηt)x̂(t) + ψ̂(t, ηt) (3.13)

where F̂ (t, i) = F X̂(t, i) and ψ̂(t, i) is as in (3.12) with (X̂(t, i), κ̂(t, i)) instead of (X(t, i), κ(t, i)) and
x̂(t) is a solution of the problem with given initial values:

x(t + 1) = [A0(t, ηt) + B0(t, ηt)F̂ (t, ηt)]x(t) + f̂0(t, ηt) +

+
r∑

k=1

wk(t)[(Ak(t, ηt) + Bk(t, ηt)F̂ (t, ηt))x(t) + f̂k(t, ηt)] (3.14)

x(t0) = x0 and f̂k(t, i) = Bk(t, i)ψ̂(t, i) + fk(t, i), 0 ≤ k ≤ r.

The optimal value is

J(t0, tf , x0, û) =
N∑

l=1

πt0(l){xT
0 X̂(t0, l)x0 + 2xT

0 κ̂(t0, l) +
tf−1∑

t=t0

N∑

j=1

pt(l, j)µ̂(t, j)} (3.15)

where πt0(l) = P{ηt0 = l} is the distribution of the Markov chain and pt(l, j) are the elements of the
matrix P t = Pt0Pt0+1...Pt−1, µ̂(t, i) being as in (3.11).

Proof. First we show that under assumptions a) and b) the solution X̂(t) is well defined for t0 ≤ t ≤
tf − 1 and X̂(t, i) ≥ 0.

To this end we remark that for every i ∈ D the right hand side of (2.9) is the Schur complement of
the 2× 2 block of the matrix

∆i(t,X(t + 1)) =

(
∆1i(t,X(t + 1)) Gi(t,X(t + 1))
GT

i (t,X(t + 1)) R(t,X(t + 1))

)

where

∆1i(t,X(t + 1)) =
r∑

k=0

AT
k (t, i)Πi(t, X(t + 1))Ak(t, i) + CT (t, i)C(t, i)

Gi(t,X(t + 1)),Ri(t,X(t + 1)) are as before.

It is easy to check that

∆i(t,X(t + 1)) =
r∑

k=0

(
AT

k (t, i)
BT

k (t, i)

)
Πi(t, X(t + 1))

(
Ak(t, i) Bk(t, i)

)

+

(
CT (t, i)
DT (t, i)

) (
C(t, i) D(t, i).

)
(3.16)

From (3.16) it follows that ∆i(t,X(t + 1)) ≥ 0 if X(t + 1, j) ≥ 0 for all j ∈ D.

From the assumptions a) and b) in the statement one obtains that Ri(tf − 1, X̂(tf )) > 0.

Based on the Schur complement technique one obtains that

X̂(tf − 1) = ∆1i(tf − 1, X̂(tf ))− Gi(tf − 1, X̂(tf ))R−1
i (tf − 1, X̂(tf ))GT

i (tf − 1, X̂(tf )) ≥ 0.
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Further, by induction, one proves that

X̂(t, i) = ∆1i(t, X̂(t + 1))− Gi(t, X̂(t + 1))R−1
i (t, X̂(t + 1))GT

i (t, X̂(t + 1)) ≥ 0.

Since Ri(t, X̂(t + 1)) > 0 X̂(t, i) is well defined and X̂(t, i) ≥ 0 for all t0 ≤ t ≤ tf .

On the other hand κ̂(t, i) is well defined as solution of (3.9). Applying Proposition 3.5 for the pair
(X̂(t, i), κ̂(t, i)) and taking the expectation one gets:

J(t0, tf , x0, u) = E[xT
0 X̂(t0, ηt0)x0 + 2xT

0 κ̂(t0, ηt0)] +
tf−1∑

t=t0

E[µ̂(t, ηt)] + (3.17)

tf−1∑

t=t0

E[(u(t)− û(t))TRηt(t, X̂(t + 1))(u(t)− û(t))].

where û(t) is given by (3.13).

The fact that û ∈ Ut0,tf follows from its formula. From (3.17) we deduce that

J(t0, tf , x0, u) ≥ J(t0, tf , x0, û) = E[V (t0, x0, ηt0)] +
tf−1∑

t=t0

E[µ̂(t, ηt)].

The fact that Rηt(t, X̂(t + 1)) > 0 if X̂(t, i) ≥ 0 was used. (3.17) also shows that û is the unique
optimal control. To obtain the optimal value of the cost functional, we write:

tf−1∑

t=t0

E[µ̂(t, ηt)] =
tf−1∑

t=t0

N∑

j=1

πt(j)µ̂(t, j) (3.18)

where πt(j) = P{ηt = j}.
Set πt = (πt(1), ..., πt(N)). It is known that πt+1 = πtPt, for all t ≥ 0.

Hence πt = πt0Pt0Pt0+1...Pt−1, or πt = πt0P
t, P t being as in the statement. This leads to

πt(j) =
N∑

l=1

πt0(l)p
t(l, j). (3.19)

Substituting (3.19) in (3.18) one obtains (3.15) and thus the proof ends.

3.3 Special global solutions of DTSGRE

In this subsection we investigate the problem of the existence of some special global solutions of
(DTSGRE) (2.9) as: the minimal solution and the stabilizing solution.

With regards to the matrix coefficients of the system (2.9) we make the following assumption:

H4): (i) {Ak(t, i)}t≥0, {Bk(t, i)}t≥0, 0 ≤ k ≤ r, {C(t, i)}t≥0, {D(t, i)}t≥0 are bounded sequences.

(ii) a) there exists δ0 > 0 not depending upon t such that R(t, i) := DT (t, i)D(t, i) ≥ δ0Im,
∀(t, i) ∈ Z+ ×D.

b) CT (t, i)D(t, i) = 0, ∀(t, i) ∈ Z+ ×D.

