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2 Denis et alin the bounded ylinder ℄0; T [�O � Rd+1: If u �M on the paraboli boundary f[0; T [��Og[ff0g � Og, then one has u �M + Cf (A;B) ;where C depends only on T; the volume of O and the struture of the equation, whilef (A;B) is diretly expressed in terms of some quantities related to the oe�ients A andB:The method of proof was based on Moser's iteration sheme adapted to the nonlinear ase.This method of Aronson and Serrin was further adapted to the stohasti framework in [5℄,obtaining some Lp a priori estimates for the uniform norm of the solution of the stohastiquasilinear paraboli equation.However the result of that paper is not �exible enough to handle all the range of appliationsone would be interested in. The aim of the present paper is to prove a generalization ofthat result, to dedue a stohasti version of the maximum priniple of Aronson -Serrinand to show some appliations, partiularly to Burgers type equations.More preisely, we study the following stohasti partial di�erential equation (in shortSPDE) for a real -valued random �eld ut (x) = u (t; x) ;dut (x) = Lut (x) dt+ ft (x; ut (x) ;rut (x)) dt+ dXi=1 �igi;t (x; ut (x) ;rut (x)) dt+ d1Xj=1 hj;t (x; ut (x) ;rut (x)) dBjt (1)with a given initial ondition u0 = �; where L is a symmetri, uniformly ellipti, seondorder di�erential operator de�ned in some bounded open domain O � Rd and f; gi; i =1; :::; d; hj ; j = 1; :::; d1 are nonlinear random funtions. Let us note that in order to simplifythe appearane of the equation we have hosen to write it as a sum of a linear uniformlyparaboli part and two nonlinear terms, expressed by f and g in (1).One of the main results of this paper is Theorem 7. For simpliity, let us give a onse-quene of it. Under suitable assumptions on f , g, h (Lipshitz ontinuity and integrabilityonditions), we haveTheorem 2. Let M > 0, p � 2 and u be a solution of (1) in the weak sense. Assume thatu �M on the paraboli boundary f[0; T [��Og [ ff0g � Og, then for all t 2 [0; T ℄:E (u�M)+p1;1;t � k (p; t)E �(f0;M)+�p�;t + jg0;M j2�p=2�;t + jh0;M j2�p=2�;t �where f0;M(t; x) = f(t; x;M; 0); g0;M (t; x) = g(t; x;M; 0); h0;M (t; x) = h(t; x;M; 0) and kis a funtion whih only depends on the struture onstants of the SPDE, k � k1;1;t is theuniform norm on [0; t℄�O and k�k��;t is a ertain norm whih is preisely de�ned below.The paper is organized as follows : in setion 2 we introdue notations and hypotheses andwe take are to detail the integrability onditions whih are used all along the paper.In setion 3, we prove the maximum priniple and a omparison theorem. To this end we�rst study the solutions with null Dirihlet onditions and establish a kind of Ito's formula



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 3for the positive part of the solution. Then in setion 4 we extend the result to the aseof Burger's type SPDE's with Dirihlet ondition and so generalize results obtained byGyöngy and Rovira [7℄. Finally in the appendix we present some tehnial fats related tosolutions in the L1-sense whih are used in the proofs of the preeding setions.2 Preliminaries2.1 Lp;q-spaesLet O be an open bounded domain in Rd : The spae L2 (O) is the basi Hilbert spae ofour framework and we employ the usual notation for its salar produt and its norm,(u; v) = ZO u (x) v (x) dx; kuk2 = �ZO u2 (x) dx� 12 :In general, we shall use the notation(u; v) = ZO u(x)v(x) dx;where u, v are measurable funtions de�ned in O and uv 2 L1(O).Another Hilbert spae that we use is the �rst order Sobolev spae of funtions vanishingat the boundary, H10 (O) : Its natural salar produt and norm are(u; v)H10 (O) = (u; v) + ZO dXi=1 (�iu (x)) (�iv (x)) dx; kukH10 (O) = �kuk22 + kruk22� 12 :We shall denote by H1lo(O) the spae of funtions whih are loally square integrable inO and whih admit �rst order derivatives that are also loally square integrable.For eah t > 0 and for all real numbers p; q � 1, we denote by Lp;q([0; t℄�O) the spae of(lasses of) measurable funtions u : [0; t℄�O �! R suh thatkukp;q; t :=  Z t0 �ZO ju(t; x)jp dx�q=p dt!1=qis �nite. The limiting ases with p or q taking the value 1 are also onsidered with theuse of the essential sup norm. We identify this spae, in an obvious way, with the spaeLq ([0; t℄ ;Lp (O)) ; onsisting of all measurable funtions u : [0; t℄ ! Lp (O) suh thatZ t0 kuskqp ds <1: This identi�ation implies that �Z t0 kuskqp ds� 1q = kukp;q; t:The spae of measurable funtions u : R+ ! L2 (O) suh that kuk2;2;t < 1; for eaht � 0; is denoted by L2lo �R+ ;L2 (O)� : Similarly, the spae L2lo �R+ ;H10 (O)� onsists ofall measurable funtions u : R+ ! H10 (O) suh thatkuk2;2;t + kruk2;2;t <1;for any t � 0:



4 Denis et alNext we are going to introdue some other spaes of funtions of interest and to disussa ertain duality between them. They have already been used in [1℄ and [5℄ but hereintervenes a new ase and we hange a little bit the notation used before in a way whih,we think, make things learer.Let (p1; q1) ; (p2; q2) 2 [1;1℄2 be �xed and setI = I (p1; q1; p2; q2) := n(p; q) 2 [1;1℄2 = 9 � 2 [0; 1℄ s:t:1p = � 1p1 + (1� �) 1p2 ; 1q = � 1q1 + (1� �) 1q2� :This means that the set of inverse pairs � 1p ; 1q� ; (p; q) belonging to I; is a segment ontainedin the square [0; 1℄2 ; with the extremities � 1p1 ; 1q1� and � 1p2 ; 1q2� : There are two spaes ofinterest assoiated to I: One is the intersetion spaeLI;t = \(p;q)2I Lp;q ([0; t℄�O) :Standard arguments based on Hölder's inequality lead to the following inlusion (see e.g.Lemma 2 in [5℄) Lp1;q1 ([0; t℄�O) \ Lp2;q2 ([0; t℄�O) � Lp;q ([0; t℄�O) ;for eah (p; q) 2 I; and the inequalitykukp;q;t � kukp1;q1;t _ kukp2;q2;t ;for any u 2 Lp1;q1 ([0; t℄ �O) \ Lp2;q2 ([0; t℄�O) : Therefore the spae LI;t oinides withthe intersetion of the extreme spaes,LI;t = Lp1;q1 ([0; t℄�O) \ Lp2;q2 ([0; t℄�O)and it is a Banah spae with the following normkukI;t := kukp1;q1;t _ kukp2;q2;t :The other spae of interest is the algebrai sumLI;t := X(p;q)2I Lp;q ([0; t℄�O) ;whih represents the vetor spae generated by the same family of spaes. This is a normedvetor spae with the normkukI;t := inf( nXi=1 kuikpi;qi; t = u = nXi=1 ui; ui 2 Lpi;qi ([0; t℄ �O) ; (pi; qi) 2 I; i = 1; :::n; n 2 N�) :



