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tionIn the theory of Partial Di�erential Equations, the maximum prin
iple plays an importantrole and there is a huge literature on this subje
t. It permits one to study the lo
albehavior of solutions of PDE sin
e it gives a relation between the bound of the solution onthe boundary and a bound on the whole domain. The maximum prin
iple for quasilinearparaboli
 equations was proved by Aronson -Serrin (see Theorem 1 of [1℄) in the followingform.Theorem 1. Let u be a weak solution of a quasilinear paraboli
 equation of the form�tu = divA (t; x; u;ru) + B (t; x; u;ru)1



2 Denis et alin the bounded 
ylinder ℄0; T [�O � Rd+1: If u �M on the paraboli
 boundary f[0; T [��Og[ff0g � Og, then one has u �M + Cf (A;B) ;where C depends only on T; the volume of O and the stru
ture of the equation, whilef (A;B) is dire
tly expressed in terms of some quantities related to the 
oe�
ients A andB:The method of proof was based on Moser's iteration s
heme adapted to the nonlinear 
ase.This method of Aronson and Serrin was further adapted to the sto
hasti
 framework in [5℄,obtaining some Lp a priori estimates for the uniform norm of the solution of the sto
hasti
quasilinear paraboli
 equation.However the result of that paper is not �exible enough to handle all the range of appli
ationsone would be interested in. The aim of the present paper is to prove a generalization ofthat result, to dedu
e a sto
hasti
 version of the maximum prin
iple of Aronson -Serrinand to show some appli
ations, parti
ularly to Burgers type equations.More pre
isely, we study the following sto
hasti
 partial di�erential equation (in shortSPDE) for a real -valued random �eld ut (x) = u (t; x) ;dut (x) = Lut (x) dt+ ft (x; ut (x) ;rut (x)) dt+ dXi=1 �igi;t (x; ut (x) ;rut (x)) dt+ d1Xj=1 hj;t (x; ut (x) ;rut (x)) dBjt (1)with a given initial 
ondition u0 = �; where L is a symmetri
, uniformly ellipti
, se
ondorder di�erential operator de�ned in some bounded open domain O � Rd and f; gi; i =1; :::; d; hj ; j = 1; :::; d1 are nonlinear random fun
tions. Let us note that in order to simplifythe appearan
e of the equation we have 
hosen to write it as a sum of a linear uniformlyparaboli
 part and two nonlinear terms, expressed by f and g in (1).One of the main results of this paper is Theorem 7. For simpli
ity, let us give a 
onse-quen
e of it. Under suitable assumptions on f , g, h (Lips
hitz 
ontinuity and integrability
onditions), we haveTheorem 2. Let M > 0, p � 2 and u be a solution of (1) in the weak sense. Assume thatu �M on the paraboli
 boundary f[0; T [��Og [ ff0g � Og, then for all t 2 [0; T ℄:E 

(u�M)+

p1;1;t � k (p; t)E �

(f0;M)+

�p�;t + 

jg0;M j2

�p=2�;t + 

jh0;M j2

�p=2�;t �where f0;M(t; x) = f(t; x;M; 0); g0;M (t; x) = g(t; x;M; 0); h0;M (t; x) = h(t; x;M; 0) and kis a fun
tion whi
h only depends on the stru
ture 
onstants of the SPDE, k � k1;1;t is theuniform norm on [0; t℄�O and k�k��;t is a 
ertain norm whi
h is pre
isely de�ned below.The paper is organized as follows : in se
tion 2 we introdu
e notations and hypotheses andwe take 
are to detail the integrability 
onditions whi
h are used all along the paper.In se
tion 3, we prove the maximum prin
iple and a 
omparison theorem. To this end we�rst study the solutions with null Diri
hlet 
onditions and establish a kind of Ito's formula
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 PDE's 3for the positive part of the solution. Then in se
tion 4 we extend the result to the 
aseof Burger's type SPDE's with Diri
hlet 
ondition and so generalize results obtained byGyöngy and Rovira [7℄. Finally in the appendix we present some te
hni
al fa
ts related tosolutions in the L1-sense whi
h are used in the proofs of the pre
eding se
tions.2 Preliminaries2.1 Lp;q-spa
esLet O be an open bounded domain in Rd : The spa
e L2 (O) is the basi
 Hilbert spa
e ofour framework and we employ the usual notation for its s
alar produ
t and its norm,(u; v) = ZO u (x) v (x) dx; kuk2 = �ZO u2 (x) dx� 12 :In general, we shall use the notation(u; v) = ZO u(x)v(x) dx;where u, v are measurable fun
tions de�ned in O and uv 2 L1(O).Another Hilbert spa
e that we use is the �rst order Sobolev spa
e of fun
tions vanishingat the boundary, H10 (O) : Its natural s
alar produ
t and norm are(u; v)H10 (O) = (u; v) + ZO dXi=1 (�iu (x)) (�iv (x)) dx; kukH10 (O) = �kuk22 + kruk22� 12 :We shall denote by H1lo
(O) the spa
e of fun
tions whi
h are lo
ally square integrable inO and whi
h admit �rst order derivatives that are also lo
ally square integrable.For ea
h t > 0 and for all real numbers p; q � 1, we denote by Lp;q([0; t℄�O) the spa
e of(
lasses of) measurable fun
tions u : [0; t℄�O �! R su
h thatkukp;q; t :=  Z t0 �ZO ju(t; x)jp dx�q=p dt!1=qis �nite. The limiting 
ases with p or q taking the value 1 are also 
onsidered with theuse of the essential sup norm. We identify this spa
e, in an obvious way, with the spa
eLq ([0; t℄ ;Lp (O)) ; 
onsisting of all measurable fun
tions u : [0; t℄ ! Lp (O) su
h thatZ t0 kuskqp ds <1: This identi�
ation implies that �Z t0 kuskqp ds� 1q = kukp;q; t:The spa
e of measurable fun
tions u : R+ ! L2 (O) su
h that kuk2;2;t < 1; for ea
ht � 0; is denoted by L2lo
 �R+ ;L2 (O)� : Similarly, the spa
e L2lo
 �R+ ;H10 (O)� 
onsists ofall measurable fun
tions u : R+ ! H10 (O) su
h thatkuk2;2;t + kruk2;2;t <1;for any t � 0:



4 Denis et alNext we are going to introdu
e some other spa
es of fun
tions of interest and to dis
ussa 
ertain duality between them. They have already been used in [1℄ and [5℄ but hereintervenes a new 
ase and we 
hange a little bit the notation used before in a way whi
h,we think, make things 
learer.Let (p1; q1) ; (p2; q2) 2 [1;1℄2 be �xed and setI = I (p1; q1; p2; q2) := n(p; q) 2 [1;1℄2 = 9 � 2 [0; 1℄ s:t:1p = � 1p1 + (1� �) 1p2 ; 1q = � 1q1 + (1� �) 1q2� :This means that the set of inverse pairs � 1p ; 1q� ; (p; q) belonging to I; is a segment 
ontainedin the square [0; 1℄2 ; with the extremities � 1p1 ; 1q1� and � 1p2 ; 1q2� : There are two spa
es ofinterest asso
iated to I: One is the interse
tion spa
eLI;t = \(p;q)2I Lp;q ([0; t℄�O) :Standard arguments based on Hölder's inequality lead to the following in
lusion (see e.g.Lemma 2 in [5℄) Lp1;q1 ([0; t℄�O) \ Lp2;q2 ([0; t℄�O) � Lp;q ([0; t℄�O) ;for ea
h (p; q) 2 I; and the inequalitykukp;q;t � kukp1;q1;t _ kukp2;q2;t ;for any u 2 Lp1;q1 ([0; t℄ �O) \ Lp2;q2 ([0; t℄�O) : Therefore the spa
e LI;t 
oin
ides withthe interse
tion of the extreme spa
es,LI;t = Lp1;q1 ([0; t℄�O) \ Lp2;q2 ([0; t℄�O)and it is a Bana
h spa
e with the following normkukI;t := kukp1;q1;t _ kukp2;q2;t :The other spa
e of interest is the algebrai
 sumLI;t := X(p;q)2I Lp;q ([0; t℄�O) ;whi
h represents the ve
tor spa
e generated by the same family of spa
es. This is a normedve
tor spa
e with the normkukI;t := inf( nXi=1 kuikpi;qi; t = u = nXi=1 ui; ui 2 Lpi;qi ([0; t℄ �O) ; (pi; qi) 2 I; i = 1; :::n; n 2 N�) :



