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Abstract

We prove a maximum principle and comparison theorem for quasilinear parabolic
Stochastic PDEs, similar to the well known results in the deterministic case. The
proofs are based on estimates of the positif part of the solution. Moreover we establish
an existence result and estimates for the Burger’s SPDE with Dirichlet condition.
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1 Introduction

In the theory of Partial Differential Equations, the maximum principle plays an important
role and there is a huge literature on this subject. It permits one to study the local
behavior of solutions of PDE since it gives a relation between the bound of the solution on
the boundary and a bound on the whole domain. The maximum principle for quasilinear
parabolic equations was proved by Aronson -Serrin (see Theorem 1 of [1]) in the following
form.

Theorem 1. Let u be a weak solution of a quasilinear parabolic equation of the form

o = divA (t,z,u, Vu) + B (t,z,u, Vu)
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in the bounded cylinder 10, T[x©O C R, Ifu < M on the parabolic boundary {[0, T[xdO}U
{{0} x O}, then one has

where C' depends only on T, the volume of O and the structure of the equation, while

f (A, B) is directly expressed in terms of some quantities related to the coefficients A and
B.

The method of proof was based on Moser’s iteration scheme adapted to the nonlinear case.
This method of Aronson and Serrin was further adapted to the stochastic framework in [5],
obtaining some LP a priori estimates for the uniform norm of the solution of the stochastic
quasilinear parabolic equation.

However the result of that paper is not flexible enough to handle all the range of applications
one would be interested in. The aim of the present paper is to prove a generalization of
that result, to deduce a stochastic version of the maximum principle of Aronson -Serrin
and to show some applications, particularly to Burgers type equations.

More precisely, we study the following stochastic partial differential equation (in short
SPDE) for a real -valued random field u; () = u (¢, ),

d
duy () = Luy (z) dt + fi (2w (2), Vuy (z)) dt + Z 0igit (@, u (z) , Vuy (x)) di
i=1
d; .
+> " hjs (2, (2), Vg (2)) dB (1)
j=1

with a given initial condition ug = &, where L is a symmetric, uniformly elliptic, second
order differential operator defined in some bounded open domain @ C R and f,¢;,i =
1,...,d,h;,5 =1,...,dy are nonlinear random functions. Let us note that in order to simplify
the appearance of the equation we have chosen to write it as a sum of a linear uniformly
parabolic part and two nonlinear terms, expressed by f and g in (1).

One of the main results of this paper is Theorem 7. For simplicity, let us give a conse-
quence of it. Under suitable assumptions on f, g, h (Lipschitz continuity and integrability
conditions), we have

Theorem 2. Let M > 0, p > 2 and u be a solution of (1) in the weak sense. Assume that
u < M on the parabolic boundary {[0, T[x00} U {{0} x O}, then for all t € [0,T]:

4P 0,M\+||*P 0,M2|[*P/2 0,M [2|*P/2
Bl = M) [ oy < k@) B ([ + (10 P15 + 1 2)1577)
where fOM(t,x) = f(t,2,M,0), g"M(t,x) = g(t,z, M,0), hOM(t,z) = h(t,z, M,0) and k
is a function which only depends on the structure constants of the SPDE, || - ||loo,00;t 15 the
uniform norm on [0,t] x O and ||”z,t is a certain norm which is precisely defined below.

The paper is organized as follows : in section 2 we introduce notations and hypotheses and
we take care to detail the integrability conditions which are used all along the paper.

In section 3, we prove the maximum principle and a comparison theorem. To this end we
first study the solutions with null Dirichlet conditions and establish a kind of Ito’s formula
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for the positive part of the solution. Then in section 4 we extend the result to the case
of Burger’s type SPDE’s with Dirichlet condition and so generalize results obtained by
Gyongy and Rovira [7]. Finally in the appendix we present some technical facts related to
solutions in the L!-sense which are used in the proofs of the preceding sections.

2 Preliminaries

2.1 [Pi-gpaces

Let O be an open bounded domain in R?. The space L?(Q) is the basic Hilbert space of
our framework and we employ the usual notation for its scalar product and its norm,

(u,) :/ou(m)v(m)dx, |l = </Ou2 (z)daz)é.

In general, we shall use the notation
() = [ ula)oo)
O

where u, v are measurable functions defined in @ and uv € L'(O).
Another Hilbert space that we use is the first order Sobolev space of functions vanishing
at the boundary, H} (O). Its natural scalar product and norm are

d 1
(1.9) g1 o) = () + /O S @ (2)) (Br0 (@) da, [l g0y = (1l + 19037
=1

We shall denote by Hlloc((’)) the space of functions which are locally square integrable in
O and which admit first order derivatives that are also locally square integrable.