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 5Clearly one has LI;t � L1;1 ([0; t℄�O) and kuk1;1;t �  kukI;t ; for eah u 2 LI;t; with aertain onstant  > 0:We also remark that if (p; q) 2 I; then the onjugate pair (p0; q0) ; with 1p + 1p0 = 1q + 1q0 = 1;belongs to another set, I 0; of the same type. This set may be desribed byI 0 = I 0 (p1; q1; p2; q2) := ��p0; q0� = 9 (p; q) 2 I s:t: 1p + 1p0 = 1q + 1q0 = 1�and it is not di�ult to hek that I 0 (p1; q1; p2; q2) = I (p01; q01; p02; q02) ; where p01; q01; p02 andq02 are de�ned by 1p1 + 1p01 = 1q1 + 1q01 = 1p2 + 1p02 = 1q2 + 1q02 = 1:Moreover, by Hölder's inequality, it follows that one hasZ t0 ZO u (s; x) v (s; x) dxds � kukI;t kvkI0;t ; (2)for any u 2 LI;t and v 2 LI0;t: This inequality shows that the salar produt of L2 ([0; t℄�O)extends to a duality relation for the spaes LI;t and LI0;t:Now let us reall that the Sobolev inequality states thatkuk2� � S kruk2 ;for eah u 2 H10 (O) ; where S > 0 is a onstant that depends on the dimension and2� = 2dd�2 if d > 2; while 2� may be any number in ℄2;1[ if d = 2 and 2� = 1 if d = 1:Therefore one has kuk2�;2;t � S kruk2;2;t ;for eah t � 0 and eah u 2 L2lo �R+ ;H10 (O)� :And if u 2 L1lo �R+ ;L2 (O) �TL2lo �R+ ;H10 (O)� ;one has kuk2;1;t _ kuk2�;2;t � 1 �kuk22;1;t + kruk22;2;t� 12 ;with 1 = S _ 1:One partiular ase of interest for us in relation with this inequality is when p1 = 2; q1 =1 and p2 = 2�; q2 = 2: If I = I (2;1; 2�; 2) ; then the orresponding set of assoiatedonjugate numbers is I 0 = I 0 (2;1; 2�; 2) = I �2; 1; 2�2��1 ; 2� ; where for d = 1 we make theonvention that 2�2��1 = 1: In this partiular ase we shall use the notation L#;t := LI;tand L�#;t := LI0;t and the respetive norms will be denoted bykuk#;t := kukI;t = kuk2;1;t _ kuk2�;2;t ; kuk�#;t := kukI0;t :Thus we may write kuk#;t � 1 �kuk22;1;t + kruk22;2;t� 12 ; (3)for any u 2 L1lo �R+ ;L2 (O) �TL2lo �R+ ;H10 (O)� and t � 0 and the duality inequalitybeomes Z t0 ZO u (s; x) v (s; x) dxds � kuk#;t kvk�#;t ;for any u 2 L#;t and v 2 L�#;t:



6 Denis et al2.2 HypothesesLet fBt := (Bjt )j2f1;��� ;d1g gt�0 be a d1-dimentional Brownian motion de�ned on a standard�ltered probability spae �
;F ; (Ft)t�0; P �.Let A be a symmetri seond order di�erential operator given by A := �L = �Pdi;j=1 �i(ai;j �j).We assume that a is a measurable and symmetri matrix de�ned on O whih satis�es theuniform elliptiity ondition�j�j2 �Xi;j ai;j(x)�i �j � �j�j2; 8x 2 O; � 2 Rd ; (4)where � and � are positive onstants. The energy assooiated with the matrix a will bedenoted by E (w; v) = dXi;j=1ZO ai;j(x)�iw(x)�jv(x) dx: (5)It's de�ned for funtions w; v 2 H10 (O), or for w 2 H1lo(O) and v 2 H10 (O) with ompatsupport.We onsider the semilinear stohasti partial di�erential equation (1) for the real-valuedrandom �eld ut(x) with initial ondition u(0; :) = �(:), where � is a F0-measurable randomvariable with values in L2lo (O).We assume that we have preditable random funtionsf : R+ � 
�O � R � Rd ! R ;h : R+ � 
�O � R � Rd ! Rd1g = (g1; :::; gd) : R+ � 
�O � R � Rd ! RdWe de�nef(�; �; �; 0; 0) := f0; h(�; �; �; 0; 0) := h0 and g(�; �; �; 0; 0) := g0 = (g01 ; :::; g0d):We onsidere the following sets of assumptions :Assumption (H): There exist non negative onstants C; �; � suh that(i) jf(t; !; x; y; z) � f(t; !; x; y0 ; z0)j � C�jy � y0 j+ jz � z0 j�(ii) �Pd1j=1 jhj(t; !; x; y; z) � hj(t; !; x; y0 ; z0)j2� 12 � C jy � y0 j+ � jz � z0 j;(iii) �Pdi=1 jgi(t; !; x; y; z) � gi(t; !; x; y0 ; z0)j2� 12 � C jy � y0 j+ � jz � z0 j:(iv) the ontration property (as in [5℄) : �+ �22 < � .Moreover we introdue some integrability onditions on f0; g0; h0 and the initial data � :



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 7Assumption (HD) loal integrability onditions on f0, g0 and h0 :E Z t0 ZK �jf0t (x)j+ jg0t (x)j2 + jh0t j2 �dxdt <1for any ompat set K � O, and for any t � 0.Assumption (HI) loal integrability ondition on the initial ondition :E ZK j�(x)j2dx <1for any ompat set K � O.Assumption (HD#)E��f0�#;t�2 + g022;2;t + h022;2;t� <1;for eah t � 0:Sometimes we shall onsider the following stronger forms of these onditions:Assumption (HD2) E �f022;2;t + g022;2;t + h022;2;t� <1;for eah t � 0:Assumption (HI2) integrability ondition on the initial ondition :Ek�k2 <1:Remark 1. Note that (2; 1) is the pair of onjugates of the pair (2;1) and so (2; 1)belongs to the set I 0 whih de�nes the spae L�#;t: Sine kvk2;1;t � pt kvk2;2;t for eahv 2 L2;2 ([0; t℄ �O) ; it follows thatL2;2 ([0; t℄�O) � L2;1;t � L�#;t;and kvk�#;t � pt kvk2;2;t ; for eah v 2 L2;2 ([0; t℄�O) : This shows that the ondition(HD#) is weaker than (HD2).The Lipshitz ondition (H) is assumed to hold throughtout this paper, exept the lastsetion devoted to Burgers type equations. The weaker integrability onditions (HD) and(HI) are also assumed to hold everywhere in this paper. The other stronger integrabilityonditions will be mentioned whenever we will assume them.2.3 Weak solutionsWe now introdue H = H(O), the spae of H10 (O)-valued preditable proesses (ut)t�0suh that  E sup0�t�T kutk2 + Z T0 E E (ut) dt!1=2 < 1 ; for eah T > 0 :



8 Denis et alWe de�ne Hlo = Hlo(O) to be the set of H1lo(O)-valued preditable proesses suh thatfor any ompat subset K in O and all T > 0: E sup0�t�T ZK ut(x)2 dx+E Z T0 ZK jrut(x)j2 dxdt!1=2 < 1:The spae of test funtions is D = C1 
C2 (O), where C1 denotes the spae of all real in�-nite di�erentiable funtions with ompat support in R and C2 (O) the set of C2-funtionswith ompat support in O.De�nition 1. We say that u 2 Hlo is a weak solution of equation (1) with initial ondition� if the following relation holds almost surely, for eah ' 2 D;Z 10 [(us; �s')� E (us; 's) + (f (s; us;rus) ; 's)� dXi=1 (gi (s; us;rus) ; �i's)℄ds+ Z 10 (h (s; us;rus) ; 's) dBs + (�; '0) = 0: (6)We denote by Ulo(�; f; g; h) the set of all suh solutions u.If u belongs to H, we say that u solves the SPDE with zero Dirihlet ondition on theboundary.In general we do not know muh about the set Ulo (�; f; g; h). It may be empty or mayontain several elements. But under the onditions (H), (HI2) and (HD2) we know fromTheorem 9 in [4℄ that there exists a unique solution in H and that this solution admitsL2(O)-ontinuous trajetories. As the spae H10 (O) onsists of funtions whih vanish ina generalized sense at the boundary �O; we may say that a solution whih belongs to Hsatis�es the zero Dirihlet onditions at the boundary of O: Thus we may say that underthe assumptions (H), (HD2) and (HI2) there exists a unique solution with null Dirihletonditions at the boundary of O: This result will be generalised below. We denote byU (�; f; g; h) the solution of (1) with zero Dirihlet boundary onditions whenever it existsand is unique.We should also note that if the onditions (H), (HD2) and (HI2) are satis�ed and if uis a proess in H; the relation from this de�nition holds with any test funtion ' 2 D ifand only if it holds with any test funtion in C1 (R+)
H10 (O) : In fat, in this ase, onemay use as spae of test funtions any spae of the form C1 (R+)
 V; where V is a densesubspae of H10 (O) ; obtaining equivalent de�nitions of the notion of solution with nullDirihlet onditions at the boundary of O: In [4℄ one uses C1 (R+) 
 D (A) as spae oftest funtions beause this is the spae whih suits better the abstrat analyti funtionalframework of that paper.Remark 2. It is proved in [4℄ that under (HI2) and (HD2) the solution with null Dirihletonditions at the boundary of O has a version with L2 (O)-ontinuous trajetories and, inpartiular, that limt!0 kut � �k = 0, a.s. This property extends to the loal solutions inthe sense that any element of Ulo(�; f; g; h) has a version with the property that a.s. the