Comparison theorem and Maximum prin
iple for quasilinear Sto
hasti
 PDE's 5Clearly one has LI;t � L1;1 ([0; t℄�O) and kuk1;1;t � 
 kukI;t ; for ea
h u 2 LI;t; with a
ertain 
onstant 
 > 0:We also remark that if (p; q) 2 I; then the 
onjugate pair (p0; q0) ; with 1p + 1p0 = 1q + 1q0 = 1;belongs to another set, I 0; of the same type. This set may be des
ribed byI 0 = I 0 (p1; q1; p2; q2) := ��p0; q0� = 9 (p; q) 2 I s:t: 1p + 1p0 = 1q + 1q0 = 1�and it is not di�
ult to 
he
k that I 0 (p1; q1; p2; q2) = I (p01; q01; p02; q02) ; where p01; q01; p02 andq02 are de�ned by 1p1 + 1p01 = 1q1 + 1q01 = 1p2 + 1p02 = 1q2 + 1q02 = 1:Moreover, by Hölder's inequality, it follows that one hasZ t0 ZO u (s; x) v (s; x) dxds � kukI;t kvkI0;t ; (2)for any u 2 LI;t and v 2 LI0;t: This inequality shows that the s
alar produ
t of L2 ([0; t℄�O)extends to a duality relation for the spa
es LI;t and LI0;t:Now let us re
all that the Sobolev inequality states thatkuk2� � 
S kruk2 ;for ea
h u 2 H10 (O) ; where 
S > 0 is a 
onstant that depends on the dimension and2� = 2dd�2 if d > 2; while 2� may be any number in ℄2;1[ if d = 2 and 2� = 1 if d = 1:Therefore one has kuk2�;2;t � 
S kruk2;2;t ;for ea
h t � 0 and ea
h u 2 L2lo
 �R+ ;H10 (O)� :And if u 2 L1lo
 �R+ ;L2 (O) �TL2lo
 �R+ ;H10 (O)� ;one has kuk2;1;t _ kuk2�;2;t � 
1 �kuk22;1;t + kruk22;2;t� 12 ;with 
1 = 
S _ 1:One parti
ular 
ase of interest for us in relation with this inequality is when p1 = 2; q1 =1 and p2 = 2�; q2 = 2: If I = I (2;1; 2�; 2) ; then the 
orresponding set of asso
iated
onjugate numbers is I 0 = I 0 (2;1; 2�; 2) = I �2; 1; 2�2��1 ; 2� ; where for d = 1 we make the
onvention that 2�2��1 = 1: In this parti
ular 
ase we shall use the notation L#;t := LI;tand L�#;t := LI0;t and the respe
tive norms will be denoted bykuk#;t := kukI;t = kuk2;1;t _ kuk2�;2;t ; kuk�#;t := kukI0;t :Thus we may write kuk#;t � 
1 �kuk22;1;t + kruk22;2;t� 12 ; (3)for any u 2 L1lo
 �R+ ;L2 (O) �TL2lo
 �R+ ;H10 (O)� and t � 0 and the duality inequalitybe
omes Z t0 ZO u (s; x) v (s; x) dxds � kuk#;t kvk�#;t ;for any u 2 L#;t and v 2 L�#;t:



6 Denis et al2.2 HypothesesLet fBt := (Bjt )j2f1;��� ;d1g gt�0 be a d1-dimentional Brownian motion de�ned on a standard�ltered probability spa
e �
;F ; (Ft)t�0; P �.Let A be a symmetri
 se
ond order di�erential operator given by A := �L = �Pdi;j=1 �i(ai;j �j).We assume that a is a measurable and symmetri
 matrix de�ned on O whi
h satis�es theuniform ellipti
ity 
ondition�j�j2 �Xi;j ai;j(x)�i �j � �j�j2; 8x 2 O; � 2 Rd ; (4)where � and � are positive 
onstants. The energy asso
oiated with the matrix a will bedenoted by E (w; v) = dXi;j=1ZO ai;j(x)�iw(x)�jv(x) dx: (5)It's de�ned for fun
tions w; v 2 H10 (O), or for w 2 H1lo
(O) and v 2 H10 (O) with 
ompa
tsupport.We 
onsider the semilinear sto
hasti
 partial di�erential equation (1) for the real-valuedrandom �eld ut(x) with initial 
ondition u(0; :) = �(:), where � is a F0-measurable randomvariable with values in L2lo
 (O).We assume that we have predi
table random fun
tionsf : R+ � 
�O � R � Rd ! R ;h : R+ � 
�O � R � Rd ! Rd1g = (g1; :::; gd) : R+ � 
�O � R � Rd ! RdWe de�nef(�; �; �; 0; 0) := f0; h(�; �; �; 0; 0) := h0 and g(�; �; �; 0; 0) := g0 = (g01 ; :::; g0d):We 
onsidere the following sets of assumptions :Assumption (H): There exist non negative 
onstants C; �; � su
h that(i) jf(t; !; x; y; z) � f(t; !; x; y0 ; z0)j � C�jy � y0 j+ jz � z0 j�(ii) �Pd1j=1 jhj(t; !; x; y; z) � hj(t; !; x; y0 ; z0)j2� 12 � C jy � y0 j+ � jz � z0 j;(iii) �Pdi=1 jgi(t; !; x; y; z) � gi(t; !; x; y0 ; z0)j2� 12 � C jy � y0 j+ � jz � z0 j:(iv) the 
ontra
tion property (as in [5℄) : �+ �22 < � .Moreover we introdu
e some integrability 
onditions on f0; g0; h0 and the initial data � :
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 PDE's 7Assumption (HD) lo
al integrability 
onditions on f0, g0 and h0 :E Z t0 ZK �jf0t (x)j+ jg0t (x)j2 + jh0t j2 �dxdt <1for any 
ompa
t set K � O, and for any t � 0.Assumption (HI) lo
al integrability 
ondition on the initial 
ondition :E ZK j�(x)j2dx <1for any 
ompa
t set K � O.Assumption (HD#)E��

f0

�#;t�2 + 

g0

22;2;t + 

h0

22;2;t� <1;for ea
h t � 0:Sometimes we shall 
onsider the following stronger forms of these 
onditions:Assumption (HD2) E �

f0

22;2;t + 

g0

22;2;t + 

h0

22;2;t� <1;for ea
h t � 0:Assumption (HI2) integrability 
ondition on the initial 
ondition :Ek�k2 <1:Remark 1. Note that (2; 1) is the pair of 
onjugates of the pair (2;1) and so (2; 1)belongs to the set I 0 whi
h de�nes the spa
e L�#;t: Sin
e kvk2;1;t � pt kvk2;2;t for ea
hv 2 L2;2 ([0; t℄ �O) ; it follows thatL2;2 ([0; t℄�O) � L2;1;t � L�#;t;and kvk�#;t � pt kvk2;2;t ; for ea
h v 2 L2;2 ([0; t℄�O) : This shows that the 
ondition(HD#) is weaker than (HD2).The Lips
hitz 
ondition (H) is assumed to hold throughtout this paper, ex
ept the lastse
tion devoted to Burgers type equations. The weaker integrability 
onditions (HD) and(HI) are also assumed to hold everywhere in this paper. The other stronger integrability
onditions will be mentioned whenever we will assume them.2.3 Weak solutionsWe now introdu
e H = H(O), the spa
e of H10 (O)-valued predi
table pro
esses (ut)t�0su
h that  E sup0�t�T kutk2 + Z T0 E E (ut) dt!1=2 < 1 ; for ea
h T > 0 :



8 Denis et alWe de�ne Hlo
 = Hlo
(O) to be the set of H1lo
(O)-valued predi
table pro
esses su
h thatfor any 
ompa
t subset K in O and all T > 0: E sup0�t�T ZK ut(x)2 dx+E Z T0 ZK jrut(x)j2 dxdt!1=2 < 1:The spa
e of test fun
tions is D = C1
 