For each ¢ > 0 and for all real numbers p, ¢ > 1, we denote by LP-4([0,¢] x O) the space of
(classes of) measurable functions w : [0,#] x O — R such that

lelpgs 2= ( A ([ juteorp ac) " dt)

is finite. The limiting cases with p or ¢ taking the value oo are also considered with the

use of the essential sup norm. We identify this space, in an obvious way, with the space

L9(]0,t]; LP (O)), consisting of all measurable functions u : [0,¢] — L” (O) such that
1

1/q

t t q
/ lus|} ds < oc. This identification implies that (/ [Jusll; ds) = [Jul|p,q;¢-
0 0
The space of measurable functions u : Ry — L2 (O) such that [ullg9,; < oo, for each

t > 0, is denoted by L% (Ry;L?(0)). Similarly, the space L7, (Ry; H} (O)) consists of

loc loc

all measurable functions u : Ry — H{ (O) such that
ullg g + Vully s, < oo,

for any ¢ > 0.
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Next we are going to introduce some other spaces of functions of interest and to discuss
a certain duality between them. They have already been used in [1] and [5] but here
intervenes a new case and we change a little bit the notation used before in a way which,
we think, make things clearer.

Let (p1,q1), (p2,q2) € [1,00]% be fixed and set

I=1(p,q1,02.02) i= {(p,0) € [1,0]" / T p € [0, 1] st

=pi+(1—p)i}-

1
p p1 b2 q q1 q2

11

o q) , (p, q) belonging to I, is a segment contained

This means that the set of inverse pairs (
in the square [0, 1]2, with the extremities (pil, qu) and (p%, q%) . There are two spaces of
interest associated to I. One is the intersection space

Lrg= () L"([0,4] x 0).
(p,a)el

Standard arguments based on Hélder’s inequality lead to the following inclusion (see e.g.
Lemma 2 in [5])

LPY9(0,t] x O) N LP>% ([0,¢] x O) C LP7([0,t] x O),
for each (p,q) € I, and the inequality

el e < Nallpy gy VMl

D,q;t P1,q1; p2,q2;t?

for any u € LP19' ([0,t] x O) N LP2:9> ([0,t] x O) . Therefore the space Ly, coincides with
the intersection of the extreme spaces,

Ly = LPY% ([0,t] x O) N LP*% ([0, ] x O)
and it is a Banach space with the following norm

HUHI;t = Hqul,ql;t N ||u||p2,q2;t'
The other space of interest is the algebraic sum
L= " 710, x 0),
(p,g)el

which represents the vector space generated by the same family of spaces. This is a normed
vector space with the norm

n n
HUHI;t = lnf{z ||ui||pi,qi;t / U= Zuiaui € Lpit ([U,t] X O) s (pu(Il) €l,i=1,.mne N*} .

i=1 i=1
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Clearly one has L't ¢ LY ([0,#] x O) and ||lu, ,, < c|lul|"", for each u € L', with a
certain constant ¢ > 0. a

We also remark that if (p, q) € I, then the conjugate pair (p’,q’), with ;74-1% =
belongs to another set, I’, of the same type. This set may be described by

1 1 _
Lyl =1,

1 1 1 1
I'=1T1"(p1,q1,p2, @2 :z{p',q' 3(p.q GIS-t-—+—=—+—=1}
< =) B et e bt

and it is not dlfﬁcult to Check that r (pl, ql,pg, Q)

¢, are defined by l = q1 +1L =1 _|_ LQ
1

Moreover, by Holder s 1nequahty, it follows that one

t
AégmmvwmmwswmmW% 2)

foranyu € Lyand v € L', This inequality shows that the scalar product of L2 ([0, #] x O)
extends to a duality relation for the spaces Lr,; and L,
Now let us recall that the Sobolev inequality states that

I(p,d},ph,qb), where p}, ¢}, ph and
=1

lullye < es [ Vull,,

for each u € H{ (O), where cg > 0 is a constant that depends on the dimension and
2* = 24 if ¢ > 2, while 2* may be any number in ]2, 00[ if d = 2 and 2* = oo if d = 1.
Therefore one has

I

foreach ¢ > 0 and each u € L7 (Ry; Hy (O)) . Andifu € L2 (Ry; L? (0) ) N L7, (Ry; Hf (O)) ,
one has

224 < CS Vull, 2t

M

ol e V el s < 1 (0l e + IVl )

with ¢; = ¢cg V 1.
One particular case of interest for us in relation with this inequality is when p; = 2,¢; =
oo and py = 2%,q9 = 2. If T = 1(2,00,2%,2), then the corresponding set of associated

conjugate numbers is I' = I' (2,00,2*,2) = 1 (2 1, 5= 1,2) , where for d = 1 we make the

convention that = 1. In this particular case we shall use the notation Ly, := Ly,