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 9trajetories are L2 (K)-ontinuous, for eah ompat set K � O andlimt!0 ZK (ut(x)� �(x) )2 dx = 0:In order to see this it su�es to take a test funtion � 2 C1 (O) and to verify that v = �usati�es the equation dvt = �Lvt + f t + divgt�+ htdBt;with the initial ondition v0 = ��, wheref t(x) = �(x)f (t; x; ut(x);rut(x)) � hr�(x); a(x)rut(x)i � hr�(x); g (t; x; ut(x);rut(x)) i;gt(x) = �(x)g (t; x; ut(x);rut(x))� ut(x)a(x)r�(x) andht(x) = �(x)h (t; x; ut(x);rut(x)) :Thus v = U ���; f; g; h� and the results of [4℄ hold for v.Remark 3. Let us now preise the sense in whih a solution is dominated on the lateralboundary. Assume that v belongs to H1lo(O0) where O0 is a larger open set suh thatO � O0: Then it is well known that the ondition v+jO 2 H10 (O) expresses the boundaryrelation v � 0 on �O. Similarly, if a proess u belongs to Hlo(O0); then the onditionu+jO 2 H(O) ensures the inequality u � 0 on the lateral boundary f[0;1[��Og.3 Main results : maximum priniple and omparison theo-rems3.1 Estimates for solutions with null Dirihlet onditionsNow we are going to improve the existene theorem and the estimates satis�ed by the solu-tion obtained in the general framework of [4℄. Namely, taking into aount the advantageof uniform elliptiity, we replae the ondition (HD2) with the weaker one (HD#).Theorem 3. Under the onditions (H), (HD#) and (HI2) there exists a unique solutionof (1) in H: Moreover, this solution has a version with L2(O)-ontinuous trajetories andit satis�es the following estimatesE �kuk22;1;t + kruk22;2;t� � k (t)E �k�k22 + �f0�#;t�2 + g022;2;t + h022;2;t� ;for eah t � 0; where k (t) is a onstant that only depends on the struture onstants andt:Proof:Theorem 9 of [4℄ ensures the existene of the solution under the stronger ondition (HD2).So we now assume this ondition and we shall next prove that then the solution u =U (�; f; g; h) satis�es the estimates asserted by our theorem. We start by writing Ito's



10 Denis et alformula for the solution in the formkutk22 + 2Z t0 E (us; us) ds = k�k22 + 2Z t0 (us; fs (us;rus)) ds� 2Z t0 dXi=1 (�ius; gi;s (us;rus)) ds+ Z t0 khs (us;rus)k22 ds+ 2 d1Xj=1 Z t0 (us; hj;s (us;rus)) dBjs ; (7)
equality whih holds a.s. (See (ii) of the Proposition 7 in [4℄). This is in fat a stohastiversion of Caiopoli's identity, well-known for deterministi paraboli equations.The Lipshitz ondition and the inequality (2) lead to the following estimateZ t0 (us; fs (us;rus)) ds � " kruk22;2;t + " kuk22;2;t + Æ kuk2#;t + Æ �f0�#;t�2 ;where "; Æ > 0 are two small parameters to be hosen later and "; Æ are onstants depend-ing of them. Similar estimates hold for the next two terms�Z t0 dXi=1 (�ius; gi;s (us;rus)) ds � (�+ ") kruk22;2;t + " kuk22;2;t + " g022;2;t ;Z t0 khs (us;rus)k22 ds � ��2 + "� kruk22;2;t + " kuk22;2;t + " h022;2;t :Sine E (us; us) � � krusk22 ; we dedue from the equality (7),kutk22 + 2��� �� �22 � 52"� kruk22;2;t � Æ kuk2#;t + k�k22 + 2Æ �f0�#;t�2+2" g022;2;t + " h022;2;t + 5" kuk22;2;t + 2Mt; (8)a.s., where Mt :=Pd1j=1 R t0 (us; hj;s (us;rus)) dBjs represents the martingale part. Further,using a stopping proedure while taking the expetation, the martingale part vanishes, sothat we get E kutk22 + 2��� �� �22 � 52"�E kruk22;2;t � ÆE kuk2#;t+E�k�k22 + 2Æ �f0�#;t�2 + 2" g022;2;t + " h022;2;t�+ 5" Z t0 E kusk22 ds:Then we hoose " = 15 ��� �� �22 � ; set  = � � � � �22 and apply Gronwall's lemmaobtainingE kutk22 + E kruk22;2;t � �ÆE kuk2#;t +EF �Æ; �; f0; g0; h0; t�� e5"t; (�)



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 11where F �Æ; �; f0; g0; h0; t� = �k�k22 + 2Æ �f0�#;t�2 + 2" g022;2;t + " h022;2;t� : As aonsequene one getsE kuk22;2;t � 15" �ÆE kuk2#;t +EF �Æ; �; f0; g0; h0; t�� �e5"t � 1� : (��)We now return to the inequality (8) and estimate a.s. the supremum for the �rst term,obtaining kuk22;1;t � Æ kuk2#;t + F �Æ; �; f0; g0; h0; t�+ 5" kuk22;2;t + 2 sups�t Ms:We would like to take the expetation in this relation and for that reason we need toestimate the braket of the martingale part,hMi 12t � kuk2;1;t kh (u;ru)k2;2;t � � kuk22;1;t + � �kuk22;2;t + kruk22;2;t + h022;2;t� ;with � another small parameter to be properly hosen. Using this estimate and the in-equality of Burkholder-Davis-Gundy we dedue from the preeding inequality(1� 2CBDG�)E kuk22;1;t � ÆE kuk2#;t +EF �Æ; �; f0; g0; h0; t�+(5" + 2CBDG�)E kuk22;2;t + 2CBDG�E kruk22;2;t + 2CBDG�E h022;2;t ;where CBDG is the onstant orresponding to the Burkholder-Davis-Gundy inequality.Further we hoose the parameter � = 14CBDG and ombine this estimate with (*) and (**)to dedue an estimate of the formE �kuk22;1;t + kruk22;2;t� � Æ2 (t)E kuk2#;t + 3 (Æ; t)R ��; f0; g0; h0; t� ;where R ��; f0; g0; h0; t� := k�k22 + �f0�#;t�2 + g022;2;t + h022;2;t ; and 3 (Æ; t) is aonstant that depends of Æ and t; while 2 (t) is independent of Æ: Dominating the termE kuk2#;t by using the estimate (3) and then hoosing Æ = 12212(t) we obtain the estimateasserted by our theorem.The existene of the solution in the general ase, when only ondition (HD#) is ful�lled,follows by an approximation proedure. The funtion f is approximated by fn := f�f0+f0n; where f0n; n 2 N; is a sequene of bounded funtions suh that E �f0 � f0n�#;t�2 ! 0;as n ! 0: The solutions, un; n 2 N; of the equation (1) orresponding to the funtionsfn; n 2 N; form a Cauhy sequene in the sense of the following relationlimn;m!1E �kun � umk22;1;t + kr (un � um)k22;2;t� = 0;whih follows from the estimate already proven. The limit u = limn!1 un represents thesolution assoiated with f: It learly satis�es the estimate asserted by the theorem.It remains to hek the uniqueness assertion. Let u; u0 be two solutions in H. Then theirdi�erene u = u� u0 is a solution of a similar equation u = U �0; f ; g; h� ; wheref(t; x; y; z) = f(t; x; y + u0(t; x); z +ru0(t; x))� f(t; x; u0(t; x);ru0(t; x));