One can see that if the assumption (ii) a) is fulfilled then (ii) b) takes place without any loss of
generality. This may be obtained if in the system (2.1) as well as in the output (2.7) one makes the
following change of the control parameters: u(t) = −(DT (t, ηt)D(t, ηt))−1DT (t, ηt)C(t, ηt)xt + v(t)
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where v(t) is the vector of new control parameters. For details regarding the continuous time case,
one can see [18] or [22] chapter 5. Under the assumption H4(ii) the feedback gain (3.8) becomes:

FX(t, i) = −(R(t, i) +
r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))Bk(t, i))−1(

r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))Ak(t, i)).(3.20)

The following results will be repeatedly used in the next developments:

Lemma 3.7 Let {X(t)}t0≤t≤t1 be a solution of (DTSGRE) (2.9) and
W (t) = (W (t, 1), ..., W (t,N)),W (t, i) ∈ Rm×n be given. Then {X(t)}t0≤t≤t1 verifies the following
modified system of discrete time equations:

X(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)W (t, i))T Πi(t,X(t + 1))(Ak(t, i) + Bk(t, i)W (t, i)) + CT (t, i)C(t, i)

+W T (t, i)R(t, i)W (t, i)− (W (t, i)− FX(t, i))TRi(t,X(t + 1))(W (t, i)− FX(t, i)).

Proof follows by direct calculations. It is omitted for shortness.

We mention that any time we refer to a solution of (DTSGRE) (2.9) we assume tacitly thatRi(t, X(t+
1)) is invertible.

Based on the previous Lemma one easily obtains the following comparison result:

Proposition 3.8 Let Xl(t) = (Xl(t, 1), Xl(t, 2), ..., Xl(t,N)), l ∈ {1, 2}, t0 ≤ t ≤ t1 be two solutions of
(DTSGRE) (2.9) with the properties:

a) Ri(t,X1(t + 1)) > 0, t0 ≤ t ≤ t1 − 1;

b) X2(t1, i) ≥ X1(t1, i), ∀i ∈ D.

Under these conditions we have X2(t, i) ≥ X1(t, i) for all t0 ≤ t ≤ t1, i ∈ D.

Proof. Let Fl(t) = (Fl(t, 1), Fl(t, 2), ..., Fl(t,N)) be defined by Fl(t, i) = FXl(t, i), l = 1, 2, i ∈ D, t0 ≤
t ≤ t1. Applying successively the previous Lemma to the system (2.9) verified by X1(t) and X2(t)
respectively and for W (t) = F2(t), we obtain:

X2(t, i)−X1(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F2(t, i))T Πi((t,X2(t + 1)−X1(t + 1))(Ak(t, i)

+Bk(t, i)F2(t, i)) + M(t, i) (3.21)

where M(t, i) = (F2(t, i)− F1(t, i))TRi(t,X1(t + 1))(F2(t, i)− F1(t, i)).

Based on assumption a) one deduces that M(t, i) ≥ 0 for all t0 ≤ t ≤ t1 − 1, i ∈ D. The conclusion
follows now inductively from (3.21) and thus the proof ends.

Consider the following system associated to (2.1) for fk(t, i) = 0:

x(t + 1) = (A0(t, ηt)x(t) + B0(t, ηt)u(t) +
r∑

k=1

wk(t)(Ak(t, ηt)x(t) + Bk(t, ηt)u(t)), t ≥ 0. (3.22)

Definition 3.1. We say that the system (3.22) is stochastic stabilizable if there exist bounded
sequences {F (t, i)}t≥0, i ∈ D, such that the trajectories of the closed-loop system

x(t + 1) = [A0(t, ηt) + B0(t, ηt)F (t, ηt) +
r∑

k=1

wk(t)(Ak(t, ηt) + Bk(t, ηt)F (t, ηt))]x(t) (3.23)

satisfy

E[|x(t, t0, x0)|2|ηt0 = i] ≤ βqt−t0 |x0|2 (3.24)
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for all t ≥ t0, i ∈ D with πt0(i) > 0, where β ≥ 1, q ∈ (0, 1) are independent upon t, t0, x0.

The sequences {F (t, i)}t≥0, involved in the above definition will be called stabilizing feedback gains.
If the coefficients of the system (3.22) are periodic, with period θ ≥ 1, the definition of the stochastic
stabilizability will be restricted to the class of θ-periodic stabilizing feedback gains.

According to the terminology introduced in [21] the definition of stochastic stabilizability could be
restated as follows: the system (3.22) is stochastic stabilizable if there exist bounded sequences
{F (t, i)}t≥0 such that the zero state equilibrium of the system (3.23) is exponentially stable in mean
square with conditioning of type I (ESMS-CI).

Let us consider the following linear system obtained from (2.1) and the output (2.7), for fk(t, i) = 0
and u(t) = 0:

x(t + 1) = (A0(t, ηt) +
r∑

k=1

wk(t)Ak(t, ηt)x(t) (3.25)

y(t) = C(t, ηt)x(t).

Definition 3.2. We say that the system (3.25) is stochastic detectable if there exist bounded sequences
{Kk(t, i)}t≥0, i ∈ D, 0 ≤ k ≤ r such that the zero state equilibrium of the system

x(t + 1) = (A0(t, ηt) + K0(t, ηt)C(t, ηt) +
r∑

k=1

wk(t)(Ak(t, ηt) + Kk(t, ηt)C(t, ηt)))x(t)

is (ESMS-CI).

Different aspects regarding the concepts of stochastic stability, stochastic stabilizability and stochastic
detectability can be found in [13, 19, 20, 21, 24, 25, 26, 34, 38, 39, 41].

Now we prove:

Theorem 3.9 Assume: a) The assumptions H1 −H4 are fulfilled.

b) The system (3.22) is stochastic stabilizable.

Under these assumptions (DTSGRE) (2.9) has a bounded solution X̃(t) = (X̃(t, 1), X̃(t, 2), ..., X̃(t,N))
such that X̃(t, i) ≥ 0, (t, i) ∈ Z+ × D. The solution X̃(t) is minimal in the class of global bounded
and positive semidefinite solutions of (2.9). Moreover if there exists an integer θ ≥ 1 such that
Ak(t + θ, i) = Ak(t, i), Bk(t + θ, i) = Bk(t, i), 0 ≤ k ≤ r, C(t + θ, i) = C(t, i), D(t + θ, i) = D(t, i),
t ∈ Z+,Pt+θ = Pt, i ∈ D, then X̃(t + θ, i) = X̃(t, i), for all t ∈ Z+, i ∈ D.