2* 1
and L#;t := L' and the respective norms will be denoted by

lull e = Nl rye = lllg o0 V llullge o Tl = lul

Thus we may write
1
2 2 2
lull g < o1 (Nl oo + 1Vl 2) (3)

for any u € Ly%, (R+;L2( ))leoc (R+;H[} ((9)) and ¢ > 0 and the duality inequality

becomes .
| [ atsavs.0) dads <l ol
0 JO

for any u € Ly, and v € L’%&;t.
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2.2 Hypotheses

Let {B; := (Bg)je{l,m,dl} }4>0 be a di-dimentional Brownian motion defined on a standard
filtered probability space (Q,]—", (Ft)e>o0, P).

Let A be a symmetric second order differential operator given by A := —L = — Zg’jzl 9i(a®7 9;).
We assume that a is a measurable and symmetric matrix defined on O which satisfies the
uniform ellipticity condition

MNEP <D aMi(2)e e < AP, VzeO, EeR, (4)
(]

where A and A are positive constants. The energy assocoiated with the matrix a will be
denoted by

d
E(wv) =Y / a"I (z) 0w (z)0jv(z) da. (5)
ij=1"9

It’s defined for functions w, v € H}(0), or for w € H}.
support.
We consider the semilinear stochastic partial differential equation (1) for the real-valued
random field u;(x) with initial condition u(0,.) = £(.), where £ is a Fy-measurable random
variable with values in L3, (O).
We assume that we have predictable random functions

(0) and v € H}(O) with compact

f R, xQxOxRxR 5 R,
h @ R, xQxOxRxR - RY
g = (g1,-94d) : Ry xQAx O xR xR —» R?

We define

f('a B ',0,0) = fUa h(a K '70’0) = ho and g(a K '70a0) = gU = (g[l)a 793)

We considere the following sets of assumptions :

Assumption (H): There exist non negative constants C, a, 8 such that

(i) \f(t,w,z,y,z) —f(t,w,g:,y',z/)\ < C(|y_y" + ‘Z—Z’D
1

(li) (Z;h:l \hj(t,w,zz,y,z) - hj(tawaxaylazl)F) ’ < C‘y _y/| + B ‘Z - Zl|a

N

cos d / ’ 2 l /
(111) (Zi:l |g’i(tawa$ayaz) —gi(t,w,fE,y y 2 )‘2) < C|y ) ‘ + O[|Z -z ‘

(iv) the contraction property (as in [5]) : a+ i <.

2
2

Moreover we introduce some integrability conditions on f%, ¢%, A® and the initial data ¢ :
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Assumption (HD) local integrability conditions on f°, ¢° and h° :

t
E/O /K (I£2 ()] + |g? (=) ]> + |h* )dedt < oo

for any compact set K C O, and for any ¢ > 0.

Assumption (HI) local integrability condition on the initial condition :

E/K £(2)Pdz < o0

for any compact set K C O.
Assumption (HD#)

)2 2 2
B (1)l Ve 1001, ) <o
for each ¢ > 0.

Sometimes we shall consider the following stronger forms of these conditions:

Assumption (HD2)

2 2 2
E (HfOHQ,Q;t + HQOHQ,Q;t + HhOHQ,Q;t) < 00,
for each ¢ > 0.
Assumption (HI2) integrability condition on the initial condition :
E[¢|* < co.

Remark 1. Note that (2,1) is the pair of conjugates of the pair (2,00) and so (2,1)
belongs to the set I' which defines the space L ,. Since |[v[|y;, < \/ZHUHQ’M for each
v € L%2([0,t] x O), it follows that

L¥*([0,t] x O) C L>" C LY,

and ||v||*#;t < \/Z||v||2’2;t, for each v € L*?([0,t] x O). This shows that the condition

(HD#) is weaker than (HD2).

The Lipschitz condition (H) is assumed to hold throughtout this paper, except the last
section devoted to Burgers type equations. The weaker integrability conditions (HD) and
(HI) are also assumed to hold everywhere in this paper. The other stronger integrability
conditions will be mentioned whenever we will assume them.

2.3 Weak solutions

We now introduce H = H(0O), the space of H}(O)-valued predictable processes (u)i>o
such that

1/2

T

<E sup ||ug)? +/ EE& (uy) dt) < oo, foreachT > 0.
0<t<T 0
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We define Hjoe = Hioe(O) to be the set of Hlloc(O)—valued predictable processes such that
for any compact subset K in O and all T' > 0:

T 1/2
(E sup /ut(x)2dx—|—E/ / |Vut(x)|2dxdt> < 0.
0<t<T JK 0o JK

The space of test functions is D = C° ® C2(0O), where C2° denotes the space of all real infi-
nite differentiable functions with compact support in R and C2(O) the set of C2-functions
with compact support in O.