12 Denis et alg(t; x; y; z) = g(t; x; y + u0(t; x); z +ru0(t; x))� g(t; x; u0(t; x);ru0(t; x));h(t; x; y; z) = h(t; x; y + u0(t; x); z +ru0(t; x))� h(t; x; u0(t; x);ru0(t; x)):Sine f0 = h0 = h0 = 0 and �u0 = 0 we may apply the above established estimates todedue that u = 0: �3.2 Estimates of the positive part of the solutionIn this setion we shall assume that the onditions (H), (HI2) and (HD#) are ful�lled.By Theorem 3 we know that the equation (1) has a unique solution with null Dirihletboundary onditions whih we denote by U (�; f; g; h) : Next we are going to apply Propo-sition 2 of the appendix to the solution u. In fat we have in mind to apply it with'(y) = (y+)2. In the following orollary we make a �rst step and relax the hypotheses on'.Corollary 1. Let us assume the hypotheses of the preeding Theorem with the same no-tations. Let ' : R ! R be a funtion of lass C2 and assume that '00 is bounded and'0 (0) = 0: Then the following relation holds a.s. for all t � 0:ZO ' (ut (x)) dx+ Z t0 E �'0 (us) ; us� ds = ZO ' (� (x)) dx+ Z t0 �'0 (us) ; fs(us;rus� ds�Z t0 dXi=1 ��i �'0 (us)� ; gi;s(us;rus� ds+ 12 Z t0 �'00 (us) ; jhs(us;rus)j2� ds+ d1Xj=1 Z t0 �'0 (us) ; hj;s(us;rus)� dBjs :Proof: Thanks to the estimate obtained in Theorem 3 we dedue that the proess '0(u)belongs to HTL#;t and that f(u;ru) belongs to L�#;t, for all t > 0. From this we get thedesired result by approximating ' and passing to the limit in Proposition 2. �We next prove an estimate for the positive part u+ of the solution u = U (�; f; g; h) : Forthis we need the following notation:fu;0 = 1fu>0gf0; gu;0 = 1fu>0gg0; hu;0 = 1fu>0gh0;fu = f � f0 + fu;0; gu = g � g0 + gu;0; hu = h� h0 + hu;0fu;0+ = 1fu>0g �f0 _ 0� ; �+ = � _ 0: (9)Theorem 4. The positive part of the solution satis�es the following estimateE �u+22;1;t + ru+22;2;t� � k (t)E��+22 + �fu;0+�#;t�2 + gu;022;2;t + hu;022;2;t� ;with the same onstant k (t) as in the Theorem 3.



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 13Proof :We �rst show that the relation (7) appearing in the proof of the Theorem 3 still holds withu replaed by u+ and with fu; gu; hu; �+ in the respetive plaes of f; g; h; �:The idea is to apply Ito's formula to the funtion  de�ned by  (y) = (y+)2 ; for anyy 2 R: Sine this funtion is not of the lass C2 we shall make an approximation as follows.Let ' be a C1 funtion suh that ' (y) = 0 for any y 2℄ �1; 1℄ and ' (y) = 1 for anyy 2 [2;1[: We set  n (y) = y2' (ny) ; for eah y 2 R and all n 2 N� : It is easy to verifythat ( n)n2N� onverges uniformly to the funtion  and thatlimn!1 0n (y) = 2y+; limn1  00n (y) = 2 � 1fy>0g;for any y 2 R: Moreover we have the estimates0 �  n (y) �  (y) ; 0 �  0 (y) � Cy; �� 00n (y)�� � C;for any y � 0 and all n 2 N� ; where C is a onstant. Thanks to Corallary 1 we have forall n 2 N� and eah t � 0; a.s.,ZO  n (ut (x)) dx+ Z t0 E � n0 (us) ; us� ds = ZO  n (� (x)) dx+ Z t0 � n0 (us) ; fs (us;rus)� ds� Z t0 dXi=1 � n00 (us) �ius; gi;s (us;rus)�ds+ 12 Z t0 � n00 (us) ; jhs (us;rus)j2� ds+ d1Xj=1 Z t0 � n0 (us) ; hj;s (us;rus)� dBjs : (10)As a onsequene of the loal property of the Dirihlet form,  0n (u) onverges to u+ inL2lo �R+ ;H10 (O)� : (see Theorem 5.2 in [3℄ or [2℄). Therefore, letting n!1; the relationbeomesZO �u+t (x)�2 dx+ 2Z t0 E �u+s ; u+s � ds = ZO ��+ (x)�2 dx+ 2Z t0 �u+s ; fs (us;rus)� ds�2Z t0 dXi=1 �1fus>0g�ius; gi;s (us;rus)� ds+ Z t0 �1fus>0g; jhs (us;rus)j2� ds+2 d1Xj=1 Z t0 �u+s ; hj;s (us;rus)� dBjs :This turns out to be exatly the relation (7) with u+; fu; gu; hu; �+ in the respetive plaesof u; f; g; h; �: Then one may do the same alulation as in the preeding proof with onlyone minor modi�ation onerning the term whih ontains fu; namely one hasZ t0 �u+s ; fs (us;rus)� ds = Z t0 �u+s ; fus �u+s ;ru+s �� ds� "ru+22;2;t + " u+22;2;t + Æ u+2#;t + Æ �fu;0+�#;t�2 :



14 Denis et alThus one has a relation analogous to (8), with u+; fu;0+; gu;0; hu;0; �+ in the respetiveplaes of u; f; g; h; � and with the orresponding martingale given byd1Xj=1 Z t0 �u+s ; huj;s �u+s ;ru+s �� dBjs :The reminder part of the proof follows by repeating word by word the proof of Theorem3. �3.3 The ase without lateral boundary onditionsIn this subsetion we are again in the general framework with only onditions (H), (HD)and (HI) being ful�lled. The following proposition represents a key tehnial result whihleads to a generalization of the estimates of the positive part of a loal solution. Letu 2 Ulo (�; f; g; h), denote by u+ its positive part and let the notation (9) be onsideredwith respet to this new funtion.Proposition 1. Assume that u+ belongs toH and assume that the data satisfy the followingintegrability onditionsE �+22 <1; E �fu;0�#;t�2 <1; E gu;022;2;t <1; E hu;022;2;t <1;for eah t � 0: Let ' : R ! R be a funtion of lass C2; whih admits a bounded seondorder derivative and suh that '0 (0) = 0: Then the following relation holds, a.s., for eaht � 0;ZO ' �u+t (x)� dx+Z t0 E �'0 �u+s � ; u+s � ds = ZO ' ��+ (x)� dx+Z t0 �'0 �u+s � ; fs �u+s ;ru+s �� ds�Z t0 dXi=1 �'00 �u+s � �iu+s ; gi;s �u+s ;ru+s �� ds+ 12 Z t0 �'00 �u+s � ; ��hs �u+s ;ru+s ���2� ds+ d1Xj=1 Z t0 �'0 �u+s � ; hj;s �u+s ;ru+s �� dBjs :Proof :The proof of this proposition will depend on an approximation. We start with somenotation. Let n 2 N� be �xed and de�ne  to be the real funtion determined by thefollowing onditions  (0) =  0 (0) = 0;  00 = n1[ 1n ; 2n ℄:Then learly  is inreasing,  (x) = 0 if x < 1n ;  (x) = x� 32n for x > 2n ; and0 _�x� 32n� �  � x _ 0;for any x 2 R. The derivative satis�es the inequalities 0 �  0 � 1 and  0 (x) = 1 forx � 2n : We set vt =  (ut) and prove the following lemma.