Proof. For each τ ≥ 1, τ ∈ Z+ let Xτ (t) = (Xτ (t, 1), ..., Xτ (t,N)) be the solution of (2.9) with the
terminal condition Xτ (τ, i) = 0, i ∈ D. Proceeding as in the proof of Theorem 3.6 one obtains that
Xτ (·) are well defined and Xτ (t, i) ≥ 0 for 0 ≤ t ≤ τ . If 1 ≤ τ1 < τ2 we have Xτ2(τ1, i) ≥ 0 =
Xτ1(τ1, i), i ∈ D. Applying Proposition 3.8 for Xl(t) = Xτl

(t), l = 1, 2, we conclude that

Xτ1(t, i) ≤ Xτ2(t, i) (3.26)

for all 0 ≤ t ≤ τ1, i ∈ D. On the other hand, the assumption b) in the statement together with
Theorem 3.8 [21] guarantee the existence of the bounded sequences {F0(t, i)}t≥0, i ∈ D, such that the
following system of coupled Lyapunov type equations

X0(t, i) =
r∑

k=0

[Ak(t, i) + Bk(t, i)F0(t, i)]T Πi(t,X0(t + 1))[Ak(t, i) + Bk(t, i)F0(t, i)]

+CT (t, i)C(t, i) + F T
0 (t, i)R(t, i)F0(t, i), i ∈ D (3.27)

has a bounded solution X0(t) = (X0(t, 1), ..., X0(t,N)), X0(t, i) ≥ 0, i ∈ D, t ∈ Z+.
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Applying Lemma 3.7 with W (t, i) = F0(t, i) to (2.9) verified by Xτ (t) one obtains that X0(t) −
Xτ (t), 0 ≤ t ≤ τ , solves the following equation

X0(t, i)−Xτ (t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F0(t, i))T Πi(t,X0(t + 1)−Xτ (t + 1))(Ak(t, i)

+Bk(t, i)F0(t, i)) + M̃(t, i) (3.28)

where M̃(t, i) = (F0(t, i) − Fτ (t, i))TRi(t,Xτ (t + 1))(F0(t, i) − Fτ (t, i)), Fτ (t, i) = FXτ (t, i). It can
be seen that M̃(t, i) ≥ 0, 0 ≤ t ≤ τ − 1, i ∈ D. Since X0(τ, i) − Xτ (τ, i) = X0(τ, i) ≥ 0 one obtains
inductively from (3.28) that X0(t, i)−Xτ (t, i) ≥ 0,∀0 ≤ t ≤ τ, i ∈ D. This allows us to conclude that

0 ≤ Xτ (t, i) ≤ X0(t, i) ≤ cIn (3.29)

for all 0 ≤ t ≤ τ, τ ≥ 1, i ∈ D where c > 0 is independent of τ and t. From (3.26) and (3.29) one
obtains that the sequences {Xτ (t, i)}τ≥1, i ∈ D are convergent. Let X̃(t, i) = limt→∞Xτ (t, i). It
follows that 0 ≤ X̃(t, i) ≤ cIn. Moreover X̃(t) = (X̃(t, 1), X̃(t, 2), ..., X̃(t,N)) is a global solution of
(2.9). If X̂(t) = (X̂(t, 1), X̂(t, 2), ..., X̂(t,N)) is another bounded solution of (DTSGRE) (2.9) with
X̂(t, i) ≥ 0 for all t, i ∈ Z+ × D then X̂(τ, i) ≥ 0 = Xτ (τ, i), ∀ τ ≥ 1. Applying Proposition 3.8 we
deduce that X̂(t, i) ≥ Xτ (t, i) for all 0 ≤ t ≤ τ, i ∈ D. Taking the limit for τ → ∞ we deduce that
X̂(t, i) ≥ X̃(t, i) for arbitrary (t, i) ∈ Z+ ×D and thus we obtain that X̃(t) is the minimal solution.

If the coefficients of DTSGRE (2.9) are periodic sequences with period θ ≥ 1 we define X̌τ (t) =
(X̌τ (t, 1), X̌τ (t, 2), ..., X̌τ (t,N)) by X̌τ (t, i) = Xτ+θ(t + θ, i), 0 ≤ t ≤ τ, i ∈ D. It is easy to check that
X̌τ (t) is also a solution of DTSGRE (2.9) and X̌τ (τ, i) = 0 = Xτ (τ, i). Therefore X̌τ (t, i) = Xτ (t, i)
for all 0 ≤ t ≤ τ, i ∈ D. This leads to limτ→∞ X̌τ (t, i) = limτ→∞Xτ (t, i) = X̃(t, i). On the
other hand limτ→∞ X̌τ (t, i) = limτ→∞Xτ+θ(t + θ, i) = X̃(t + θ, i). This allows us to conclude that
X̃(t, i) = X̃(t + θ, i) and thus the proof ends.

Definition 3.3. We say that X̃(t) = (X̃(t, 1), ...X̃(t,N)), t ∈ Z+ is a stabilizing solution of the
system (2.9) if the zero state equilibrium of the closed-loop system

x(t + 1) = [A0(t, ηt) + B0(t, ηt)F̃ (t, ηt) +
r∑

k=1

wk(t)(Ak(t, ηt) + Bk(t, ηt)F̃ (t, ηt))]x(t) (3.30)

is (ESMS-CI), where

F̃ (t, i) = −(R(t, i) +
r∑

k=1

BT
k (t, i)Πi(t, X̃(t + 1))Bk(t, i))−1(

r∑

k=0

BT
k (t, i)Πi(t, X̃(t + 1))Ak(t, i)). (3.31)

With respect to the stabilizing solution of (2.9) we first prove:

Theorem 3.10 (uniqueness): Under the assumption H1 −H4 the (DTSGRE) (2.9) has at most one
bounded and stabilizing solution X̃(t) satisfying the additional condition Ri(t, X̃(t+1)) > 0, t ∈ Z+, i ∈
D.