Definition 1. We say that u € Hy,. is a weak solution of equation (1) with initial condition
& if the following relation holds almost surely, for each ¢ € D,

0o d
[ 00 000) = € s 00) 4 (510, T) s 90) = D (0 510, F) D) .
i=1 6

+ / (h(s,us, Vus) ,5) dBs + (&, ¢0) = 0.
0

We denote by Upoe(&, f, g, h) the set of all such solutions u.
If u belongs to H, we say that u solves the SPDE with zero Dirichlet condition on the
boundary.

In general we do not know much about the set Uy (&, f,g,h). It may be empty or may
contain several elements. But under the conditions (H), (HI2) and (HD2) we know from
Theorem 9 in [4] that there exists a unique solution in H and that this solution admits
L%(O)-continuous trajectories. As the space H} (O) consists of functions which vanish in
a generalized sense at the boundary 0O, we may say that a solution which belongs to H
satisfies the zero Dirichlet conditions at the boundary of O. Thus we may say that under
the assumptions (H), (HD2) and (HI2) there exists a unique solution with null Dirichlet
conditions at the boundary of O. This result will be generalised below. We denote by
U (&, f,g,h) the solution of (1) with zero Dirichlet boundary conditions whenever it exists
and is unique.

We should also note that if the conditions (H), (HD2) and (HI2) are satisfied and if u
is a process in H, the relation from this definition holds with any test function ¢ € D if
and only if it holds with any test function in C° (R4 ) ® H} (O). In fact, in this case, one
may use as space of test functions any space of the form C° (R4 ) ® V, where V' is a dense
subspace of H} (O), obtaining equivalent definitions of the notion of solution with null
Dirichlet conditions at the boundary of O. In [4] one uses C° (R4) ® D (A) as space of
test functions because this is the space which suits better the abstract analytic functional
framework of that paper.

Remark 2. It is proved in [4] that under (HI2) and (HD2) the solution with null Dirichlet
conditions at the boundary of O has a version with L? (O)-continuous trajectories and, in
particular, that limy_,q ||uy — &|| = 0, a.s. This property extends to the local solutions in
the sense that any element of Ujoe(&, f,g,h) has a version with the property that a.s. the
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trajectories are L? (K )-continuous, for each compact set K C O and

fim | (ur(a) —&(z))? dz =0.

In order to see this it suffices to take a test function ¢ € C°(O) and to verify that v = ¢u
satifies the equation

dvy = (L’Ut + 7t + d'L’l)gt) + EtdBt,

with the initial condition vg = @&, where

fu(@) = p(a)f (t. 2, u(z), Vur(2)) = (V(2), alz)Vu(z)) = (Vé(2), g (t, 2, w(2), Vue(2))),
9i(z) = $(2)g (t, 2, wi(z), Vuy(2)) — wy(z)a(z)Vé(z) and
hi(z) = ¢p(z)h (t, 2, u(z), Vuy () .

Thus v =U (¢¢, f,G.h) and the results of [4] hold for v.

Remark 3. Let us now precise the sense in which a solution is dominated on the lateral

boundary. Assume that v belongs to Hlloc((’)’) where O' is a larger open set such that

O C O'. Then it is well known that the condition v"'('o € H}(O) expresses the boundary

relation v < 0 on 00. Similarly, if a process u belongs to Hioe(O'), then the condition
u‘% € H(O) ensures the inequality u < 0 on the lateral boundary {[0, co[x 0O} .

3 Main results : maximum principle and comparison theo-
rems

3.1 Estimates for solutions with null Dirichlet conditions

Now we are going to improve the existence theorem and the estimates satisfied by the solu-
tion obtained in the general framework of [4]. Namely, taking into account the advantage
of uniform ellipticity, we replace the condition (HDZ2) with the weaker one (HD#).

Theorem 3. Under the conditions (H), (HD#) and (HI2) there exists a unique solution
of (1) in H. Moreover, this solution has a version with L?(O)-continuous trajectories and
it satisfies the following estimates

. \2
B (il e+ 1913) < 5B (1613 + (1) + 1%+ 102 )

for each t > 0, where k (t) is a constant that only depends on the structure constants and
t.