C2
 (O), where C1
 denotes the spa
e of all real in�-nite di�erentiable fun
tions with 
ompa
t support in R and C2
 (O) the set of C2-fun
tionswith 
ompa
t support in O.De�nition 1. We say that u 2 Hlo
 is a weak solution of equation (1) with initial 
ondition� if the following relation holds almost surely, for ea
h ' 2 D;Z 10 [(us; �s')� E (us; 's) + (f (s; us;rus) ; 's)� dXi=1 (gi (s; us;rus) ; �i's)℄ds+ Z 10 (h (s; us;rus) ; 's) dBs + (�; '0) = 0: (6)We denote by Ulo
(�; f; g; h) the set of all su
h solutions u.If u belongs to H, we say that u solves the SPDE with zero Diri
hlet 
ondition on theboundary.In general we do not know mu
h about the set Ulo
 (�; f; g; h). It may be empty or may
ontain several elements. But under the 
onditions (H), (HI2) and (HD2) we know fromTheorem 9 in [4℄ that there exists a unique solution in H and that this solution admitsL2(O)-
ontinuous traje
tories. As the spa
e H10 (O) 
onsists of fun
tions whi
h vanish ina generalized sense at the boundary �O; we may say that a solution whi
h belongs to Hsatis�es the zero Diri
hlet 
onditions at the boundary of O: Thus we may say that underthe assumptions (H), (HD2) and (HI2) there exists a unique solution with null Diri
hlet
onditions at the boundary of O: This result will be generalised below. We denote byU (�; f; g; h) the solution of (1) with zero Diri
hlet boundary 
onditions whenever it existsand is unique.We should also note that if the 
onditions (H), (HD2) and (HI2) are satis�ed and if uis a pro
ess in H; the relation from this de�nition holds with any test fun
tion ' 2 D ifand only if it holds with any test fun
tion in C1
 (R+)
H10 (O) : In fa
t, in this 
ase, onemay use as spa
e of test fun
tions any spa
e of the form C1
 (R+)
 V; where V is a densesubspa
e of H10 (O) ; obtaining equivalent de�nitions of the notion of solution with nullDiri
hlet 
onditions at the boundary of O: In [4℄ one uses C1
 (R+) 
 D (A) as spa
e oftest fun
tions be
ause this is the spa
e whi
h suits better the abstra
t analyti
 fun
tionalframework of that paper.Remark 2. It is proved in [4℄ that under (HI2) and (HD2) the solution with null Diri
hlet
onditions at the boundary of O has a version with L2 (O)-
ontinuous traje
tories and, inparti
ular, that limt!0 kut � �k = 0, a.s. This property extends to the lo
al solutions inthe sense that any element of Ulo
(�; f; g; h) has a version with the property that a.s. the
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tories are L2 (K)-
ontinuous, for ea
h 
ompa
t set K � O andlimt!0 ZK (ut(x)� �(x) )2 dx = 0:In order to see this it su�
es to take a test fun
tion � 2 C1
 (O) and to verify that v = �usati�es the equation dvt = �Lvt + f t + divgt�+ htdBt;with the initial 
ondition v0 = ��, wheref t(x) = �(x)f (t; x; ut(x);rut(x)) � hr�(x); a(x)rut(x)i � hr�(x); g (t; x; ut(x);rut(x)) i;gt(x) = �(x)g (t; x; ut(x);rut(x))� ut(x)a(x)r�(x) andht(x) = �(x)h (t; x; ut(x);rut(x)) :Thus v = U ���; f; g; h� and the results of [4℄ hold for v.Remark 3. Let us now pre
ise the sense in whi
h a solution is dominated on the lateralboundary. Assume that v belongs to H1lo
(O0) where O0 is a larger open set su
h thatO � O0: Then it is well known that the 
ondition v+jO 2 H10 (O) expresses the boundaryrelation v � 0 on �O. Similarly, if a pro
ess u belongs to Hlo
(O0); then the 
onditionu+jO 2 H(O) ensures the inequality u � 0 on the lateral boundary f[0;1[��Og.3 Main results : maximum prin
iple and 
omparison theo-rems3.1 Estimates for solutions with null Diri
hlet 
onditionsNow we are going to improve the existen
e theorem and the estimates satis�ed by the solu-tion obtained in the general framework of [4℄. Namely, taking into a

ount the advantageof uniform ellipti
ity, we repla
e the 
ondition (HD2) with the weaker one (HD#).Theorem 3. Under the 
onditions (H), (HD#) and (HI2) there exists a unique solutionof (1) in H: Moreover, this solution has a version with L2(O)-
ontinuous traje
tories andit satis�es the following estimatesE �kuk22;1;t + kruk22;2;t� � k (t)E �k�k22 + �

f0

�#;t�2 + 

g0

22;2;t + 

h0

22;2;t� ;for ea
h t � 0; where k (t) is a 
onstant that only depends on the stru
ture 
onstants andt:Proof:Theorem 9 of [4℄ ensures the existen
e of the solution under the stronger 
ondition (HD2).So we now assume this 
ondition and we shall next prove that then the solution u =U (�; f; g; h) satis�es the estimates asserted by our theorem. We start by writing Ito's



10 Denis et alformula for the solution in the formkutk22 + 2Z t0 E (us; us) ds = k�k22 + 2Z t0 (us; fs (us;rus)) ds� 2Z t0 dXi=1 (�ius; gi;s (us;rus)) ds+ Z t0 khs (us;rus)k22 ds+ 2 d1Xj=1 Z t0 (us; hj;s (us;rus)) dBjs ; (7)
equality whi
h holds a.s. (See (ii) of the Proposition 7 in [4℄). This is in fa
t a sto
hasti
version of Ca

iopoli's identity, well-known for deterministi
 paraboli
 equations.The Lips
hitz 
ondition and the inequality (2) lead to the following estimateZ t0 (us; fs (us;rus)) ds � " kruk22;2;t + 
" kuk22;2;t + Æ kuk2#;t + 
Æ �

f0

�#;t�2 ;where "; Æ > 0 are two small parameters to be 
hosen later and 
"; 
Æ are 
onstants depend-ing of them. Similar estimates hold for the next two terms�Z t0 dXi=1 (�ius; gi;s (us;rus)) ds � (�+ ") kruk22;2;t + 
" kuk22;2;t + 
" 

g0

22;2;t ;Z t0 khs (us;rus)k22 ds � ��2 + "� kruk22;2;t + 
" kuk22;2;t + 
" 

h0

22;2;t :Sin
e E (us; us) � � krusk22 ; we dedu
e from the equality (7),kutk22 + 2��� �� �22 � 52"� kruk22;2;t � Æ kuk2#;t + k�k22 + 2
Æ �

f0

�#;t�2+2
" 

g0

22;2;t + 
" 

h0

22;2;t + 5
" kuk22;2;t + 2Mt; (8)a.s., where Mt :=Pd1j=1 R t0 (us; hj;s (us;rus)) dBjs represents the martingale part. Further,using a stopping pro
edure while taking the expe
tation, the martingale part vanishes, sothat we get E kutk22 + 2��� �� �22 � 52"�E kruk22;2;t � ÆE kuk2#;t+E�k�k22 + 2
Æ �

f0

�#;t�2 + 2
" 

g0

22;2;t + 
" 

h0

22;2;t�+ 5
" Z t0 E kusk22 ds:Then we 
hoose " = 15 ��� �� �22 � ; set 
 = � � � � �22 and apply Gronwall's lemmaobtainingE kutk22 + 
E kruk22;2;t � �ÆE kuk2#;t +EF �Æ; �; f0; g0; h0; t�� e5
"t; (�)
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hasti
 PDE's 11where F �Æ; �; f0; g0; h0; t� = �k�k22 + 2
Æ �

f0

�#;t�2 + 2
" 

g0

22;2;t + 
" 

h0

22;2;t� : As a
onsequen
e one getsE kuk22;2;t � 15
" �ÆE kuk2#;t +EF �Æ; �; f0; g0; h0; t�� �e5
"t � 1� : (��)We now return to the inequality (8) and estimate a.s. the supremum for the �rst term,obtaining kuk22;1;t � Æ kuk2#;t + F �Æ; �; f0; g0; h0; t�+ 5
" kuk22;2;t + 2 sups�t Ms:We would like to take the expe
tation in this relation and for that reason we need toestimate the bra
ket of the martingale part,hMi 12t � kuk2;1;t kh (u;ru)k2;2;t � � kuk22;1;t + 
� �kuk22;2;t + kruk22;2;t + 

h0

22;2;t� ;with � another small parameter to be properly 
hosen. Using this estimate and the in-equality of Burkholder-Davis-Gundy we dedu
e from the pre
eding inequality(1� 2CBDG�)E kuk22;1;t � ÆE kuk2#;t +EF �Æ; �; f0; g0; h0; t�+(5
" + 2CBDG
�)E kuk22;2;t + 2CBDG
�E kruk22;2;t + 2CBDG
�E 

h0

22;2;t ;where CBDG is the 
onstant 
orresponding to the Burkholder-Davis-Gundy inequality.Further we 
hoose the parameter � = 14CBDG and 
ombine this estimate with (*) and (**)to dedu
e an estimate of the formE �kuk22;1;t + kruk22;2;t� � Æ
2 (t)E kuk2#;t + 
3 (Æ; t)R ��; f0; g0; h0; t� ;where R ��; f0; g0; h0; t� := k�k22 + �

f0

�#;t�2 + 

g0

22;2;t + 

h0

22;2;t ; and 
3 (Æ; t) is a
onstant that depends of Æ and t; while 
2 (t) is independent of Æ: Dominating the termE kuk2#;t by using the estimate (3) and then 
hoosing Æ = 12
21
2(t) we obtain the estimateasserted by our theorem.The existen
e of the solution in the general 
ase, when only 
ondition (HD#) is ful�lled,follows by an approximation pro
edure. The fun
tion f is approximated by fn := f�f0+f0n; where f0n; n 2 N; is a sequen
e of bounded fun
tions su
h that E �

f0 � f0n

�#;t�2 ! 0;as n ! 0: The solutions, un; n 2 N; of the equation (1) 
orresponding to the fun
tionsfn; n 2 N; form a Cau
hy sequen
e in the sense of the following relationlimn;m!1E �kun � umk22;1;t + kr (un � um)k22;2;t� = 0;whi
h follows from the estimate already proven. The limit u = limn!1 un represents thesolution asso
iated with f: It 
learly satis�es the estimate asserted by the theorem.It remains to 
he
k the uniqueness assertion. Let u; u0 be two solutions in H. Then theirdi�eren
e u = u� u0 is a solution of a similar equation u = U �0; f ; g; h� ; wheref(t; x; y; z) = f(t; x; y + u0(t; x); z +ru0(t; x))� f(t; x; u0(t; x);ru0(t; x));