Proof. Let us assume that (2.9) has at least two bounded and stabilizing solutions
Xl(t) = (Xl(t, 1), ..., Xl(t, N)), l = 1, 2, which verify the additional condition Ri(t,Xl(t + 1)) > 0.
Set Fl(t, i) = FXl(t, i), l = 1, 2. Applying Lemma 3.7 with W (t, i) = F2(t, i) to the equation (2.9)
verified by X2(t, i) and X1(t, i) respectively, one obtains that the sequence {X2(t) − X1(t)}t≥0 is a
bounded solution of the linear equation on SN

n :

Z(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F2(t, i))T Πi(t, Z(t + 1))(Ak(t, i) + Bk(t, i)F2(t, i)) + M2(t, i) (3.32)

where M2(t, i) = (F2(t, i)− F1(t, i))TRi(t,X1(t + 1))(F2(t, i)− F1(t, i)). From the assumption in the
statement it follows that M2(t, i) ≥ 0, (t, i) ∈ Z+ × D. Since X2(t) is a stabilizing solution of (2.9)
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one obtains via Theorem 3.5 in [20] that the equation (3.32) has a unique bounded solution and that
solution is positive semindefinite. This allows us to conclude that X2(t, i) − X1(t, i) ≥ 0. Applying
again Lemma 3.7 with W (t, i) = F1(t, i) we obtain in the same way that X1(t, i)−X2(t, i) ≥ 0. Hence
X1(t, i) = X2(t, i) and thus the proof is complete.

Lemma 3.11 Assume:

a) The assumptions H1 −H4 are fulfilled.

b) The system (3.25) is stochastic detectable.

Under these assumptions any bounded solution X̃(t) = (X̃(t, 1), ..., X̃(t, N)) of DTSGRE (2.9) with
X̃(t, i) ≥ 0 for all t ≥ 0, i ∈ D is a stabilizing solution.

Proof. Let X̃(t) = (X̃(t, 1), X̃(t, 2), ..., X̃(t,N)) be a bounded and positive semi-definite solution of
(2.9). Set F̃ (t, i) = F X̃(t, i), (t, i) ∈ Z+ × calD. Applying Lemma 3.7 with W (t, i) = F̃ (t, i) one
obtains that X̃(t) solves:

X̃(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F̃ (t, i))T Πi(t, X̃(t + 1))(Ak(t, i)

+Bk(t, i)F̃ (t, i)) + C̃T (t, i)C̃(t, i) (3.33)

where C̃(t, i) =

(
C(t, i)

R
1
2 (t, i)F̃ (t, i)

)
.

Now we show that under assumption b) the system (3.33) is stochastic detectable. To this end we
take K̃k(t, i) ∈ Rn×(p+m), K̃k(t, i) = (Kk(t, i) −Bk(t, i)R

−1
2 (t, i)) where Kk(t, i) are provided by the

assumption b).

One obtains that the corresponding closed-loop system x(t + 1) = [A0(t, ηt) + K̃0(t, ηt)C̃(t, ηt) +
+

∑r
k=1 wk(t)(Ak(t, ηt) + K̃k(t, ηt)C̃(t, ηt))]x(t) coincides with

x(t + 1) = (A0(t, ηt) + K0(t, ηt)C(t, ηt) +
r∑

k=1

wk(t)(Ak(t, ηt) + Kk(t, ηt)C(t, ηt)))x(t)

which is ESMS-CI.

Thus we conclude that the system (3.33) is stochastic detectable. Applying a slightly modified version
of the Theorem 4.8 in [20] to equation (3.33) we conclude that the zero state equilibrium of the system
(3.30) is ESMS-CI and thus the proof ends.

At the end of this subsection we prove:

Theorem 3.12. Assume: a) The hypotesis H1 −H4 are fulfilled. b) The system (3.22) is stochastic
stabilizable. c) The system (3.25) is stochastic detectable.

Under these conditions DTSGRE (2.9) has a bounded and stabilizing solution
X̃(t) = (X̃(t, 1), X̃(t, 2), ..., X̃(t,N)), X̃(t, i) ≥ 0 for all (t, i) ∈ Z+ ×D.

Moreover if the coefficients of the DTSGRE (2.9) are periodic sequences with period θ ≥ 1 then X̃(t)
is a periodic solution with the same period θ.

Proof. It follows immediately form Theorem 3.9, Lemma 3.11 and Theorem 3.10.

3.4 The solution of OP2

In this subsection we solve the problem OP2 under the following additional assumption:

H5 {fk(t, i)}t≥0, 0 ≤ k ≤ r, i ∈ D are bounded sequences.

Let us consider the system of backward affine equations

κ(t, i) = (A0(t, i) + B0(t, i)F̃ (t, i))T Πi(t, κ(t + 1)) + g̃(t, i), (3.34)
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i ∈ D, where

g̃(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F̃ (t, i))T Πi(t, X̃(t + 1))fk(t, i)

F̃ (t, i) being the stabilizing feedback gain determined by the stabilizing solution of (2.9).

Lemma 3.13 Under the assumptions of Theorem 3.12 together with H5, the system of backward
affine equations (3.34) has a unique bounded solution on Z+, κ̃(t) = (κ̃(t, 1), ..., κ̃(t,N)).

Proof-see subsection 5.2.

Based on the stabilizing solution X̃(t) of (2.9) and the unique bounded solution κ̃(t) of (3.34) we
construct the following control law:

ũ(t) = F̃ (t, ηt)x̃(t) + ψ̃(t, ηt) (3.35)

where F̃ (t, i) is defined as in (3.31),

ψ̃(t, i) = −R−1
i (t, X̃(t + 1))[BT

0 (t, i)Πi(t, κ̃(t + 1)) +
r∑

k=0

BT
k (t, i)Πi(t, X̃(t + 1))fk(t, i)] (3.36)

and x̃(t) is the solution of the closed-loop system

x̃(t + 1) = [A0(t, ηt) + B0(t, ηt)F̃ (t, ηt)]x̃(t) + f̃0(t, ηt) +
r∑

k=1

wk(t)[(Ak(t, ηt) + Bk(t, ηt)F̃ (t, ηt))x̃(t) + f̃k(t, ηt)] (3.37)

x̃(t0) = x0

where f̃k(t, i) = Bk(t, i)ψ̃(t, i) + fk(t, i), 0 ≤ k ≤ r, (t, i) ∈ Z+ ×D.

We have:

Lemma 3.14 Under the assumptions of Lemma 3.13 the following hold:

(i) For each x0 ∈ Rn, ũ ∈ Ut0∞(x0);

(ii) J(t0,∞, x0, ũ) < +∞.