Proof:

Theorem 9 of [4] ensures the existence of the solution under the stronger condition (HD2).
So we now assume this condition and we shall next prove that then the solution u =
U, f,g,h) satisfies the estimates asserted by our theorem. We start by writing Ito’s
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formula for the solution in the form

t t
||ut|\§+2/ € (o) ds = €13 +2 [ (e . (e, V) s
_2/ Z (Oius, gi s (us, Vug)) ds+/ |hs (us, Vuy)|5 ds (7)

+2Z/ (g, by s (115, Vy)) dBY.
j=1"0

equality which holds a.s. (See (ii) of the Proposition 7 in [4]). This is in fact a stochastic
version of Cacciopoli’s identity, well-known for deterministic parabolic equations.
The Lipschitz condition and the inequality (2) lead to the following estimate

t 2
2 2 2 *
/0 (us, fs (us, Vus)) ds < e HVUH2,2;t +ce ||U||2,2;t +0 HUH#;t +¢s (HfUH#;J )

where €, > 0 are two small parameters to be chosen later and ¢, ¢5 are constants depend-
ing of them. Similar estimates hold for the next two terms

/ Z (Oius, giys (s, Vug)) ds < (o +¢€) HVUHQQt"'Ca H“HQQt"‘CEHQ H22t’

t
2 2 2 2
/0 Ity V)13 ds < (B2 + ) [Vl g + s [l + o [|B0]2
Since & (us,us) > A || V|3, we deduce from the equality (7),

2 5 2
o +2 (A== 5 = 3 ) 1uld < 8Tl + el + 265 (17°],)

+2¢2 [|9°15 0,0 + 2 [|1°]]5 0,0 + 5= lull3 5 + 2Me, (8)

a.s., where My := Z;-ll:l fot (g, hj s (s, Vug)) dB! represents the martingale part. Further,
using a stopping procedure while taking the expectation, the martingale part vanishes, so
that we get

s
E|\ut|\3+2(x— o~ 5) BIVul,, < 0B Jul,

2 t
v (1615 + 265 (170 ) 26 N g+ e 1002, ) + 502 [ Bl

Then we choose ¢ = % ()\ —a— ’82—2) ,set y = A —a— %2 and apply Gronwall’s lemma

obtaining

Bllwll3 + 7B | Vull3 oy < (9B lull}, + BF (3.¢. 1% 6% h%1) ) ™, (x)
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% 2
where F (5.6, 0% 10,1) = (1613 + 265 (170)” + 2097+ 103, ) - o

consequence one gets
1
Bl < = (5B Nl + BF (3.6,7%6%10,8)) (% = 1) (w4)
()

We now return to the inequality (8) and estimate a.s. the supremum for the first term,
obtaining

2 2 2
HUH2,oo;t <9é HUH#;t + F (5a£af0790ah0at) + 5¢e ||UH2,2¢ + 251iI;M5-
si

We would like to take the expectation in this relation and for that reason we need to
estimate the bracket of the martingale part,

3 2 2 2 2
(M)7 < [l 1A (21 V)l 3 < 13 s + g (I3 0 + V012 0+ 103,

with 1 another small parameter to be properly chosen. Using this estimate and the in-
equality of Burkholder-Davis-Gundy we deduce from the preceding inequality

(1 - 2CBDG77) E Hqu,oo;t < 0B HuHi,t +EF (&fa fﬂ’gﬂ’hﬂ’t)

2
+ (5¢: +2Cppacy) Bl|uly 0y + 2Capacy B |Vull} 5y + 20800 B[],

where Cppe is the constant corresponding to the Burkholder-Davis-Gundy inequality.
Further we choose the parameter n = m and combine this estimate with (*) and (**)
to deduce an estimate of the form

E (Hqu,oo,t + HVUHS,Q;t) < 602 (t) E HuHi&,t tc3 (67 t) R (£’f0’90’ hoat) s

2
2 2 2 :
where R (¢, /g% h% ) = |i&ll; + (HfoH;;t) + HQUHQ,Q;t + HhUHQ,Q;t’ and ¢3 (,1) is a
constant that depends of ¢ and ¢, while ¢y (¢) is independent of §. Dominating the term
E Hu||i’t by using the estimate (3) and then choosing 6 = m we obtain the estimate
asserted by our theorem.
The existence of the solution in the general case, when only condition (HD#) is fulfilled,

follows by an approximation procedure. The function f is approximated by f, := f — f° +
2
19, where 0, n € N, is a sequence of bounded functions such that E (Hfo — ng*#'t) — 0,

as n — 0. The solutions, u,,n € N, of the equation (1) corresponding to the functions
fn,n €N, form a Cauchy sequence in the sense of the following relation

. 2 2
Jm B (e =l o + 19 (o = ) 31) =0
which follows from the estimate already proven. The limit u = lim,,_,, u, represents the
solution associated with f. It clearly satisfies the estimate asserted by the theorem.