12 Denis et alg(t; x; y; z) = g(t; x; y + u0(t; x); z +ru0(t; x))� g(t; x; u0(t; x);ru0(t; x));h(t; x; y; z) = h(t; x; y + u0(t; x); z +ru0(t; x))� h(t; x; u0(t; x);ru0(t; x)):Sin
e f0 = h0 = h0 = 0 and �u0 = 0 we may apply the above established estimates todedu
e that u = 0: �3.2 Estimates of the positive part of the solutionIn this se
tion we shall assume that the 
onditions (H), (HI2) and (HD#) are ful�lled.By Theorem 3 we know that the equation (1) has a unique solution with null Diri
hletboundary 
onditions whi
h we denote by U (�; f; g; h) : Next we are going to apply Propo-sition 2 of the appendix to the solution u. In fa
t we have in mind to apply it with'(y) = (y+)2. In the following 
orollary we make a �rst step and relax the hypotheses on'.Corollary 1. Let us assume the hypotheses of the pre
eding Theorem with the same no-tations. Let ' : R ! R be a fun
tion of 
lass C2 and assume that '00 is bounded and'0 (0) = 0: Then the following relation holds a.s. for all t � 0:ZO ' (ut (x)) dx+ Z t0 E �'0 (us) ; us� ds = ZO ' (� (x)) dx+ Z t0 �'0 (us) ; fs(us;rus� ds�Z t0 dXi=1 ��i �'0 (us)� ; gi;s(us;rus� ds+ 12 Z t0 �'00 (us) ; jhs(us;rus)j2� ds+ d1Xj=1 Z t0 �'0 (us) ; hj;s(us;rus)� dBjs :Proof: Thanks to the estimate obtained in Theorem 3 we dedu
e that the pro
ess '0(u)belongs to HTL#;t and that f(u;ru) belongs to L�#;t, for all t > 0. From this we get thedesired result by approximating ' and passing to the limit in Proposition 2. �We next prove an estimate for the positive part u+ of the solution u = U (�; f; g; h) : Forthis we need the following notation:fu;0 = 1fu>0gf0; gu;0 = 1fu>0gg0; hu;0 = 1fu>0gh0;fu = f � f0 + fu;0; gu = g � g0 + gu;0; hu = h� h0 + hu;0fu;0+ = 1fu>0g �f0 _ 0� ; �+ = � _ 0: (9)Theorem 4. The positive part of the solution satis�es the following estimateE �

u+

22;1;t + 

ru+

22;2;t� � k (t)E�

�+

22 + �

fu;0+

�#;t�2 + 

gu;0

22;2;t + 

hu;0

22;2;t� ;with the same 
onstant k (t) as in the Theorem 3.
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 PDE's 13Proof :We �rst show that the relation (7) appearing in the proof of the Theorem 3 still holds withu repla
ed by u+ and with fu; gu; hu; �+ in the respe
tive pla
es of f; g; h; �:The idea is to apply Ito's formula to the fun
tion  de�ned by  (y) = (y+)2 ; for anyy 2 R: Sin
e this fun
tion is not of the 
lass C2 we shall make an approximation as follows.Let ' be a C1 fun
tion su
h that ' (y) = 0 for any y 2℄ �1; 1℄ and ' (y) = 1 for anyy 2 [2;1[: We set  n (y) = y2' (ny) ; for ea
h y 2 R and all n 2 N� : It is easy to verifythat ( n)n2N� 
onverges uniformly to the fun
tion  and thatlimn!1 0n (y) = 2y+; limn1  00n (y) = 2 � 1fy>0g;for any y 2 R: Moreover we have the estimates0 �  n (y) �  (y) ; 0 �  0 (y) � Cy; �� 00n (y)�� � C;for any y � 0 and all n 2 N� ; where C is a 
onstant. Thanks to Corallary 1 we have forall n 2 N� and ea
h t � 0; a.s.,ZO  n (ut (x)) dx+ Z t0 E � n0 (us) ; us� ds = ZO  n (� (x)) dx+ Z t0 � n0 (us) ; fs (us;rus)� ds� Z t0 dXi=1 � n00 (us) �ius; gi;s (us;rus)�ds+ 12 Z t0 � n00 (us) ; jhs (us;rus)j2� ds+ d1Xj=1 Z t0 � n0 (us) ; hj;s (us;rus)� dBjs : (10)As a 
onsequen
e of the lo
al property of the Diri
hlet form,  0n (u) 
onverges to u+ inL2lo
 �R+ ;H10 (O)� : (see Theorem 5.2 in [3℄ or [2℄). Therefore, letting n!1; the relationbe
omesZO �u+t (x)�2 dx+ 2Z t0 E �u+s ; u+s � ds = ZO ��+ (x)�2 dx+ 2Z t0 �u+s ; fs (us;rus)� ds�2Z t0 dXi=1 �1fus>0g�ius; gi;s (us;rus)� ds+ Z t0 �1fus>0g; jhs (us;rus)j2� ds+2 d1Xj=1 Z t0 �u+s ; hj;s (us;rus)� dBjs :This turns out to be exa
tly the relation (7) with u+; fu; gu; hu; �+ in the respe
tive pla
esof u; f; g; h; �: Then one may do the same 
al
ulation as in the pre
eding proof with onlyone minor modi�
ation 
on
erning the term whi
h 
ontains fu; namely one hasZ t0 �u+s ; fs (us;rus)� ds = Z t0 �u+s ; fus �u+s ;ru+s �� ds� "

ru+

22;2;t + 
" 

u+

22;2;t + Æ 

u+

2#;t + 
Æ �

fu;0+

�#;t�2 :



14 Denis et alThus one has a relation analogous to (8), with u+; fu;0+; gu;0; hu;0; �+ in the respe
tivepla
es of u; f; g; h; � and with the 
orresponding martingale given byd1Xj=1 Z t0 �u+s ; huj;s �u+s ;ru+s �� dBjs :The reminder part of the proof follows by repeating word by word the proof of Theorem3. �3.3 The 
ase without lateral boundary 
onditionsIn this subse
tion we are again in the general framework with only 
onditions (H), (HD)and (HI) being ful�lled. The following proposition represents a key te
hni
al result whi
hleads to a generalization of the estimates of the positive part of a lo
al solution. Letu 2 Ulo
 (�; f; g; h), denote by u+ its positive part and let the notation (9) be 
onsideredwith respe
t to this new fun
tion.Proposition 1. Assume that u+ belongs toH and assume that the data satisfy the followingintegrability 
onditionsE 