Proof-see subsection 5.3.

For each (t0, x0) ∈ Z+ ×Rn we introduce the sets

Ũt0∞(x0) = {u ∈ Ut0∞(x0)|J(t0,∞, x0, u) < +∞}.

Under the conditions of the above lemma it follows that ũ ∈ Ũt0∞(x0).

Moreover based on Corollary 5.4 (i) below one obtains that if the linear system (3.22) is stochastic
stabilizable and if the assumptions H1 −H5 are fulfilled then each (t0, x0) ∈ Z+×Rn the set Ũt0∞(x0)
contains the controls of the form

u(t) = F (t, ηt)x̂(t) + h(t)

for arbitrary stabilizing feedback gain {F (t, i)}t≥0, i ∈ D and for arbitrary stochastic process {h(t)}t≥0

with the properties:

a) for each t ∈ Z+, h(t) is H̃t-stabilizable;

b) supt≥0 E[|h(t)|2] < ∞;

x̂(t) is the solution of

x(t+1) = [A0(t, ηt)+B0(t, ηt)F (t, ηt)]x(t)+ f̌0(t)+
r∑

k=1

wk(t)[(Ak(t, ηt)+Bk(t, ηt)F (t, ηt))x(t)+ f̌k(t)]

13



where
f̌k(t) = fk(t, ηt) + Bk(t, ηt)h(t).

Thus we obtain:

Corollary 3.15 If the assumptions in Theorem 3.12 and the assumption H5 are fulfilled, the problem
OP2 is well possed.

The main result of this section is:

Theorem 3.16 Assume that:

a) The hypotheses H1 −H5 are fulfilled.

b) The system (3.22) is stochastic stabilizable.

c) The system (3.25) is stochastic detectable.

Under these conditions the optimal control problem OP2 is given by (3.35)-(3.37).

The optimal value of the cost functional is given by

J(t0,∞, x0, ũ) = lim
T→∞

1
T

T∑

t=0

N∑

l=1

N∑

j=1

Π0(l)pt(l, j)µ̃(t, j) (3.38)

where µ̃(t, j) is defined as in (3.11) based on X̃(t) and pt(l, j) are as in Theorem 3.6.

Proof. It follows immediately by combining Proposition 3.5, Lemma 3.13 and Lemma 3.14.

Remark 3.1. If the condition (2.4) from the definition of the set of admissible controls Ut0∞(x0) is
replaced by

lim
t→∞E[|xu(t, t0, x0)|2] = 0 (3.39)

one obtains a new class of admissible controls Ût0∞(x0).

It is obvious that Ût0∞(x0) ⊂ Ut0∞(x0).

Thus we may consider a new optimization problem asking the minimization of the cost functional
(2.6) over the set of admissible controls Ût0∞(x0). To be sure that condition (3.39) is satisfied, the
assumption H5 must be replaced with a stronger one:

H6 : limt→∞ fk(t, i) = 0, i ∈ D, 0 ≤ k ≤ r.

One proves that under the assumptions H1 −H4,H6 the unique bounded solution of (3.34) satisfies
limt→∞ κ̃(t) = 0.

Furthermore if ψ̃(t, i) is defined by (3.36) we have limt→∞ Ψ̃(t, i) = 0, i ∈ D. Applying Corollary 5.4
(ii) below, one obtains that the solution of (3.37) will satisfy limt→∞E[|x̃(t)|2] = 0. This shows that
the control ũ(t) defined by (3.35)-(3.37) belongs to the new class of admissible controls Ût0∞(x0).

Reasoning as in the proof of Theorem 3.16 one obtains that if the assumption H5 is replaced by H6

the control ũ(t) defined by (3.35)-(3.37) achieves the optimal value of the cost functional (2.6) with
respect to both classes of admissible controls Ut0∞(x0) as well as Ût0∞(x0).

4 Applications to tracking problems

Consider the discrete time controlled system described by

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)u(t) +
r∑

k=1

[Ak(t, ηt)x(t) + Bk(t, ηt)u(t)]wk(t), (4.1)
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t ≥ t0, x(t0) = x0.

Let {r(t)}t≥0, r(t) ∈ Rn be a given signal called reference signal. The control problem we want to
solve is to find a control ũ(t) which minimizes the deviation x(t)− r(t).

For a more rigorous setting of this problem let us introduce the following cost functionals:

J(t0, tf , x0, u) = E{(x(tf )− r(tf ))T κf (ηt)(x(tf )− r(tf )) +
tf−1∑

t=t0

[(x(t)− r(t))T M(t, ηt)(x(t)− r(t)) + uT (t)R(t, ηt)u(t)]} (4.2)

in the case of finite time horizon and

J(t0,∞, x0, u) = limT→∞
1

T − t0

T∑

t=t0

E[(x(t)− r(t))T M(t, ηt)(x(t)− r(t)) + uT (t)R(t, ηt)u(t)] (4.3)

in the case of infinite time horizon, where M(t, i) = MT (t, i) ≥ 0, Kf (i) = KT
f (i) ≥ 0, R(t, i) =

RT (t, i) > 0 and x(t) = xu(t, t0, x0).

The tracking problems considered in this section ask for finding a control law uopt ∈ Ut0,tf (uopt ∈
Ut0,∞(x0) respectively) in order to minimize the cost (4.2) (the cost (4.3) respectively). If we set
ξ(t) = x(t)−r(t) then we obtain ξ(t+1) = A0(t, ηt)ξ(t)+B0(t, ηt)u(t)+f0(t, ηt)+

∑r
k=1[Ak(t, ηt)ξ(t)+

Bk(t, ηt)u(t) + fk(t, ηt)]wk(t) and the cost functionals

J(t0, tf , x0, u) = E[ξT (tf )Kf (ηt)ξ(tf )+

tf−1∑

t=t0

(ξT (t)M(t, ηt)ξ(t) + uT (t)R(t, ηt)u(t))]

and

J(t0, infty, x0, u) = limT→∞
1

T − t0

T∑

t=t0

E[ξT (t)M(t, ηt)ξ(t) + u(t)T R(t, ηt)u(t)]

where

f0(t, i) = A0(t, i)r(t)− r(t + 1)
fk(t, i) = Ak(t, i)r(t), 1 ≤ k ≤ r, t ≥ 0, (4.4)

Let us consider the following system of Riccati type equations:

X(t, i) =
r∑

k=0

AT
k (t, i)Πi(t,X(t + 1))Ak(t, i) +−[

r∑

k=0

AT
k (t, i)Πi(t,X(t + 1))Bk(t, i)][R(t, i)

+
r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))Bk(t, i)]−1[

r∑

k=0

BT
k (t, i)Πi(t,X(t + 1))Ak(t, i)] + M(t, i) (4.5)

It is easy to see that (4.5) is the special case of (2.9) with C(t, i) =

(
M

1
2 (t, i)
0

)
, D(t, i) =

(
0

(R(t, i))
1
2

)
.