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 15Lemma 1. The proess v = (vt)t>0 satis�es the following SPDEdvt = Lvtdt+ �ftdt+ bftdt+ dXi=1 �i�gi;tdt+ d1Xj=1 �hj;tdBjtwith the initial ondition v0 =  (�) and zero Dirihlet onditions at the boundary of O;where the proesses intervening in the equation are de�ned by�ft (x) =  0 (ut (x)) ft �x; u+t (x) ;ru+t (x)� ;�gt (x) =  0 (ut (x)) gt �x; u+t (x) ;ru+t (x)� ;�ht (x) =  0 (ut (x))ht �x; u+t (x) ;ru+t (x)� ;bft (x) = � 00 (ut (x))0� dXi;j=1 �aij ��iu+t � ��ju+t �� (x) + dXi=1 ��iu+t � gi;t �u+t ;ru+t � (x)�12 ��ht �u+t ;ru+t ���2 (x)� :The assumptions on u+ ensure that v belong to H: We also note that the funtions �f; bf; �gand �h vanish on the set �ut � 1n	 and they satisfy the following integrability onditions:E  �f21;1;t � E � �f�#;t�2 ; E k�gk22;2;t ; E �h22;2;t ; E  bf1;1;t <1;for eah t � 0: The equation from the statement should be onsidered in the weak L1 senseof de�nition (4) introdued in the Appendix .Proof of the Lemma :Let � 2 C1 (O) and set �t = �ut; whih de�nes a proess in H: A diret alulationinvolving the de�nition relation shows that this proess satis�es the following equationwith �� as initial data and zero Dirihlet boundary onditions,d�t =  L�t + eft + dXi=1 �ifgi;t! dt+ d1Xj=1 fhj;tdBjt ;where eft = �ft (ut;rut)� dXi;j=1 ai;j (�i�) (�jut)� dXi=1 (�i�) gi;t (ut;rut) ;fgi;t = �gi;t (ut;rut)� ut dXj=1 ai;j�j�; i = 1; :::d; fhj;t = �hj;t (ut;rut) ; j = 1; :::; d1:Then we may write Ito's formula in the form( (�t) ; 't) + Z t0 E � 0 (�s)'s; �s�ds = ( (��) ; '0) + Z t0 ( (�s) ; �s's) ds



16 Denis et al+Z t0 � 0 (�s)'s; efs� ds� Z t0 dXi=1 ��i � 0 (�s)'s� ; fgi;s� ds+ 12 Z t0 � 00 (�s)'s; ��� ehs���2� ds+ d1Xj=1 Z t0 � 0 (�s)'s; fhjs� dBjs :where ' 2 D: (The proof of this relation follows from the same arguments as the proof ofLemma 7 in [5℄.) Now we take � suh that � = 1 in an open subset O0 � O and suh thatsupp't � O0 for eah t � 0; so that this relation beomes(vt; 't) + Z t0 E � 0 (us)'s; us� ds = ( (�) ; '0) + Z t0 (vs; �s's) ds+Z t0 ('s; fs (us;rus)) ds� Z t0 dXi=1 ��i � 0 (us)'s� ; gi;s (us;rus)� ds+12 Z t0 � 00 (us)'s; jhs (us;rus)j2� ds+ d1Xj=1 Z t0 � 0 (us)'s; hj;s (us;rus)� dBjs :Now an inspetion of this relation reveals that this is in fat the de�nition equality of theequation of the lemma in the sense of the de�nition (4) in the Appendix. �Proof of Proposition 1 :It is easy to see that the proof an be redued to the ase where the funtion ' has both�rst and seond derivatives bounded. Then we write the formula of Proposition 2 to theproess v and obtainZO ' (vt) + Z t0 E �'0 (vs) ; vs� = ZO ' (v0) + Z t0 �'0 (vs) ; �fs + bfs� ds�Z t0 dXi=1 ��i �'0 (vs)� ; �gi;s� ds+ 12 Z t0 �'00 (us) ; ���hs��2� ds+ d1Xj=1 Z t0 �'0 (vs) ; �hj;s� dBjs :Further we hange the notation taking into aount the fat that the funtion  dependson the natural number n: So we write  n for  ; vnt for  n (ut) = vt and �fn;fn; �gn; �hn forthe orresponding funtions denoted before by �f; bf; �g; �h: Then we pass to the limit withn!1: Obviously one hasvn � u+2;2;t ! 0; ��rvn �ru+��2;2;t ! 0;for eah t � 0; a.s. and  0n (u)! 1fu>0g: Then one dedues that �fn � f �u+;ru+��#;t ! 0;���gn � g �u+;ru+���2;2;t ! 0;



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 17���hn � h �u+;ru+���2;2;t ! 0;for eah t � 0; a.s.On the other hand, sine the assumptions on ' ensure that j'0 (x)j � K jxj for any x 2 R;with some onstant K; we dedue that '0 (vn) 00 (u) is uniformly bounded. Therefore weinfer that '0 (vn)fn1;1;t ! 0;for eah t � 0; a.s. Finally we dedue that the above relation passes to the limit andimplies the relation stated by the theorem. �The above proposition immediately leads to the following generalization of the estimatesof the positive part obtained in the previous setion, with the same proof.Corollary 2. Under the hypotheses of the above Proposition with same notations, one hasthe following estimatesE �u+22;1;t + ru+22;2;t� � k (t)E��+22 + �fu;0+�#;t�2 + gu;022;2;t + hu;022;2;t� :3.4 A Comparison Theorem and the Maximum PrinipleAs a partiular ase of the preeding orollary we have the following omparison theorem.Theorem 5. Assume that f1; f 2 are two funtions similar to f whih satisfy the Lips-hitz ondition (H)-(i) and suh that both triples �f1; g; h� and �f2; g; h� satisfy (HD).Assume that �1; �2 are random variables similar to � and that both satisfy (HI). Letui 2 Ulo ��i; f i; g; h� ; i = 1; 2 and suppose that the proess �u1 � u2�+ belongs to H andthat one hasE �f1 �:; :; u2;ru2�� f2 �:; :; u2;ru2��#;t�2 <1; for all t � 0:If �1 � �2 a.s. and f1 �t; !; u2;ru2� � f2 �t; !; u2;ru2�, dt
 dx
 dP -a.e., then one hasu1(t; x) � u2(t; x), dt
 dx
 dP -a.e.Proof :The di�erene v = u1 � u2 belongs to Ulo ��; f ; g; h� ; where � = �1 � �2;f (t; !; x; y; z) = f1 �t; !; x; y + u2t (x) ; z +ru2t (x)�� f2 �t; !; x; u2t (x) ;ru2t (x)� ;g (t; !; x; y; z) = g �t; !; x; y + u2t (x) ; z +ru2t (x)�� g �t; !; x; u2t (x) ;ru2t (x)� ;h (t; !; x; y; z) = h �t; !; x; y + u2t (x) ; z +ru2t (x)�� h �t; !; x; u2t (x) ;ru2t (x)� :The result follows from the preeding orollary, sine � � 0 and f0 � 0 and g0 = h0 = 0:�Before presenting the next appliation we are going to reall some notation used in [5℄. Ford � 3 and some parameter � 2 [0; 1[ we used the notation��� = �(p; q) 2 [1;1℄2 = d2p + 1q = 1� �� ;



18 Denis et alL�� = X(p;q)2��� Lp;q ([0; t℄�O)kuk��;t := inf( nXi=1 kuikpi;qi; t = u = nXi=1 ui; ui 2 Lpi;qi ([0; t℄�O) ;(pi; qi) 2 ���; i = 1; :::n; n 2 N�g :Remark 4. In the paper [5℄ we have omitted the ases d = 1; 2: In fat there would werenot muh to be hanged, in order to over that ases. One should only had de�ned�� = �(p; q) 2 [1;1℄2 = 2�2� � 2 1p + 1q = 2�2� � 2 + �� ;��� = �(p; q) 2 [1;1℄2 = 2�2� � 2 1p + 1q = 1� ��and then should had kept doing the alulations with the onvention that 2�2��2 = 1 ford = 1:We want to express these quantities in the new notation introdued in the subsetion 2.1and to ompare the norms kuk��;t and kuk�#;t : So, we �rst remark that ��� = I �1; 11�� ; d2(1��) ;1�and that the norm kuk��;t oinides with kuk��� ;t = kukI�1; 11�� ; d2(1��) ;1�;t : On the otherhand, we reall that the norm kuk�#;t is assoiated to the set I �2; 1; 2�2��1 ; 2� ; i.e. kuk�#;toinides with kukI�2;1; 2�2��1 ;2�;t : Then we may prove the following result.Lemma 2. One has kuk�#;t �  kuk��;t ; for eah u 2 L��; with some onstant  > 0:Proof :The points de�ning the sets I �1; 11�� ; d2(1��) ;1� and I �2; 1; 2�2��1 ; 2� obviously satisfythe inequalities 1 � 2; 11� � � 1; d2 (1� �) � 2�2� � 1 = 2dd+ 2 ;1 � 2;and hene for eah pair (p; q) 2 ���; there exists a pair (bp; bq) 2 I �2; 1; 2�2��1 ; 2� suh thatp � bp and q � bq: This implies the inlusionL�� = X(p;q)2��� Lp;q ([0; t℄�O) � LI�2;1; 2�2��1 ;2�;t = X(p;q)2I(2;1; 2�2��1 ;2)Lp;q ([0; t℄�O) ;and the asserted inequality. �We now onsider the following assumption:Assumption (HD�p)E �f0��;t�p +���g0��2��;t�p2 +���h0��2��;t�p2! <1;