It remains to check the uniqueness assertion. Let u,u’ be two solutions in H. Then their
difference w = u — v’ is a solution of a similar equation @ = U (0, 1.9, h) , where

fltzy,2) = f(t,a,y + ' (t2), 2 + VU'(t,2)) = f(t, 2,0/ (@), VU' (1, 2)),
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g(t,z.y,2) = g(t. 2,y + ' (t,2),2 + VU'(t,2)) — g(t, 2,0/ (¢, 2), VU (t,2)),

h(t,z,y,2) = h(t,z,y + u'(t,2), 2 + V' (t,2)) — h(t, 3,4 (t,2), V' (L. z)).

Since ?U =7’ =% =0 and 19 = 0 we may apply the above established estimates to
deduce that w = 0.
O

3.2 Estimates of the positive part of the solution

In this section we shall assume that the conditions (H), (HI2) and (HD#) are fulfilled.
By Theorem 3 we know that the equation (1) has a unique solution with null Dirichlet
boundary conditions which we denote by U (&, f, g, h) . Next we are going to apply Propo-
sition 2 of the appendix to the solution w. In fact we have in mind to apply it with
©(y) = (y)?2. In the following corollary we make a first step and relax the hypotheses on

@Y.

Corollary 1. Let us assume the hypotheses of the preceding Theorem with the same no-
tations. Let ¢ : R — R be a function of class C* and assume that ¢" is bounded and
¢ (0) = 0. Then the following relation holds a.s. for allt > 0:

/ng (ut (x)) d + /Utg (' (us) ,us) ds = /O‘P (& (z)) dz + /Ot (¢ (us), fs(us, Vug) ds
=L 0 )t Ty [ 0 o V)

di ¢ |
+Z/ (¢' (us) , hjs(us, Vug)) dBI.
j=1""0

Proof: Thanks to the estimate obtained in Theorem 3 we deduce that the process ¢'(u)
belongs to [ Ly;: and that f(u, Vu) belongs to LY, for all £ > 0. From this we get the
desired result by approximating ¢ and passing to the limit in Proposition 2. O
We next prove an estimate for the positive part u™ of the solution u = U (&, f,g,h) . For
this we need the following notation:

£ =101 9" = 1us0y9°, B0 = 1s00R°,
fo=f=ff+r g =9-9"+9"° B =h—h"+n"° (9)
FUO =10y (fOV0), R =¢ V0.

Theorem 4. The positive part of the solution satisfies the following estimate

 \2 2 2
B (I e+ 190 ) < 0B (€813 + (104 50) 4 "2 2+ 15, )

with the same constant k (t) as in the Theorem 3.
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Proof :

We first show that the relation (7) appearing in the proof of the Theorem 3 still holds with
u replaced by ut and with f%, g%, h%, &1 in the respective places of f, g, h,£.

The idea is to apply Ito’s formula to the function 1 defined by v (y) = (y+)2, for any
y € R. Since this function is not of the class C? we shall make an approximation as follows.
Let ¢ be a C*® function such that ¢ (y) = 0 for any y €] — o0, 1] and ¢ (y) = 1 for any
y € [2,00[. We set 9, (y) = y2p (ny), for each y € R and all n € N*. Tt is easy to verify
that (¢n,),cn- converges uniformly to the function ¢ and that

Jim gy (y) = 2%, limypy (y) = 2+ 1m0y,
for any y € R. Moreover we have the estimates

0<1vn(y) < (y), 0<y (y) <Cy, |[vn(y)| <C,

for any y > 0 and all n € N*,| where C' is a constant. Thanks to Corallary 1 we have for
all n € N* and each ¢ > 0, a.s.,

ot ) do + / (6 ) ) s = [ o (€ ) o+ / (b’ (1)  fo (110, Vi) dis

/ Z n" (us) aus,gzs(ug,Vus))ds—l—;/ot (T/Jn” (us), |hs (uS,Vus)|2> ds

+;/0 (0 (us) . hjs (us, Vus)) dBY.
(10)

As a consequence of the local property of the Dirichlet form, ! (u) converges to u™ in
L} (Ry; Hj (O)) . (see Theorem 5.2 in [3] or [2]). Therefore, letting n — oo, the relation

loc
becomes

t t
/ (uf (x))de—|—2/ £ (ut,ul) ds =/ (et (x))de+2/ (u, fs (us, Vuig)) ds
O 0 (@) 0
t d t )
_2/0 Z (1{u5>0}aiU5agi,s (USaVUS)) ds +/0 (1{u5>0}a hs (us, V)| ) ds
=1

di t
-I—QZ/ (u;r,hj’s(us,Vus)) dBJ.
j=1"0

This turns out to be exactly the relation (7) with u™, f%, g%, h%,£* in the respective places
of u, f,g,h,&. Then one may do the same calculation as in the preceding proof with only
one minor modification concerning the term which contains f“, namely one has

/t (u's fs (us, V) ds = /t (uy, fo (uf, Vuy)) ds
: 0

2
< e[|V g+ sl 6l e (1704
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Thus one has a relation analogous to (8), with u™, f0+, g»0 A0 ¢+ in the respective
places of u, f, g, h,£ and with the corresponding martingale given by

Z/ ut | (uf, V7)) dBJ.