The solution of the tracking problems are derived directly from Theorem 3.6 and Theorem 3.11.

Corollary 4.1 Under the considered assumptions, the optimal control of the tracking problem de-
scribed by the system (4.1) and the cost (4.2) is given by

ûopt(t) = F̂ (t, ηt)(x̂(t)− r(t)) + ψ̂(t, ηt) (4.6)
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where F̂ (t, i) = F X̂(t, i) is constructed as in (3.8) based on the solution x̂(t, i) of the system (4.5) with
the terminal condition X̂(tf , i) = Kf (i), i ∈ D, ψ̂(t, i) is constructed as in (3.12) based on X̂(t, i) and
κ̂(t) with (κ̂(t) = (κ̂(t, 1), ..., κ̂(t,N)) is the solution of the system of backward affine equations

κ(t, i) = (A0(t, i) + B0(t, i)F̂ (t, i))T Πi(t, κ̂(t + 1)) + ĝ(t, i)κ̂(tf , i) = 0, (4.7)

i ∈ D where ĝ(t, i) =
∑r

k=0(Ak(t, i) + Bk(t, i)F̂ (t, i))T Πi(t, X̂(t + 1)fk(t, i), fk(t, i) given by (4.4), x̂(t)
is the solution of the closed loop system:

x̂(t + 1) = [A0(t, ηt) + B0(t, ηt)F̂ (t, ηt) +
r∑

k=1

(Ak(t, ηt) + Bk(t, ηt)F̂ (t, ηt))w + k(t)]x̂(t),

t ≥ t0, x̂(t0) = x0.

The optimal cost is given by J(t0, tf , x0, ûopt) =
∑N

l=1[π0(l)[(x0 − r(t0))T X̂(t0, l)(x0 − r(t0)) +
+ 2(x0 − r(t0))T κ(t0, l) +

∑tf−1
t=0

∑N
j=1 pt(l, j)µ̂(t, j)] where µ̂(t, j) and pt(l, j) are as in Theorem 3.6.

Consider the linear system:

x(t + 1) = (A0(t, ηt) +
r∑

k=1

Ak(t, ηt)wk(t))x(t)

y(t) = M
1
2 (t, ηt)x(t). (4.8)

We have:

Corollary 4.2 Assume:

a) The hypotheses H1,H2,H3(i),H4 are fulfilled.

b) The system (4.1) is stochastic stabilizable.

c) The system (4.8) is stochastic detectable.

d) R(t, i) ≥ δIn > 0 and the sequence {r(t)}t≥0 is bounded.

Under these conditions the optimal control of the tracking problem described by system (4.1) and cost
(4.3) is:

ũopt(t) = F̃ (t, ηt)(x̃(t)− r(t)) + ψ̃(t, ηt) (4.9)

where F̃ (t, i) = F X̃(t, i) is constructed as in (3.8) based on the stabilizing solution
X̃(t) = ((X̃(t, 1), ..., X̃(t,N)) of the system (4.5), ψ̃(t, i) is given by

ψ̃(t, i) = −(R(t, i) +
r∑

k=0

Bk(t, i)Πi(t, X̃(t + 1))Bk(t, i))−1[BT
0 (t, i)Πi(t, κ̃(t + 1))

+
r∑

k=0

BT
k (t, i)Πi(t, X̃(t + 1))fk(t, i)]

where κ̃(t) = (κ̃(t, 1), ..., κ(t,N)) is the unique bounded solution of the system of backward affine
equations

κ(t, i) = (A0(t, i) + B0(t, i)F̃ (t, i))T Πi(t, κ(t + 1)) + g̃(t, i)

with

g̃(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F̃ (t, i))T Πi(t, X̃(t + 1))fk(t, i)

fk(t, i) be given by (4.4); x̃(t) is the solution of the closed-loop system

x̃(t + 1) = [A0(t, ηt) + B0(t, ηt)F̃ (t, ηt)+
r∑

k=1

(Ak(t, ηt) + Bk(t, ηt)F̃ (t, ηt))wk(t)]x̃(t)

t ≥ 0, x(t0) = x0.
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5 Proofs

In this section we provide the proofs of Lemma 3.13 and Lemma 3.14 above. To prove these lemmata
we need several auxiliary results.

5.1 Some auxiliary results

Let Rn·N = Rn ⊕ Rn ⊕ ... ⊕ Rn(N times). If x ∈ Rn·N then x = (x(1), ..., x(N)) with x(i) ∈ Rn,
x(i) = (x1(i), x2(i), ..., xn(i))T . Rn·N is a Hilbert space with the inner product

〈x, y〉 =
N∑

i=1

xT (i)y(i) (5.1)

for all x, y ∈ Rn·N . Together with the norm | · |2 induced on Rn·M by the inner product (5.1) we
consider also the norm

|x|1 = maxi∈D(xT (i)x(i))
1
2 . (5.2)

If L : Rn·N → Rn·N is a linear operator then ‖L‖k is the operator norm induced by | · |k, k ∈ {1, 2}.
Based on the sequences {A0(t, i)}t≥0, {Pt}t≥0 we construct the linear operators At : Rn·N → Rn·N by
Atx = ((Atx)(1), ..., (Atx)(N)) with

(Atx)(i) =
N∑

j=1

pt(j, i)A0(t, j)x(j). (5.3)

It is easy to see that the adjoint operator of At with respect to the inner product (5.1) is given by
A∗t x = ((A∗t x)(1), ..., (A∗t x)(N)) with

(A∗t x)(i) = AT
0 (t, i)Πi(t, x) (5.4)

where Πi(t, x) is defined as in (2.10) with x(i) instead of Y (i). In the sequel Ξ(t, s) stands for the

linear evolution operator on Rn·N defined by At; that is Ξ(t, s) =

{
At−1...As if t > s ≥ 0

IRn·N if t = s
where

IRn·N the identity operator on Rn·N .