�+

22 <1; E �

fu;0

�#;t�2 <1; E 

gu;0

22;2;t <1; E 

hu;0

22;2;t <1;for ea
h t � 0: Let ' : R ! R be a fun
tion of 
lass C2; whi
h admits a bounded se
ondorder derivative and su
h that '0 (0) = 0: Then the following relation holds, a.s., for ea
ht � 0;ZO ' �u+t (x)� dx+Z t0 E �'0 �u+s � ; u+s � ds = ZO ' ��+ (x)� dx+Z t0 �'0 �u+s � ; fs �u+s ;ru+s �� ds�Z t0 dXi=1 �'00 �u+s � �iu+s ; gi;s �u+s ;ru+s �� ds+ 12 Z t0 �'00 �u+s � ; ��hs �u+s ;ru+s ���2� ds+ d1Xj=1 Z t0 �'0 �u+s � ; hj;s �u+s ;ru+s �� dBjs :Proof :The proof of this proposition will depend on an approximation. We start with somenotation. Let n 2 N� be �xed and de�ne  to be the real fun
tion determined by thefollowing 
onditions  (0) =  0 (0) = 0;  00 = n1[ 1n ; 2n ℄:Then 
learly  is in
reasing,  (x) = 0 if x < 1n ;  (x) = x� 32n for x > 2n ; and0 _�x� 32n� �  � x _ 0;for any x 2 R. The derivative satis�es the inequalities 0 �  0 � 1 and  0 (x) = 1 forx � 2n : We set vt =  (ut) and prove the following lemma.
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hasti
 PDE's 15Lemma 1. The pro
ess v = (vt)t>0 satis�es the following SPDEdvt = Lvtdt+ �ftdt+ bftdt+ dXi=1 �i�gi;tdt+ d1Xj=1 �hj;tdBjtwith the initial 
ondition v0 =  (�) and zero Diri
hlet 
onditions at the boundary of O;where the pro
esses intervening in the equation are de�ned by�ft (x) =  0 (ut (x)) ft �x; u+t (x) ;ru+t (x)� ;�gt (x) =  0 (ut (x)) gt �x; u+t (x) ;ru+t (x)� ;�ht (x) =  0 (ut (x))ht �x; u+t (x) ;ru+t (x)� ;bft (x) = � 00 (ut (x))0� dXi;j=1 �aij ��iu+t � ��ju+t �� (x) + dXi=1 ��iu+t � gi;t �u+t ;ru+t � (x)�12 ��ht �u+t ;ru+t ���2 (x)� :The assumptions on u+ ensure that v belong to H: We also note that the fun
tions �f; bf; �gand �h vanish on the set �ut � 1n	 and they satisfy the following integrability 
onditions:E 

 �f

21;1;t � E �

 �f

�#;t�2 ; E k�gk22;2;t ; E 

�h

22;2;t ; E 


 bf


1;1;t <1;for ea
h t � 0: The equation from the statement should be 
onsidered in the weak L1 senseof de�nition (4) introdu
ed in the Appendix .Proof of the Lemma :Let � 2 C1
 (O) and set �t = �ut; whi
h de�nes a pro
ess in H: A dire
t 
al
ulationinvolving the de�nition relation shows that this pro
ess satis�es the following equationwith �� as initial data and zero Diri
hlet boundary 
onditions,d�t =  L�t + eft + dXi=1 �ifgi;t! dt+ d1Xj=1 fhj;tdBjt ;where eft = �ft (ut;rut)� dXi;j=1 ai;j (�i�) (�jut)� dXi=1 (�i�) gi;t (ut;rut) ;fgi;t = �gi;t (ut;rut)� ut dXj=1 ai;j�j�; i = 1; :::d; fhj;t = �hj;t (ut;rut) ; j = 1; :::; d1:Then we may write Ito's formula in the form( (�t) ; 't) + Z t0 E � 0 (�s)'s; �s�ds = ( (��) ; '0) + Z t0 ( (�s) ; �s's) ds



16 Denis et al+Z t0 � 0 (�s)'s; efs� ds� Z t0 dXi=1 ��i � 0 (�s)'s� ; fgi;s� ds+ 12 Z t0 � 00 (�s)'s; ��� ehs���2� ds+ d1Xj=1 Z t0 � 0 (�s)'s; fhjs� dBjs :where ' 2 D: (The proof of this relation follows from the same arguments as the proof ofLemma 7 in [5℄.) Now we take � su
h that � = 1 in an open subset O0 � O and su
h thatsupp't � O0 for ea
h t � 0; so that this relation be
omes(vt; 't) + Z t0 E � 0 (us)'s; us� ds = ( (�) ; '0) + Z t0 (vs; �s's) ds+Z t0 ('s; fs (us;rus)) ds� Z t0 dXi=1 ��i � 0 (us)'s� ; gi;s (us;rus)� ds+12 Z t0 � 00 (us)'s; jhs (us;rus)j2� ds+ d1Xj=1 Z t0 � 0 (us)'s; hj;s (us;rus)� dBjs :Now an inspe
tion of this relation reveals that this is in fa
t the de�nition equality of theequation of the lemma in the sense of the de�nition (4) in the Appendix. �Proof of Proposition 1 :It is easy to see that the proof 
an be redu
ed to the 
ase where the fun
tion ' has both�rst and se
ond derivatives bounded. Then we write the formula of Proposition 2 to thepro
ess v and obtainZO ' (vt) + Z t0 E �'0 (vs) ; vs� = ZO ' (v0) + Z t0 �'0 (vs) ; �fs + bfs� ds�Z t0 dXi=1 ��i �'0 (vs)� ; �gi;s� ds+ 12 Z t0 �'00 (us) ; ���hs��2� ds+ d1Xj=1 Z t0 �'0 (vs) ; �hj;s� dBjs :Further we 
hange the notation taking into a

ount the fa
t that the fun
tion  dependson the natural number n: So we write  n for  ; vnt for  n (ut) = vt and �fn;
fn; �gn; �hn forthe 
orresponding fun
tions denoted before by �f; bf; �g; �h: Then we pass to the limit withn!1: Obviously one has

vn � u+

2;2;t ! 0; 

��rvn �ru+��

2;2;t ! 0;for ea
h t � 0; a.s. and  0n (u)! 1fu>0g: Then one dedu
es that

 �fn � f �u+;ru+�

�#;t ! 0;

���gn � g �u+;ru+���

2;2;t ! 0;
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���hn � h �u+;ru+���

2;2;t ! 0;for ea
h t � 0; a.s.On the other hand, sin
e the assumptions on ' ensure that j'0 (x)j � K jxj for any x 2 R;with some 
onstant K; we dedu
e that '0 (vn) 00 (u) is uniformly bounded. Therefore weinfer that 


'0 (vn)
fn


1;1;t ! 0;for ea
h t � 0; a.s. Finally we dedu
e that the above relation passes to the limit andimplies the relation stated by the theorem. �The above proposition immediately leads to the following generalization of the estimatesof the positive part obtained in the previous se
tion, with the same proof.Corollary 2. Under the hypotheses of the above Proposition with same notations, one hasthe following estimatesE �

u+

22;1;t + 

ru+

22;2;t� � k (t)E�

�+

22 + �

fu;0+

�#;t�2 + 

gu;0

22;2;t + 

hu;0

22;2;t� :3.4 A Comparison Theorem and the Maximum Prin
ipleAs a parti
ular 
ase of the pre
eding 
orollary we have the following 
omparison theorem.Theorem 5. Assume that f1; f 2 are two fun
tions similar to f whi
h satisfy the Lips-
hitz 
ondition (H)-(i) and su
h that both triples �f1; g; h� and �f2; g; h� satisfy (HD).Assume that �1; �2 are random variables similar to � and that both satisfy (HI). Letui 2 Ulo
 ��i; f i; g; h� ; i = 1; 2 and suppose that the pro
ess �u1 � u2�+ belongs to H andthat one hasE �

f1 �:; :; u2;ru2�� f2 �:; :; u2;ru2�

�#;t�2 <1; for all t � 0:If �1 � �2 a.s. and f1 �t; !; u2;ru2� � f2 �t; !; u2;ru2�, dt
 dx
 dP -a.e., then one hasu1(t; x) � u2(t; x), dt
 dx
 dP -a.e.Proof :The di�eren
e v = u1 � u2 belongs to Ulo
 ��; f ; g; h� ; where � = �1 � �2;f (t; !; x; y; z) = f1 �t; !; x; y + u2t (x) ; z +ru2t (x)�� f2 �t; !; x; u2t (x) ;ru2t (x)� ;g (t; !; x; y; z) = g �t; !; x; y + u2t (x) ; z +ru2t (x)�� g �t; !; x; u2t (x) ;ru2t (x)� ;h (t; !; x; y; z) = h �t; !; x; y + u2t (x) ; z +ru2t (x)�� h �t; !; x; u2t (x) ;ru2t (x)� :The result follows from the pre
eding 
orollary, sin
e � � 0 and f0 � 0 and g0 = h0 = 0:�Before presenting the next appli
ation we are going to re
all some notation used in [5℄. Ford � 3 and some parameter � 2 [0; 1[ we used the notation��� = �(p; q) 2 [1;1℄2 = d2p + 1q = 1� �� ;