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 19for eah t � 0; where � 2 [0; 1[ and p � 2 are �xed numbers. By the preeding Lemma andsine in general one has kuk1;1;t �  kuk��;t ; it follows that this property is stronger than(HD#).As now we want to establish a maximum priniple, we have to assume that � is boundedwith respet to the spae variable, so we introdue the following:Assumption (HI1p) E k�kp1 <1;where p � 0 is a �xed number.Then we have the following result whih generalizes the maximum priniple to the stohas-ti framework.Theorem 6. Assume (H), (HD�p), (HI1p) for some � 2 [0; 1[, p � 2; and that theonstants of the Lipshitz onditions satisfy �+ �22 + 72�2 < �. Let u 2 Ulo (�; f; g; h) besuh that u+ 2 H: Then one hasE u+p1;1;t � k (t)E �+p1 + �f0;+��;t�p +���g0��2��;t�p2 +���h0��2��;t�p2! ;where k (t) is onstant that depends of the struture onstants and t � 0:Proof:Set v = U ��+; bf; g; h� the solution with zero Dirihlet boundary onditions, where thefuntion bf is de�ned by bf = f + f0;�; with f0;� = 0_ ��f0� : The assumption on the Lip-shitz onstants ensure the appliability of the theorem 11 of [5℄, whih gives the estimateE kvkp1;1;t � k (t)E �+p1 + �f0;+��;t�p +���g0��2��;t� p2 +���h0��2��;t� p2! ;beause bf0 = f0;+: Then (u� v)+ 2 H and we observe that all the onditions of thepreeding theorem are satis�ed so that we may apply it and dedue that u � v: Thisimplies u+ � v+ and the above estimate of v leads to the asserted estimate. �Remark 5. As noted in Subsetion 2.3 the ondition u+ 2 H means that u � 0 on thelateral boundary [0;1[��O: Similarly, onerning the next theorem, we observe that theondition (u�M)+ 2 H means that u �M on the lateral boundary [0;1[��O.Let us generalize the previous result by onsidering a real It� proess of the formMt = m+ Z t0 bsds+ d1Xj=1 Z t0 �j;sdBjs ;where m is a real random variable and b = (bt)t�0 ; � = (�1;t; :::; �d;t)t�0 are adaptedproesses.Theorem 7. Assume (H), (HD�p), (HI1p) for some � 2 [0; 1[, p � 2; and that theonstants of the Lipshitz onditions satisfy � + �22 + 72�2 < �. Assume also that m andthe proesses b and � satisfy the following integrability onditionsE jmjp <1; E�Z t0 jbsj 11�� ds�p(1��) <1; E �Z t0 j�sj 21�� ds� p(1��)2 <1;



20 Denis et alfor eah t � 0: Let u 2 Ulo (�; f; g; h) be suh that (u�M)+ belongs to H: Then one hasE (u�M)+p1;1;t � k (t)Eh (� �m)+p1 + �f(�; �;M; 0) � b�+ ��;t!p +���g(�; �;M; 0)��2��;T� p2 +�jh(�; �;M; 0) � �j2��;T� p2 iwhere k (t) is the onstant from the preeding orollary. The right hand side of this es-timate is dominated by the following quantity whih is expressed diretly in terms of theharateristis of the proess M ,k (t)E h (� �m)+p1 + jmjp + �f0;+��;t�p +���g0��2��;T� p2 +���h0��2��;T� p2+�Z t0 jbsj 11�� ds�p(1��) +�Z t0 j�sj 21�� ds� p(1��)2 i:Proof:One immediately observes that u�M belongs to Ulo �� �m; f; g; h� ; wheref (t; !; x; y; z) = f (t; !; x; y +Mt (!) ; z)� bt (!) ;g (t; !; x; y; z) = g (t; !; x; y +Mt (!) ; z) ;h (t; !; x; y; z) = h (t; !; x; y +Mt (!) ; z) � �t (!) :In order to apply the preeding theorem we only have to estimate the zero terms. So wesee that f0t = ft (Mt; 0) � bt; g0t = gt (Mt; 0) ; h0t = ht (Mt; 0) � �t; and hene we get the�rst estimate from the statement. Further we may writef0;+t � C jMtj+ f0;+t + jbtj ;��g0t ��2 � 2C2 jMtj2 + 2 ��g0t ��2 ;���h0t ���2 � 3C2 jMtj2 + 3 ��h0t ��2 + 3 j�tj2 :Then we have the estimatesf0;+��;t � f0;+��;t + C sups�t jMtj+�Z t0 jbsj 11�� ds�1�� ;��g0��2��;t � 2��g0��2��;t + 2C2 sups�t jMtj2 ;h0��;t � 3��h0��2��;t + 3C2 sups�t jMtj2 + 3�Z t0 j�sj 21�� ds�1�� :On the other hand, one hassups�t jMtj � jmj+ Z t0 jbsj ds+ sups�t jNtj ;



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 21where we have denoted by Nt the martingalePd1j=1 R t0 �j;sdBjs : The inequality of Burkholder-Davis -Gundy impliesE sups�t jMtjp � E "jmjp +�Z t0 jbsj ds�p +�Z t0 j�sj2 ds�p2# ;and this allows us to onlude the proof. �4 Burgers type equationsAll along this setion, we relax the hypothesis on the preditable random funtion g whihis assumed to be loally Lipshitz with polynomial growth with respet to y. We shallgeneralize some results from Gyöngy and Rovira [7℄. Indeed, we shall assume that theassumption (H) holds, but instead of the ondition (iii) we assume the following:Assumption (G): there exists two onstants C > 0 and r � 1, and two funtions �g; ĝsuh that(i) the funtion g an be expressed by : g(t; !; x; y; z) = �g(t; !; x; y; z) + ĝ(t; !; y),8(t; !; x; y; z) 2 R+ � 
�O � R � Rd .(ii) �Pdi=1 jgi(t; !; x; y; z)� gi(t; !; x; y0 ; z0)j2� 12 � C�1+ jyjr+ jy0jr� jy� y0 j+ � jz� z0 j;(iii) �Pdi=1 j�gi(t; !; x; y; z) � �g0i (t; !; x)j2� 12 � Cjyj + � jzj,where � is the onstant whih appears in assumption (H).We �rst onsider equation (1) with null Dirihlet boundary onditionut(x) = 0; for all t > 0; x 2 �O :and the initial ondition u(0; :) = �(:)The e�et of the polynomial growth ontained in the term ĝ will be aneled by thefollowing simple lemmaLemma 3. Let u 2 H10 (O),  2 C1�R� with bounded derivative and F a real-valuedbounded measurable funtion. ThenZO �i� (u(x))�F (u)(x) dx = 0; 8i = 1; � � �; d:Proof : We de�ne G(y) = Z y0  0(z)F (z) dz: 8y 2 R;so that �iG(u) = G0(u)�iu = �i� (u)�F (u). Then, we dedue that the integral from thestatement beomes RO �i�G(u(x))� dx, whih is null beause u 2 H10 (O). �



22 Denis et alThe natural idea is to approximate the oe�ient g by a sequene of globally Lipshitzfuntions. To this end we de�ne, for all n � 1, the oe�ient gn by:8(t; w; x; y; z) 2 R+ � 
�O � R � Rd ; gn(t; w; x; y; z) = g(t; w; x; ((�n) _ y) ^ n; z):In the same way, we de�ne �gn, ĝn; so that gn = �gn + ĝn.One an easily hek that for all n 2 N, gn;0 = g0 and that the following relations hold:� dXi=1 jgni (t; !; x; y; z) � gni (t; !; x; y0 ; z0)j2� 12 � C�1 + 2nr� jy � y0 j+ � jz � z0 j ;� dXi=1 j�gni (t; !; x; y; z) � �g0i (t; !; x)j2� 12 � C�1 + jyj�+ � jz � z0 j ; (11)with the same onstants C, �, r as in hypothesis (G), so we are able to apply Theorem11 of [5℄ (or Theorem 3 above) and get the solutions un = U(�; f; gn; h) for all n = 1; 2; :::.We know that for t �xed, E kunkp2;1;t is �nite. The key point is that this quantity doesnot depend on n. This is the aim of the followingLemma 4. Assume that onditions (H)(i)-(ii), (G), (HD�p) and (HI1p) are ful�lledfor some � 2 [0; 1[ and p � 2, and that the onstants of the Lipshitz onditions satisfy�+ �22 + 72�2 < �. Then, for �xed t > 0,E kunkp1;1;t � k (t)E �k�kp1 + f0�p�;t + j�g0j2�p=2�;t + jh0j2�p=2�;t � ;where k(t) only depends on C, � and �.Proof. Thanks to the It�'s formula (see Lemma 7 in [5℄) , we have for all l � 2, n 2 N andt > 0: ZO junt (x)jl dx+ Z t0 E �l (uns )l�1 sgn(uns ); uns � ds = ZO j�(x)jl dx+ l Z t0 ZO sgn(uns )juns (x)jl�1f(s; x; uns ;runs ) dxds� l(l � 1) dXi=1 Z t0 ZO juns (x)jl�2�iuns (x) gi(s; x; uns ;runs ) dx ds+ l d1Xj=1 Z t0 ZO sgn(uns )junt (x)jl�1hj(s; x; uns ;runs ) dxdBjs+ l(l � 1)2 d1Xj=1 Z t0 ZO junt (x)jl�2h2j (s; x; uns ;runs ) dx ds ;P -almost surely.The midle term in the the right hand side an be written asdXi=1 Z t0 ZO juns (x)jl�2�iuns (x) gni (s; x; uns ;runs ) dx ds= dXi=1 Z t0 ZO juns (x)jl�2�iuns (x) �gni (s; x; uns ;runs ) dx ds



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 23beause by Lemma 3 we haveZ t0 ZO juns (x)jl�2�iuns (x) ĝni (s; uns ) dx ds = 0:Now, as j�g(t; !; x; uns ;runs )j � j�g0(t; !; x)j + Cjuns j + � jruns j;and as f and h satisfy similar inequalities with onstants whih do not depend on n, we anfollow exatly the same arguments as the ones in [5℄ (Lemmas 12, 14, 16 and 17) replaingg by �g and this yields the result.Let us remark that in [5℄, we �rst assume that initial onditions are bounded and then passto the limit. Here, it is not neessary sine a priori we know that E kunkp1;1;t is �nite.We need to introdue the followingDe�nition 2. We denote by Hb the subset of proesses u in H suh that for all t > 0E k u k21;1;t< +1:We are now able to enoune the following existene result whih gives also uniform esti-mates for the solution :Theorem 8. Assume that onditions (H)(i)-(ii), (G), (HD�p) and (HI1p) are ful�lledfor some � 2 [0; 1[ and p � 2, and that the onstants of the Lipshitz onditions satisfy�+ �22 + 72�2 < �. Then the equation (1) admits a unique solution u 2 Hb. MoreoverE kukp1;1;t � k (t)E �k�kp1 + f0�p�;t + j�g0j2�p=2�;t + jh0j2�p=2�;t � ;where k is a funtion whih only depends on struture onstants.Proof: We keep the notations of previous Lemma and so onsider the sequene (un)n2N .For all n 2 N, we introdue the following stopping time:�n = infft � 0; kunk1;1;t > ng:Now, let n 2 N be �xed, we set � = �n ^ �n+1. De�ne now for i = n; n+ 1vit = � uit if t < �Pt��ui� elsewhere,where (Pt)t�0 is the semigroup assoiated to A with zero Dirihlet ondition.One an verify that vi = U(�;1ft��g � f;1ft��g � gn+1;1ft��g � h). It is lear that theoe�ients of the equation satis�ed by vi ful�ll hypotheses (H) and that moreover 1ft��g �gn+1 is globally Lipshitz ontinuous. Hene, by Theorem 3 (or Theorem 11 of [5℄) thisequation admits a unique solution. So, we onlude that vn = vn+1 whih implies that�n+1 � �n and un = un+1 on [0; �n℄. Thanks to previous Lemma, we havelimn!+1 �n = +1; P � a:e:



24 Denis et alWe de�ne ut = limn!1 unt . It is easy to verify that u is a weak solution of (1) and that itsatis�es the announed estimate.Let us prove that u is unique. Let v be another solution in Hb. By the same reasoning asthe one we have just made, one an prove that u = v on eah [0; �n℄ where for all n 2 N,�n = infft � 0; kvk1;1;t > ng:As v 2 Hb, limn!+1 �n = +1 a.e. and this leads to the onlusion. �Remark 6. The funtion k whih appears in the above theorem only depends on strutureonstants but not on r.In the setting of this setion, with (H) (iii) replaed by (G), one may de�ne loal solutionswithout lateral boundary onditions by restriting the attention to proesses u 2 Hlo suhthat kuk1;1;t <1 a.s. for any t � 0 and suh the relation 6 of the de�nition is satis�ed.Then Proposition 1, Corollary 2 and Theorems 5, 6, 7 of the preeding setion still holdfor suh bounded solutions. The proof follows from the stopping proedure used in theproof of Theorem 8.5 AppendixAs we have relaxed the hypothesis on f0 whih does not neessarily satisfy an L2-onditionbut only L1, we need to introdue another notion of solution with null Dirihlet onditionsat the boundary of O; whih is a solution in the L1 sense.5.1 Weak L1 -solutionSine this notion intervenes only as a tehnial tool, we develop only the strilly neessaryaspets related to it. It is de�ned by using the duality of L1 with L1: To this end weintrodue a few notations onerning the extension of our operator to L1(O).Let (Pt)t�0 be the semi-group (in L2(O)) whose generator is L = �A. It is well-known thatfor all t � 0, Pt an be extended to a sub-Markovian ontration of L1(O) that we denoteby P (1)t . Following [2℄, Proposition 2.4.2, we know that (P (1)t )t�0 is a strongly ontinuousontration semi-group in L1(O), whose generator L(1) is the smallest losed extension onL1(O) of (L;D(A)). We set A(1) = �L(1) and denote by D(A(1)) its domain.Let us also put the following notation:D1 (A) = fu 2 D (A) \ L1 (O) =Au 2 L1 (O)g ;[u℄1 = kuk1 + kAuk1 ;for eah u 2 D1 (A) : It is not di�ult to see that the spae D1 (A) endowed with thenorm [�℄1 is a Banah spae and that it is dense both in D (A) and D �A(1)� : Then asuitable spae of test funtions is de�ned byD0 = C1 ([0;1[)
D1 (A) :We start presenting some fats in the deterministi setting. Analogous to Lemma 2 of [4℄one has the following result.



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 25Lemma 5. If u : R+ ! L1 (O) is suh thatZ t0 ZO jus (x)j dxds <1and Z t0 ZO (us; �t'�A's) ds = 0;for any ' 2 D0; then u = 0; as an element of L1lo �R+ ;L1 (O)� :This last lemma allows us to extend the notion of solution of the equation�tu� Lu = w (�)to the L1 framework as follows.De�nition 3. Let w 2 L1lo �R+ ;L1 (O)� and � 2 L1 (O) be given. Then we say thatu 2 L1lo �R+ ;L1 (O)� is a weak L1 -solution of the equation (�) with the initial onditionu0 = � and zero Dirihlet onditions at the boundary of O provided that one hasZ 10 [(ut; �t'�A't) + (wt; 't)℄ dt+ (�; '0) = 0;for any ' 2 D0:The solution is expressed in terms of the semigroup �P (1)t �t�0 as stated in the next lemmawith same proof as the one of Lemma 3 in [4℄.Lemma 6. If w 2 L1lo �R+ ;L1 (O)� and � 2 L1 (O) ; then there exists a unique weak L1-solution of (�) with initial ondition u0 = � and zero Dirihlet boundary onditions and itis expressed by ut = Z t0 P (1)t�swsds+ P (1)t �;for any t � 0:We now turn out to the stohasti ase.The spae of all preditable proesses with trajetories in Lilo �R+ ;Li (O)� ; a.s., and suhthat E kukii;i;t <1;for eah t � 0; will be denoted by P �Li� ; for i = 1; 2:De�nition 4. Now let w 2 P �L1� ; w0i; w00j 2 P �L2� ; i = 1; :::; d; j = 1; :::; d1 and � 2L1 �
;F0; P ;L1 (O)� be given and set ; w0 = �w01; :::; w0d� ; w00 = �w001; :::; w00d1� : Then wesay that a proess u 2 P �L1� represents a weak L1 -solution of the equationdut = Lutdt+ wtdt+ dXi=1 �iw0it dt+ d1Xj=1w00jt dBjt (��)