Consider the linear system derived from (2.1)

x(t + 1) = [A(t, ηt) +
r∑

k=1

wk(t)Ak(t, ηt)]x(t), t ≥ 0. (5.5)

We denote A(t) = A0(t, ηt) +
∑r

k=1 wk(t)Ak(t, ηt) and define

Φ(t, s) =

{
A(t− 1)A(t− 2)...A(s) if t > s ≥ 0

In if t = s
(5.6)

We have

Φ(t + 1, s) = A(t)Φ(t, s) (5.7)

Φ(t, s) is the fundamental matrix solution of (5.5). For each s ≥ 0 we define the following subset
Ds = {i ∈ D|P{ηs = i} > 0}. It must be remarked that under the assumption H4 we have Ds = D
for all s ≥ 1 if D0 = D.

Lemma 5.1 Under the assumptions H1,H2 we have

(Ξ∗(t, s)x)(i) = E[ΦT (t, s)x(ηt)|ηs = i] (5.8)
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for all i ∈ Ds, t ≥ s > 0, x = (x(1), ..., x(N)) ∈ Rn·N .

Proof. We define the linear operators U(t, s) : Rn·N → Rn·N , t ≥ s ≥ 0 by

(U(t, s)x)(i) =

{
E[ΦT (t, s)x(ηt)|ηs = i if i ∈ Ds

(Ξ∗(t, s)x)(i) if i ∈ D −Ds
(5.9)

Taking successively the conditional expectation with respect to Ht, H̃t and σ(ηs) and taking into
account Lemma 3.1 one obtains via (5.7) that

E[ΦT (t + 1, s)x(ηt+1)|ηs] =
N∑

j=1

E[ΦT (t, s)AT
0 (t, ηt)x(j)pt(ηt, j)|ηs]. (5.10)

We also used the fact that E[wk(t)|H̃t] = E[wk(t)] = 0, 1 ≤ k ≤ r. If i ∈ Ds (5.10) leads to :

E[Φ(t + 1, s)x(ηt+1)|ηs = i] =
N∑

j=1

E[ΦT (t, s)AT
0 (t, ηt)x(j)pt(ηt, j)|ηs = i].

Using the definition of At one gets:

E[ΦT (t + 1, s)x(ηt+1)|ηs = i] = E[ΦT (t, s)(A∗t x)(ηt)|ηs = i]. (5.11)

Based on (5.8), the equality (5.11) may be written:

(U(t + 1, s)x)(i) = (U(t, s)A∗t x)(i) (5.12)

i ∈ Ds. By direct calculation one obtains that (5.12) still holds for i ∈ D. Therefore (5.12) leads
to U(t + 1, s) = U(t, s)A∗t . This shows that the sequence {U(t, s)}t≥s solves the same equation as
Ξ∗(t, s). Also we have U(s, s)x = x = Ξ(s, s)x for all x ∈ Rn·N . This allows us to conclude that
U(t, s) = Ξ∗(t, s) for all t ≥ s ≥ 0 and thus the proof ends.

From the representation formula (5.8) one obtains:

Corollary 5.2 If the zero solution of (5.5) is exponentially stable in mean square with conditioning
of type I (ESMS-CI) then the zero solution of the discrete time linear equation on Rn·N :

xt+1 = Atxt

is exponentially stable.

Lemma 5.3 Consider the discrete-time affine equation:

x(t + 1) = A0(t, ηt)x(t) + g0(t) +
r∑

k=1

wk(t)(Ak(t, ηt)x(t) + gk(t)). (5.13)

Assume: a) H1 −H3 hold and the zero solution of (5.5) is strongly exponentially stable in mean square
(SESMS).

b) {gk(t)}t≥0 are stochastic processes with the properties:

α) for each t ∈ Z+, gk(t) is H̃t- measurable.

β) E[|gk(t)|2] < ∞, 0 ≤ k ≤ r, t ∈ Z+.

Under these conditions the trajectories of the system (5.13) satisfy:

E[|x(t, t0, x0)|2|ηt0 ] ≤ c1q
t−t0 |x0|2 + c2

t−1∑

s=t0

qt−s−1
r∑

k=0

E[|gk(s)|2|ηt0 ]

for all t ≥ t0 ≥ 0, x0 ∈ Rn, where c1 > 0, c2 > 0, q ∈ (0, 1) are independent of t, t0, x0.
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Proof. Based on Theorem 3.13 in [21] it follows that if the assumption a) holds the backward affine
equation:

X(t, i) =
r∑

k=0

AT
k (t, i)Πi(t,X(t + 1))Ak(t, i) + In

has a bounded solution X(t) = (X(t, 1), ..., X(t, N)) that is

In ≤ X(t, i) ≤ cIn (5.14)

t ≥ 0, i ∈ D, c > 0 independent of t.

Applying Lemma 3.2 to the function V (t, x, i) = xT X(t, i)x one obtains

E[V (t + 1, x(t + 1), ηt+1)|ηt0 ]− E[V (t, x(t), ηt)|ηt0 ] = −E[|x(t)|2|ηt0 ] +

2
r∑

k=0

E[xT (t)AT
k (t, ηt)X(t, ηt)gk(t, ηt)|ηt0 ] +

r∑

k=0

E[gT
k (t, ηt)X(t, ηt)gk(t, ηt)|ηt0 ] (5.15)

for all t ≥ t0 ≥ 0, and arbitrary solution x(t) of the system (5.13) with the initial value x(t0) = x0 ∈ Rn.