18 Denis et alL�� = X(p;q)2��� Lp;q ([0; t℄�O)kuk��;t := inf( nXi=1 kuikpi;qi; t = u = nXi=1 ui; ui 2 Lpi;qi ([0; t℄�O) ;(pi; qi) 2 ���; i = 1; :::n; n 2 N�g :Remark 4. In the paper [5℄ we have omitted the 
ases d = 1; 2: In fa
t there would werenot mu
h to be 
hanged, in order to 
over that 
ases. One should only had de�ned�� = �(p; q) 2 [1;1℄2 = 2�2� � 2 1p + 1q = 2�2� � 2 + �� ;��� = �(p; q) 2 [1;1℄2 = 2�2� � 2 1p + 1q = 1� ��and then should had kept doing the 
al
ulations with the 
onvention that 2�2��2 = 1 ford = 1:We want to express these quantities in the new notation introdu
ed in the subse
tion 2.1and to 
ompare the norms kuk��;t and kuk�#;t : So, we �rst remark that ��� = I �1; 11�� ; d2(1��) ;1�and that the norm kuk��;t 
oin
ides with kuk��� ;t = kukI�1; 11�� ; d2(1��) ;1�;t : On the otherhand, we re
all that the norm kuk�#;t is asso
iated to the set I �2; 1; 2�2��1 ; 2� ; i.e. kuk�#;t
oin
ides with kukI�2;1; 2�2��1 ;2�;t : Then we may prove the following result.Lemma 2. One has kuk�#;t � 
 kuk��;t ; for ea
h u 2 L��; with some 
onstant 
 > 0:Proof :The points de�ning the sets I �1; 11�� ; d2(1��) ;1� and I �2; 1; 2�2��1 ; 2� obviously satisfythe inequalities 1 � 2; 11� � � 1; d2 (1� �) � 2�2� � 1 = 2dd+ 2 ;1 � 2;and hen
e for ea
h pair (p; q) 2 ���; there exists a pair (bp; bq) 2 I �2; 1; 2�2��1 ; 2� su
h thatp � bp and q � bq: This implies the in
lusionL�� = X(p;q)2��� Lp;q ([0; t℄�O) � LI�2;1; 2�2��1 ;2�;t = X(p;q)2I(2;1; 2�2��1 ;2)Lp;q ([0; t℄�O) ;and the asserted inequality. �We now 
onsider the following assumption:Assumption (HD�p)E �

f0

��;t�p +�


��g0��2


��;t�p2 +�


��h0��2


��;t�p2! <1;
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iple for quasilinear Sto
hasti
 PDE's 19for ea
h t � 0; where � 2 [0; 1[ and p � 2 are �xed numbers. By the pre
eding Lemma andsin
e in general one has kuk1;1;t � 
 kuk��;t ; it follows that this property is stronger than(HD#).As now we want to establish a maximum prin
iple, we have to assume that � is boundedwith respe
t to the spa
e variable, so we introdu
e the following:Assumption (HI1p) E k�kp1 <1;where p � 0 is a �xed number.Then we have the following result whi
h generalizes the maximum prin
iple to the sto
has-ti
 framework.Theorem 6. Assume (H), (HD�p), (HI1p) for some � 2 [0; 1[, p � 2; and that the
onstants of the Lips
hitz 
onditions satisfy �+ �22 + 72�2 < �. Let u 2 Ulo
 (�; f; g; h) besu
h that u+ 2 H: Then one hasE 

u+

p1;1;t � k (t)E 

�+

p1 + �

f0;+

��;t�p +�


��g0��2


��;t�p2 +�


��h0��2


��;t�p2! ;where k (t) is 
onstant that depends of the stru
ture 
onstants and t � 0:Proof:Set v = U ��+; bf; g; h� the solution with zero Diri
hlet boundary 
onditions, where thefun
tion bf is de�ned by bf = f + f0;�; with f0;� = 0_ ��f0� : The assumption on the Lip-s
hitz 
onstants ensure the appli
ability of the theorem 11 of [5℄, whi
h gives the estimateE kvkp1;1;t � k (t)E 

�+

p1 + �

f0;+

��;t�p +�


��g0��2


��;t� p2 +�


��h0��2


��;t� p2! ;be
ause bf0 = f0;+: Then (u� v)+ 2 H and we observe that all the 
onditions of thepre
eding theorem are satis�ed so that we may apply it and dedu
e that u � v: Thisimplies u+ � v+ and the above estimate of v leads to the asserted estimate. �Remark 5. As noted in Subse
tion 2.3 the 
ondition u+ 2 H means that u � 0 on thelateral boundary [0;1[��O: Similarly, 
on
erning the next theorem, we observe that the
ondition (u�M)+ 2 H means that u �M on the lateral boundary [0;1[��O.Let us generalize the previous result by 
onsidering a real It� pro
ess of the formMt = m+ Z t0 bsds+ d1Xj=1 Z t0 �j;sdBjs ;where m is a real random variable and b = (bt)t�0 ; � = (�1;t; :::; �d;t)t�0 are adaptedpro
esses.Theorem 7. Assume (H), (HD�p), (HI1p) for some � 2 [0; 1[, p � 2; and that the
onstants of the Lips
hitz 
onditions satisfy � + �22 + 72�2 < �. Assume also that m andthe pro
esses b and � satisfy the following integrability 
onditionsE jmjp <1; E�Z t0 jbsj 11�� ds�p(1��) <1; E �Z t0 j�sj 21�� ds� p(1��)2 <1;



20 Denis et alfor ea
h t � 0: Let u 2 Ulo
 (�; f; g; h) be su
h that (u�M)+ belongs to H: Then one hasE 

(u�M)+

p1;1;t � k (t)Eh 

(� �m)+

p1 + 



�f(�; �;M; 0) � b�+ 



��;t!p +�


��g(�; �;M; 0)��2


��;T� p2 +�


jh(�; �;M; 0) � �j2


��;T� p2 iwhere k (t) is the 
onstant from the pre
eding 
orollary. The right hand side of this es-timate is dominated by the following quantity whi
h is expressed dire
tly in terms of the
hara
teristi
s of the pro
ess M ,k (t)E h 

(� �m)+

p1 + jmjp + �

f0;+

��;t�p +�


��g0��2


��;T� p2 +�


��h0��2


��;T� p2+�Z t0 jbsj 11�� ds�p(1��) +�Z t0 j�sj 21�� ds� p(1��)2 i:Proof:One immediately observes that u�M belongs to Ulo
 �� �m; f; g; h� ; wheref (t; !; x; y; z) = f (t; !; x; y +Mt (!) ; z)� bt (!) ;g (t; !; x; y; z) = g (t; !; x; y +Mt (!) ; z) ;h (t; !; x; y; z) = h (t; !; x; y +Mt (!) ; z) � �t (!) :In order to apply the pre
eding theorem we only have to estimate the zero terms. So wesee that f0t = ft (Mt; 0) � bt; g0t = gt (Mt; 0) ; h0t = ht (Mt; 0) � �t; and hen
e we get the�rst estimate from the statement. Further we may writef0;+t � C jMtj+ f0;+t + jbtj ;��g0t ��2 � 2C2 jMtj2 + 2 ��g0t ��2 ;���h0t ���2 � 3C2 jMtj2 + 3 ��h0t ��2 + 3 j�tj2 :Then we have the estimates


f0;+


��;t � 

f0;+

��;t + C sups�t jMtj+�Z t0 jbsj 11�� ds�1�� ;


��g0��2


��;t � 2


��g0��2


��;t + 2C2 sups�t jMtj2 ;


h0


��;t � 3


��h0��2


��;t + 3C2 sups�t jMtj2 + 3�Z t0 j�sj 21�� ds�1�� :On the other hand, one hassups�t jMtj � jmj+ Z t0 jbsj ds+ sups�t jNtj ;
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hasti
 PDE's 21where we have denoted by Nt the martingalePd1j=1 R t0 �j;sdBjs : The inequality of Burkholder-Davis -Gundy impliesE sups�t jMtjp � 
E "jmjp +�Z t0 jbsj ds�p +�Z t0 j�sj2 ds�p2# ;and this allows us to 
on
lude the proof. �4 Burgers type equationsAll along this se
tion, we relax the hypothesis on the predi
table random fun
tion g whi
his assumed to be lo
ally Lips
hitz with polynomial growth with respe
t to y. We shallgeneralize some results from Gyöngy and Rovira [7℄. Indeed, we shall assume that theassumption (H) holds, but instead of the 
ondition (iii) we assume the following:Assumption (G): there exists two 
onstants C > 0 and r � 1, and two fun
tions �g; ĝsu
h that(i) the fun
tion g 
an be expressed by : g(t; !; x; y; z) = �g(t; !; x; y; z) + ĝ(t; !; y),8(t; !; x; y; z) 2 R+ � 
�O � R � Rd .(ii) �Pdi=1 jgi(t; !; x; y; z)� gi(t; !; x; y0 ; z0)j2� 12 � C�1+ jyjr+ jy0jr� jy� y0 j+ � jz� z0 j;(iii) �Pdi=1 j�gi(t; !; x; y; z) � �g0i (t; !; x)j2� 12 � Cjyj + � jzj,where � is the 
onstant whi
h appears in assumption (H).We �rst 
onsider equation (1) with null Diri
hlet boundary 
onditionut(x) = 0; for all t > 0; x 2 �O :and the initial 
ondition u(0; :) = �(:)The e�e
t of the polynomial growth 
ontained in the term ĝ will be 
an
eled by thefollowing simple lemmaLemma 3. Let u 2 H10 (O),  2 C1�R� with bounded derivative and F a real-valuedbounded measurable fun
tion. ThenZO �i� (u(x))�F (u)(x) dx = 0; 8i = 1; � � �; d:Proof : We de�ne G(y) = Z y0  0(z)F (z) dz: 8y 2 R;so that �iG(u) = G0(u)�iu = �i� (u)�F (u). Then, we dedu
e that the integral from thestatement be
omes RO �i�G(u(x))� dx, whi
h is null be
ause u 2 H10 (O). �



22 Denis et alThe natural idea is to approximate the 
oe�
ient g by a sequen
e of globally Lips
hitzfun
tions. To this end we de�ne, for all n � 1, the 
oe�
ient gn by:8(t; w; x; y; z) 2 R+ � 
�O � R � Rd ; gn(t; w; x; y; z) = g(t; w; x; ((�n) _ y) ^ n; z):In the same way, we de�ne �gn, ĝn; so that gn = �gn + ĝn.One 
an easily 
he
k that for all n 2 N, gn;0 = g0 and that the following relations hold:� dXi=1 jgni (t; !; x; y; z) � gni (t; !; x; y0 ; z0)j2� 12 � C�1 + 2nr� jy � y0 j+ � jz � z0 j ;� dXi=1 j�gni (t; !; x; y; z) � �g0i (t; !; x)j2� 12 � C�1 + jyj�+ � jz � z0 j ; (11)with the same 
onstants C, �, r as in hypothesis (G), so we are able to apply Theorem11 of [5℄ (or Theorem 3 above) and get the solutions un = U(�; f; gn; h) for all n = 1; 2; :::.We know that for t �xed, E kunkp2;1;t is �nite. The key point is that this quantity doesnot depend on n. This is the aim of the followingLemma 4. Assume that 
onditions (H)(i)-(ii), (G), (HD�p) and (HI1p) are ful�lledfor some � 2 [0; 1[ and p � 2, and that the 
onstants of the Lips
hitz 
onditions satisfy�+ �22 + 72�2 < �. Then, for �xed t > 0,E kunkp1;1;t � k (t)E �k�kp1 + 

f0

�p�;t + 

j�g0j2

�p=2�;t + 

jh0j2

�p=2�;t � ;where k(t) only depends on C, � and �.Proof. Thanks to the It�'s formula (see Lemma 7 in [5℄) , we have for all l � 2, n 2 N andt > 0: ZO junt (x)jl dx+ Z t0 E �l (uns )l�1 sgn(uns ); uns � ds = ZO j�(x)jl dx+ l Z t0 ZO sgn(uns )juns (x)jl�1f(s; x; uns ;runs ) dxds� l(l � 1) dXi=1 Z t0 ZO juns (x)jl�2�iuns (x) gi(s; x; uns ;runs ) dx ds+ l d1Xj=1 Z t0 ZO sgn(uns )junt (x)jl�1hj(s; x; uns ;runs ) dxdBjs+ l(l � 1)2 d1Xj=1 Z t0 ZO junt (x)jl�2h2j (s; x; uns ;runs ) dx ds ;P -almost surely.The midle term in the the right hand side 
an be written asdXi=1 Z t0 ZO juns (x)jl�2�iuns (x) gni (s; x; uns ;runs ) dx ds= dXi=1 Z t0 ZO juns (x)jl�2�iuns (x) �gni (s; x; uns ;runs ) dx ds
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hasti
 PDE's 23be
ause by Lemma 3 we haveZ t0 ZO juns (x)jl�2�iuns (x) ĝni (s; uns ) dx ds = 0:Now, as j�g(t; !; x; uns ;runs )j � j�g0(t; !; x)j + Cjuns j + � jruns j;and as f and h satisfy similar inequalities with 
onstants whi
h do not depend on n, we 
anfollow exa
tly the same arguments as the ones in [5℄ (Lemmas 12, 14, 16 and 17) repla
ingg by �g and this yields the result.Let us remark that in [5℄, we �rst assume that initial 
onditions are bounded and then passto the limit. Here, it is not ne
essary sin
e a priori we know that E kunkp1;1;t is �nite.We need to introdu
e the followingDe�nition 2. We denote by Hb the subset of pro
esses u in H su
h that for all t > 0E k u k21;1;t< +1:We are now able to enoun
e the following existen
e result whi
h gives also uniform esti-mates for the solution :Theorem 8. Assume that 
onditions (H)(i)-(ii), (G), (HD�p) and (HI1p) are ful�lledfor some � 2 [0; 1[ and p � 2, and that the 
onstants of the Lips
hitz 
onditions satisfy�+ �22 + 72�2 < �. Then the equation (1) admits a unique solution u 2 Hb. MoreoverE kukp1;1;t � k (t)E �k�kp1 + 

f0

�p�;t + 

j�g0j2

�p=2�;t + 

jh0j2

�p=2�;t � ;where k is a fun
tion whi
h only depends on stru
ture 
onstants.Proof: We keep the notations of previous Lemma and so 
onsider the sequen
e (un)n2N .For all n 2 N, we introdu
e the following stopping time:�n = infft � 0; kunk1;1;t > ng:Now, let n 2 N be �xed, we set � = �n ^ �n+1. De�ne now for i = n; n+ 1vit = � uit if t < �Pt��ui� elsewhere,where (Pt)t�0 is the semigroup asso
iated to A with zero Diri
hlet 
ondition.One 
an verify that vi = U(�;1ft��g � f;1ft��g � gn+1;1ft��g � h). It is 
lear that the
oe�
ients of the equation satis�ed by vi ful�ll hypotheses (H) and that moreover 1ft��g �gn+1 is globally Lips
hitz 
ontinuous. Hen
e, by Theorem 3 (or Theorem 11 of [5℄) thisequation admits a unique solution. So, we 
on
lude that vn = vn+1 whi
h implies that�n+1 � �n and un = un+1 on [0; �n℄. Thanks to previous Lemma, we havelimn!+1 �n = +1; P � a:e:



24 Denis et alWe de�ne ut = limn!1 unt . It is easy to verify that u is a weak solution of (1) and that itsatis�es the announ
ed estimate.Let us prove that u is unique. Let v be another solution in Hb. By the same reasoning asthe one we have just made, one 
an prove that u = v on ea
h [0; �n℄ where for all n 2 N,�n = infft � 0; kvk1;1;t > ng:As v 2 Hb, limn!+1 �n = +1 a.e. and this leads to the 
on
lusion. �Remark 6. The fun
tion k whi
h appears in the above theorem only depends on stru
ture
onstants but not on r.In the setting of this se
tion, with (H) (iii) repla
ed by (G), one may de�ne lo
al solutionswithout lateral boundary 
onditions by restri
ting the attention to pro
esses u 2 Hlo
 su
hthat kuk1;1;t <1 a.s. for any t � 0 and su
h the relation 6 of the de�nition is satis�ed.Then Proposition 1, Corollary 2 and Theorems 5, 6, 7 of the pre
eding se
tion still holdfor su
h bounded solutions. The proof follows from the stopping pro
edure used in theproof of Theorem 8.5 AppendixAs we have relaxed the hypothesis on f0 whi
h does not ne
essarily satisfy an L2-
onditionbut only L1, we need to introdu
e another notion of solution with null Diri
hlet 
onditionsat the boundary of O; whi
h is a solution in the L1 sense.5.1 Weak L1 -solutionSin
e this notion intervenes only as a te
hni
al tool, we develop only the stri
lly ne
essaryaspe
ts related to it. It is de�ned by using the duality of L1 with L1: To this end weintrodu
e a few notations 
on
erning the extension of our operator to L1(O).Let (Pt)t�0 be the semi-group (in L2(O)) whose generator is L = �A. It is well-known thatfor all t � 0, Pt 
an be extended to a sub-Markovian 
ontra
tion of L1(O) that we denoteby P (1)t . Following [2℄, Proposition 2.4.2, we know that (P (1)t )t�0 is a strongly 
ontinuous
ontra
tion semi-group in L1(O), whose generator L(1) is the smallest 
losed extension onL1(O) of (L;D(A)). We set A(1) = �L(1) and denote by D(A(1)) its domain.Let us also put the following notation:D1 (A) = fu 2 D (A) \ L1 (O) =Au 2 L1 (O)g ;[u℄1 = kuk1 + kAuk1 ;for ea
h u 2 D1 (A) : It is not di�
ult to see that the spa
e D1 (A) endowed with thenorm [�℄1 is a Bana
h spa
e and that it is dense both in D (A) and D �A(1)� : Then asuitable spa
e of test fun
tions is de�ned byD0 = C1
 ([0;1[)
D1 (A) :We start presenting some fa
ts in the deterministi
 setting. Analogous to Lemma 2 of [4℄one has the following result.