The reminder part of the proof follows by repeating word by word the proof of Theorem
3. O

3.3 The case without lateral boundary conditions

In this subsection we are again in the general framework with only conditions (H), (HD)
and (HI) being fulfilled. The following proposition represents a key technical result which
leads to a generalization of the estimates of the positive part of a local solution. Let
u € Uppe (€, f, g, h), denote by u™ its positive part and let the notation (9) be considered
with respect to this new function.

Proposition 1. Assume that u™ belongs to H and assume that the data satisfy the following
integrability conditions

2
Blet]; < oo B(1* W) < o0 Bllg"[5 5, < oo BN |3, < oo,

for each t > 0. Let ¢ : R — R be a function of class C*, which admits a bounded second

order derivative and such that ¢’ (0) = 0. Then the following relation holds, a.s., for each
t>0,

[0t @) o [ & (6 ) s = [ (e @) ot [ () oo a9 s

d

t t
=[50 @ ) o (Tt st g [ ) (T s

=1

+z / jos (0, V) dBL,

Proof :

The proof of this proposition will depend on an approximation. We start with some
notation. Let n € N* be fixed and define 9 to be the real function determined by the
following conditions

$(0) =4 (0) =0, 4" =nl}s 2.

Then clearly 1 is increasing, ¢ (z) = 0 if x < %,zp () =z — % for z > %, and

0\/<$—2i> <P <zV0,

n

for any z € R. The derivative satisfies the inequalities 0 < ' < 1 and 4’ (z) = 1 for
x> 2. We set vy = 1 (u;) and prove the following lemma.
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Lemma 1. The process v = (v;), satisfies the following SPDE

d dy
dvy = Loydt + fydt + frdt + > 0;gigdt + > hjdB]
i=1 j=1

with the initial condition vy = v (£) and zero Dirichlet conditions at the boundary of O,
where the processes intervening in the equation are defined by

fu(z) = 9" (u (2)) fe (2,0 (2), Vg (2))

gi (2) = o' (ug (2)) g1 (2,0 (z), Vo (z)),
hy (z) = o' (ug () hy (117 Ut (z), VUt (z ))7

d

d
7 () = =" (uy (z)) Z (aij (05u;) (O5uf))) (=) + Z (05u;) giy (uf, Vi) (z)
ij=1

i=1
1 + +1 |2
_i‘ht (ut,Vut)‘ (x) | .

The assumptions on ut ensure that v belong to H. We also note that the functions f, f g
and h vanish on the set {ut L } and they satisfy the following integrability conditions:

B[], <o
fl,l;t >

for each t > 0. The equation from the statement should be considered in the weak L' sense
of definition (4) introduced in the Appendix .

Proof of the Lemma :

Let ¢ € C*(0O) and set v, = ¢uy, which defines a process in H. A direct calculation
involving the definition relation shows that this process satisfies the following equation
with ¢¢ as initial data and zero Dirichlet boundary conditions,

d d;
dyy = (Lut + fir+ Z 3z97}) dt + Z hj,tngﬂ

i=1 j=1

f

y . \2 .
Bl < B  Blalds. Bl

where

d
fr=&ft (w, Vuy) — Z a7 (03¢ (Djue) — D (0ib) git (wr, Vuy)
i=1

1,j=1

d
g’:t = ngi,t (Ut, Vut) — Ut Za”]ajqﬁ,i = 1, d, h]‘,t = Qbhj,t (ut,Vut) ,j = 1, ...,dl.
j=1

Then we may write Ito’s formula in the form

t

t
(W () r) + /0 € (8 (vs) s, vs) ds = (4 (6€) . 00) + /0 (4 (1) Do) ds
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2
s )ds

t d

b (#waent)as ['3 00 waegias 5 [ (e

i=1

-I-Z/ ) @s, h )dB

where ¢ € D. (The proof of this relation follows from the same arguments as the proof of
Lemma 7 in [5].) Now we take ¢ such that ¢ = 1 in an open subset O’ C O and such that
suppp; C O' for each t > 0, so that this relation becomes

o) + [ € ) prns) ds = (06(©) o) + [ (0 ds
t t d
+/0 (@s, fs (us, Vug)) ds — /0 z:: (8z’ (¢ (us) @s) s Ji,s (USavus)) ds