Denoting ϕ(t, t0) the right hand side of (5.15) we may write:

ϕ(t, t0) = −1
2
E[|x(t)|2|ηt0 ]−

r∑

k=0

E[| 1√
r + 1

x(t)− 2
√

r + 1AT
k (t, ηt)X(t, ηt)gk(t)|2|ηt0 ]

+
r∑

k=0

E[gT
k (t)Mk(t, ηt)gk(t)|ηt0 ]

where Mk(t, i) = X(t, i) + 4(r + 1)X(t, i)Ak(t, i)AT
k (t, i)X(t, i). Hence

ϕ(t, t0) ≤ −1
2
E[|x(t)|2|ηt0 ] +

r∑

k=0

E[gk(t)Mk(t, ηt)gk(t)|ηt0 ]. (5.16)

Setting V (t) = E[V (t, x(t), ηt)|ηt0 ] we deduce from (5.15) and (5.16) that

V (t + 1)− V (t) ≤ −1
2
E[|x(t)|2|ηt0 ] + γ

r∑

k=0

E[|gk(t)|2|ηt0 ] (5.17)

where γ = supt≥0|Mk(t, i)|, 0 ≤ k ≤ r, i ∈ D.

The fact that γ < +∞ follows from (5.14) and the assumption a) which implies (see[21]) the boundness
of the sequences {Ak(t, i)}t≥0, 0 ≤ k ≤ r, i ∈ D. Invoking again (5.14) we have further V (t + 1) ≤
qV (t) + g̃(t) with q = (1 − 1

2c) ∈ (0, 1) and g̃(t) = γ
∑r

k=0 E[|g(t)|2|ηt0 ]. Let Ṽ (t) be the solution of
the problem Ṽ (t + 1) = qṼ (t) + g̃(t), t ≥ t0, Ṽ (t0) = V (t0).

We have V (t + 1) − Ṽ (t + 1) ≤ q(V (t) − Ṽ (t)), t ≥ t0. This allows us to obtain inductively that
V (t) − Ṽ (t) ≤ 0, t ≥ t0. On the other hand, from (5.18) one obtains that Ṽ (t) = qt−t0V (t0) +∑t−1

s=t0 qt−s−1g̃(s), t ≥ t0 + 1.

Using again (5.14) one gets

V (t) ≤ cqt−t0 |x0|2 + γ
r∑

k=0

t−1∑

s=t0

qt−s−1E[|gk(s)2|ηt0 ]. (5.18)

Conclusion follows combining (5.19) and the first inequality from (5.14) and the proof is complete.

Corollary 5.4 Assume that:

a) H1 −H4 are fulfilled.
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b) The system (5.5) is ESMS-CI.

Under these conditions the following holds:

(i) If

supt≥0E[|gk(t)|2] < ∞, 0 ≤ k ≤ r (5.19)

then the trajectories of the system (5.13) satisfy: supt≥t0E[|x(t, t0, x0)|2] < ∞ for all t ≥ t0 ≥ 0,
x0 ∈ Rn.

(ii) If limt→∞E[|gk(t)|2] = 0, 0 ≤ k ≤ r then limt→∞E[|x(t, t0, x0)|2] = 0, ∀t0 ≥ 0, x ∈ Rn.

Proof. (i) Taking the expectation in the inequality proved in Lemma 5.3 we obtain:

E[|x(t, t0, x0)|2] ≤ c1q
t−t0 |x0|2 + c2

r∑

k=0

t−1∑

s=t0

qt−s−1E[|gk(s)|2]. (5.20)

From (5.20) and (5.21) one gets E[|x(t, t0, x0)|2] ≤ c1|x0|2 + c2
γ1

1−q with γ1 =
∑r

k=0 supt≥0E[|gk(s)|2].
Thus (i) is proved.

From (5.21) it follows that we have to prove

limt→∞
t−1∑

t=t0

qt−s−1E[|qk(s)|2] = 0 (5.21)

0 ≤ k ≤ r. To this end we shall use Stolz-Cesaro criteria for the convergence of a sequence of real
numbers.

Denoting ξk(t) =
∑t−1

s=t0 qt−s−1E[|gk(s)|2], t ≥ t0 ≥ 0 one sees that ξk(t) = ξ̃k(t)
q−t with ξ̃k(t) =

∑t−1
s=t0 q−s−1E[|gk(s)|2]. We have ξ̃k(t+1)−ξ̃k(t)

q−t−1−q−t = q−1

q−1−1
E[|gk(t)|2]. Hence limt→∞

ξ̃(t+1)−ξ̃(t)
q−t−1−q−t = 0. This

implies that limt→∞ξk(t) = 0 and thus the proof is complete.

5.2 Proof of Lemma 3.13

Let X̃(t) = (X̃(t, 1), ..., X̃(t,N)) be the stabilizing solution of (2.9), and F̃ (t) = (F̃ (t, 1), ..., F̃ (t,N))
be the corresponding stabilizing feedback gain. Let Ãt : Rn·N → Rn·N defined by

(Ãtx)(i) =
N∑

j=1

pt(j, i)(A0(t, j) + B0(t, j)F̃ (t, j))x(j)

for all x = (x(1), ..., x(N)) ∈ Rn·N . It is easy to see that the backward affine equation (3.34) may be
written as

κ(t) = Ã∗t κ(t + 1) + g̃(t) (5.22)

with g̃(t) = (g̃(t, 1), ..., g̃(t,N)). Under the considered assumptions it follows that |g̃(t)|1 ≤ µ, where
µ > 0 is independent of t.

From Corollary 5.2 it follows that the sequence {Ãt}t≥0 defines an exponentially stable evolution. The
conclusion of Lemma 3.8 follows now applying Theorem 3.5 in [20] to the equation (5.19).

5.3 The proof of Lemma 3.14

It is easy to see that if fk(t, i) = 0, 0 ≤ k ≤ r, i ∈ D, t ∈ Z+ then κ̃(t, i) = 0; this leads to ψ̃(t, i) = 0,
t ≥ 0, i ∈ D. In this case the control (3.35) reduces to ũ(t) = F̃ (t, ηt)x̃(t), x̃(t) being the solution of
(3.30). Therefore conditions (2.4) is fulfilled. If fk(t, i) 6= 0 then, based on Corollary 5.4 (i) applied
to the system (3.37) one obtains that the sequence {x̃(t)}t≥0 is bounded in mean square.

From (3.35) one obtains that ũ(t) is bounded in mean square too. These guarantee the fact that ũ is
an admissible control and that J(t0,∞, x0, ũ) < +∞ and thus the proof is complete.
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