Comparison theorem and Maximum prin
iple for quasilinear Sto
hasti
 PDE's 25Lemma 5. If u : R+ ! L1 (O) is su
h thatZ t0 ZO jus (x)j dxds <1and Z t0 ZO (us; �t'�A's) ds = 0;for any ' 2 D0; then u = 0; as an element of L1lo
 �R+ ;L1 (O)� :This last lemma allows us to extend the notion of solution of the equation�tu� Lu = w (�)to the L1 framework as follows.De�nition 3. Let w 2 L1lo
 �R+ ;L1 (O)� and � 2 L1 (O) be given. Then we say thatu 2 L1lo
 �R+ ;L1 (O)� is a weak L1 -solution of the equation (�) with the initial 
onditionu0 = � and zero Diri
hlet 
onditions at the boundary of O provided that one hasZ 10 [(ut; �t'�A't) + (wt; 't)℄ dt+ (�; '0) = 0;for any ' 2 D0:The solution is expressed in terms of the semigroup �P (1)t �t�0 as stated in the next lemmawith same proof as the one of Lemma 3 in [4℄.Lemma 6. If w 2 L1lo
 �R+ ;L1 (O)� and � 2 L1 (O) ; then there exists a unique weak L1-solution of (�) with initial 
ondition u0 = � and zero Diri
hlet boundary 
onditions and itis expressed by ut = Z t0 P (1)t�swsds+ P (1)t �;for any t � 0:We now turn out to the sto
hasti
 
ase.The spa
e of all predi
table pro
esses with traje
tories in Lilo
 �R+ ;Li (O)� ; a.s., and su
hthat E kukii;i;t <1;for ea
h t � 0; will be denoted by P �Li� ; for i = 1; 2:De�nition 4. Now let w 2 P �L1� ; w0i; w00j 2 P �L2� ; i = 1; :::; d; j = 1; :::; d1 and � 2L1 �
;F0; P ;L1 (O)� be given and set ; w0 = �w01; :::; w0d� ; w00 = �w001; :::; w00d1� : Then wesay that a pro
ess u 2 P �L1� represents a weak L1 -solution of the equationdut = Lutdt+ wtdt+ dXi=1 �iw0it dt+ d1Xj=1w00jt dBjt (��)



26 Denis et alwith initial 
ondition u0 = � and zero Diri
hlet 
onditions at the boundary of O providedthat the following relation holds, a.s.,Z 10 "(us; �s'�A's) + (ws; 's)� dXi=1 �w0is ; �i'�# ds+Z 10 �w00js ; 's� dBjs + (�; '0) = 0;for ea
h test fun
tion ' 2 D0:It is easy to see that, in the 
ase where, besides the pre
eding 
onditions, the traje
toriesof the solution u belong a.s. to L2lo
 �R+ ;H10 (O)� ; the above relation is equivalent toZ 10 "(us; �s')� E (us; 's) + (ws; 's)� dXi=1 �w0is ; �i'�# ds+Z 10 �w00js ; 's� dBjs + (�; '0) = 0:So, on a

ount of the Proposition 7 of [4℄ and of the pre
eding lemma, if w 2 P �L2� and� 2 L2 �
;F0; P ;L2 (O)� the notion of a weak L1-solution of (**) just introdu
ed 
oin
ideswith the notion of a weak solution previously de�ned, with f = f0 = w; g = g0 = w0 andh = h0 = w00: Moreover, we have the following general expli
it expression for the solution,similar to Proposition 7 of [4℄.Lemma 7. If w 2 P �L1� ; w0 = �w01; :::; w0d� ; w00 = �w001; :::; w00d1� ; w0k; w00l 2 P �L2� ; k =1; :::; d; l = 1; :::; d1 and � 2 L1 �
;F0; P ;L1 (O)� ; then there exists a unique weak L1-solution of the equation (��) : The solution is expressed byut = P (1)t � + Z t0 P (1)t�swsds+ Z t0 Pt�s dXi=1 �iw0is! ds+ d1Xj=1 Z t0 Pt�sw00js dBjs :5.2 Ito's formulaWe now 
an prove the following version of Ito's formula.Proposition 2. Let us assume hypotheses of the pre
eding Lemma and that u belongs toH. Let ' : R ! R be a fun
tion of 
lass C2; assume that '0 and '00 are bounded and'0 (0) = 0: Then the following relation hold a.s. for all t � 0:ZO ' (ut (x)) dx+ Z t0 E �'0 (us) ; us� ds = ZO ' (� (x)) dx+ Z t0 �'0 (us) ; ws� ds�Z t0 dXi=1 ��i �'0 (us)� ; w0is � ds+ 12 Z t0 �'00 (us) ; ��w00s ��2� ds+ d1Xj=1 Z t0 �'0 (us) ; w00js � dBjs :
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hasti
 PDE's 27Proof : We denote by v = (vt)t�0 the pro
ess de�ned byvt = Z t0 P (1)t�swsds:Let us de�ne for all n 2 N� and t � 0,�n = P (1)1n �; vnt = P 1n vt; wnt = P (1)1n wt:Sin
e u belongs to H, then pro
ess � + v also belongs to H.We �x n for the moment. It is known that the semigroup has bounded densities, so thatthere exists some 
onstants Kt; t > 0; su
h that


P (1)t f


1 � Kt kfk1 ;and 


AP (1)t f


2 � Kt kfk1 ;for any f 2 L1 (O) : So, it is 
lear that �n belongs to L1 (
;F0; P ;L1 (O)TD(A)) andthat for all T > 0 (wnt )t2[0;T ℄ belongs to L1(
 � [0; T ℄;D(A)). As a 
onsequen
e, vn isD(A)-di�erentiable and for all t > 0:�tvnt = wnt +Avnt :Consider now sequen
es (w0i;k)k2N� , 1 � i � d of adapted pro
esses in C1
 ([0;1)) 
L2(
) 
 D(A3=2) whi
h 
onverge to w0i, 1 � i � d, in P(L2) and sequen
es (w00j;k)k2N� ,1 � j � d1 of adapted pro
esses in C1
 ([0;1)) 
 L2(!) 
 D(A) whi
h 
onverge to w00j ,1 � j � d1, in P(L2).We set for all k 2 N� : un;k = U(�n; wn; w0;k; w00;k);then we know that for all tun;kt = Pt�n + Z t0 Pt�swns ds+ Z t0 Pt�s dXi=1 �iw0i;ks ! ds+ d1Xj=1 Z t0 Pt�sw00j;ks dBjs :Lemma 6 in [5℄ ensures that un;k � vn = U(�n; 0; w0;k; w00;k) is an L2(O)-valued semi-martingale hen
e un;k is also a semi-martingale sin
e vn is di�erentiable.Thanks to the Ito's formula (see Lemma 7 in [5℄), we haveZO '�un;kt (x)� dx = ZO ' (�n (x)) dx� Z t0 �'0 �un;ks � ; Aun;ks � ds+ Z t0 �'0 �un;ks � ; wns � ds�Z t0 dXi=1 ��i �'0 (us)� ; w0i;ks � ds+12 Z t0 �'00 (us) ; ���w00;ks ���2� ds+ d1Xj=1 Z t0 �'0 (us) ; w00j;ks � dBjs :As a 
onsequen
e of Lemma 6 in [5℄, we know that un;k tends to un in H so, making ktend to +1 and using the fa
t that for all k,�Z t0 �'0 �un;ks � ; Aun;ks � ds = Z t0 E �'0 �un;ks �un;ks � ds;



28 Denis et alwe get :ZO ' (unt (x)) dx+ Z t0 E �'0 (uns ) ; uns � ds = ZO ' (�n (x)) dx+ Z t0 �'0 (uns ) ; wns �ds�Z t0 dXi=1 ��i �'0 (uns )� ; w0is � ds+ 12 Z t0 �'00 (uns ) ; ��w00s ��2� ds+ d1Xj=1 Z t0 �'0 (uns ) ; w00js �dBjs :As we assume that � + v belongs to H, un tends to u in H as n tends to +1, solimn!+1Z t0 E �'0 (uns ) ; uns �ds = Z t0 E �'0 (us) ; us� dsMoreover, for all n Z t0 �'0 (uns ) ; wns � ds = Z t0 �'0 (uns ) ; P (1)1n ws� ds= Z t0 �P 1n'0 (uns ) ; ws� dsSin
e '00 is bounded and un tends to u in H, it is easy to prove that P 1n'0 (un) 
onvergesto '0 (u) in P(L2). Then, thanks to the dominated 
onvergen
e theorem, we get that fora subsequen
e: limn!+1Z t0 �'0 (uns ) ; wns � ds = Z t0 �'0 (us) ; ws� ds:We then obtain the result by making n tend to +1 in the other terms of the equalitywithout any problem. �Referen
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