26 Denis et alwith initial ondition u0 = � and zero Dirihlet onditions at the boundary of O providedthat the following relation holds, a.s.,Z 10 "(us; �s'�A's) + (ws; 's)� dXi=1 �w0is ; �i'�# ds+Z 10 �w00js ; 's� dBjs + (�; '0) = 0;for eah test funtion ' 2 D0:It is easy to see that, in the ase where, besides the preeding onditions, the trajetoriesof the solution u belong a.s. to L2lo �R+ ;H10 (O)� ; the above relation is equivalent toZ 10 "(us; �s')� E (us; 's) + (ws; 's)� dXi=1 �w0is ; �i'�# ds+Z 10 �w00js ; 's� dBjs + (�; '0) = 0:So, on aount of the Proposition 7 of [4℄ and of the preeding lemma, if w 2 P �L2� and� 2 L2 �
;F0; P ;L2 (O)� the notion of a weak L1-solution of (**) just introdued oinideswith the notion of a weak solution previously de�ned, with f = f0 = w; g = g0 = w0 andh = h0 = w00: Moreover, we have the following general expliit expression for the solution,similar to Proposition 7 of [4℄.Lemma 7. If w 2 P �L1� ; w0 = �w01; :::; w0d� ; w00 = �w001; :::; w00d1� ; w0k; w00l 2 P �L2� ; k =1; :::; d; l = 1; :::; d1 and � 2 L1 �
;F0; P ;L1 (O)� ; then there exists a unique weak L1-solution of the equation (��) : The solution is expressed byut = P (1)t � + Z t0 P (1)t�swsds+ Z t0 Pt�s dXi=1 �iw0is! ds+ d1Xj=1 Z t0 Pt�sw00js dBjs :5.2 Ito's formulaWe now an prove the following version of Ito's formula.Proposition 2. Let us assume hypotheses of the preeding Lemma and that u belongs toH. Let ' : R ! R be a funtion of lass C2; assume that '0 and '00 are bounded and'0 (0) = 0: Then the following relation hold a.s. for all t � 0:ZO ' (ut (x)) dx+ Z t0 E �'0 (us) ; us� ds = ZO ' (� (x)) dx+ Z t0 �'0 (us) ; ws� ds�Z t0 dXi=1 ��i �'0 (us)� ; w0is � ds+ 12 Z t0 �'00 (us) ; ��w00s ��2� ds+ d1Xj=1 Z t0 �'0 (us) ; w00js � dBjs :



Comparison theorem and Maximum priniple for quasilinear Stohasti PDE's 27Proof : We denote by v = (vt)t�0 the proess de�ned byvt = Z t0 P (1)t�swsds:Let us de�ne for all n 2 N� and t � 0,�n = P (1)1n �; vnt = P 1n vt; wnt = P (1)1n wt:Sine u belongs to H, then proess � + v also belongs to H.We �x n for the moment. It is known that the semigroup has bounded densities, so thatthere exists some onstants Kt; t > 0; suh thatP (1)t f1 � Kt kfk1 ;and AP (1)t f2 � Kt kfk1 ;for any f 2 L1 (O) : So, it is lear that �n belongs to L1 (
;F0; P ;L1 (O)TD(A)) andthat for all T > 0 (wnt )t2[0;T ℄ belongs to L1(
 � [0; T ℄;D(A)). As a onsequene, vn isD(A)-di�erentiable and for all t > 0:�tvnt = wnt +Avnt :Consider now sequenes (w0i;k)k2N� , 1 � i � d of adapted proesses in C1 ([0;1)) 
L2(
) 
 D(A3=2) whih onverge to w0i, 1 � i � d, in P(L2) and sequenes (w00j;k)k2N� ,1 � j � d1 of adapted proesses in C1 ([0;1)) 
 L2(!) 
 D(A) whih onverge to w00j ,1 � j � d1, in P(L2).We set for all k 2 N� : un;k = U(�n; wn; w0;k; w00;k);then we know that for all tun;kt = Pt�n + Z t0 Pt�swns ds+ Z t0 Pt�s dXi=1 �iw0i;ks ! ds+ d1Xj=1 Z t0 Pt�sw00j;ks dBjs :Lemma 6 in [5℄ ensures that un;k � vn = U(�n; 0; w0;k; w00;k) is an L2(O)-valued semi-martingale hene un;k is also a semi-martingale sine vn is di�erentiable.Thanks to the Ito's formula (see Lemma 7 in [5℄), we haveZO '�un;kt (x)� dx = ZO ' (�n (x)) dx� Z t0 �'0 �un;ks � ; Aun;ks � ds+ Z t0 �'0 �un;ks � ; wns � ds�Z t0 dXi=1 ��i �'0 (us)� ; w0i;ks � ds+12 Z t0 �'00 (us) ; ���w00;ks ���2� ds+ d1Xj=1 Z t0 �'0 (us) ; w00j;ks � dBjs :As a onsequene of Lemma 6 in [5℄, we know that un;k tends to un in H so, making ktend to +1 and using the fat that for all k,�Z t0 �'0 �un;ks � ; Aun;ks � ds = Z t0 E �'0 �un;ks �un;ks � ds;



28 Denis et alwe get :ZO ' (unt (x)) dx+ Z t0 E �'0 (uns ) ; uns � ds = ZO ' (�n (x)) dx+ Z t0 �'0 (uns ) ; wns �ds�Z t0 dXi=1 ��i �'0 (uns )� ; w0is � ds+ 12 Z t0 �'00 (uns ) ; ��w00s ��2� ds+ d1Xj=1 Z t0 �'0 (uns ) ; w00js �dBjs :As we assume that � + v belongs to H, un tends to u in H as n tends to +1, solimn!+1Z t0 E �'0 (uns ) ; uns �ds = Z t0 E �'0 (us) ; us� dsMoreover, for all n Z t0 �'0 (uns ) ; wns � ds = Z t0 �'0 (uns ) ; P (1)1n ws� ds= Z t0 �P 1n'0 (uns ) ; ws� dsSine '00 is bounded and un tends to u in H, it is easy to prove that P 1n'0 (un) onvergesto '0 (u) in P(L2). Then, thanks to the dominated onvergene theorem, we get that fora subsequene: limn!+1Z t0 �'0 (uns ) ; wns � ds = Z t0 �'0 (us) ; ws� ds:We then obtain the result by making n tend to +1 in the other terms of the equalitywithout any problem. �Referenes[1℄ Aronson, D.G. and Serrin J. (1967) : Loal behavior of solutions of quasi-linearparaboli equations. Arhive for Rational Mehanis and Analysis, vol. 25 (1967),pp. 81-122. .[2℄ Bouleau N. and Hirsh F. (1993) : Dirihlet forms and analysis on Wiener spae,Kluwer.[3℄ Denis L. (2004) : Solutions of SPDE onsidered as Dirihlet Proesses, BernoulliJournal of Probability, Vol. 10 (5) .[4℄ Denis L. and Stoia, I. L. (2004) : A general analytial result for non-linear s.p.d.e.'sand appliations, Eletroni Journal of Probability, Vol. 9, p. 674-709.[5℄ Denis L., Matoussi A. and Stoia, I. L. (2005) : Lp estimates for the uniform norm ofsolutions of quasilinear SPDE's. Probab. Theory Relat. Fileds 133, 437-463.[6℄ Fukushima M., Oshima Y. and Takeda M. (1994) : Dirihlet Forms and SymmetriMarkov Proesses, de Gruyter studies in Math.
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