1 [t '
+§/ < n (Us) ‘Psa‘h (us,Vus dS-I—Z/ Us Ps, JS(US,VUS)) ng
0

Now an inspection of this relation reveals that this is in fact the definition equality of the
equation of the lemma in the sense of the definition (4) in the Appendix. O

Proof of Proposition 1 :

It is easy to see that the proof can be reduced to the case where the function ¢ has both
first and second derivatives bounded. Then we write the formula of Proposition 2 to the
process v and obtain

[ewi+ [ wrn) = [ o+ [ (@) 7+ R)ds
d

- Z (0 (¢ (0) 1) ds + 3 /0 (o ),
+Z/ Jh dBJ

Further we change the notation taking into account the fact that the function depends
on the natural number n. So we write v, for P, 07 for Pn (ug) = vy and f7, f” §", h" for
the corresponding functions denoted before by f, f G, h. Then we pass to the limit with
n — oo. Obviously one has

0" =ty 5 = 0, [|[V0" = VU]l 5 = 0,

JrH2,2;t

for each ¢ > 0, a.s. and 9, (u) = 1{,50}- Then one deduces that

17 = f (" ut) [ = 0

" —g (u+, Vu"') — 0,

1lz.2:
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H ‘hn —h (“Jra V“+) ‘ H2,2;t =0,

for each t > 0, a.s.
On the other hand, since the assumptions on ¢ ensure that |¢' (z)| < K |z| for any z € R,
with some constant K, we deduce that ¢’ (v™) " (u) is uniformly bounded. Therefore we

infer that e
‘ @' (v") fr

for each t > 0, a.s. Finally we deduce that the above relation passes to the limit and
implies the relation stated by the theorem. O

The above proposition immediately leads to the following generalization of the estimates
of the positive part obtained in the previous section, with the same proof.

— 0,
1,15t

Corollary 2. Under the hypotheses of the above Proposition with same notations, one has
the following estimates

 \2 2 2
B (I e+ 195 ) < B (€024 (170 5)” 4 Dl + 1%, )

3.4 A Comparison Theorem and the Maximum Principle

As a particular case of the preceding corollary we have the following comparison theorem.

Theorem 5. Assume that f', f 2 are two functions similar to f which satisfy the Lips-
chitz condition (H)-(i) and such that both triples (fl,g,h) and (fg,g,h) satisfy (HD).
Assume that £',€? are random variables similar to & and that both satisfy (HI). Let
ut € Uppe (£i,fi,g,h) ,1 = 1,2 and suppose that the process (u1 — u2)Jr belongs to H and
that one has

E (Hfl (., .,UQ,VUQ) —f? (., .,UQ,VUQ)H;t)Z < oo, forall t>0.

If ¢ < €% as. and f! (t,w,u2,Vu2) < f? (t,w,uZ,VUZ), dt ® dx ® dP-a.e., then one has
ul(t,z) < u?(t,z), dt ® dz ® dP-a.e.
Proof :
The difference v = u' — u? belongs to Ujee (E, 1.3, E) , where & = ¢! — €2,
7(t7waxayﬂz) = fl (tawaxay+ut2 (q,') ,Z—i—VUtQ (q")) - f2 (tawaxau? (:I:),Vu% (iE)) 3

g(tw 2y 2) =g(twazy+ul (@), 2+ VY () —g(twazuf (z), V] (z)

)

E(t,w,x,y,z) :h(t,w,x,y+u? (ZE),Z-I-VU% ($)) —h(t,w,fp,u? (g:),Vu%

s

The result follows from the preceding corollary, since ¢ < 0 and 70 <0and g° = 7’ =o.

O

Before presenting the next application we are going to recall some notation used in [5]. For
d > 3 and some parameter 6 € [0, 1] we used the notation

ri5={<p,q>e[1,oo12/%+§=1—o},
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Ly = Z LP9([0,t] x O)
(p,9)€T

n n

||UH;¢ = inf{z H“Z'Hpi,qi;t Ju= Zui,ui € L9 ([0,1] x O),
i=1 i=1
(pisqi) €Ty, i=1,..n; n € N*}.

Remark 4. In the paper [5] we have omitted the cases d = 1,2. In fact there would were
not much to be changed, in order to cover that cases. One should only had defined

2 1 1 2%
Iy= 1, 00]? 4= = 0
o= {0 e ool g o = o)

* 2* 1 1
F(,:{(p,q)e[, 2 5 —+—=1—9}

2p

and then should had kept doing the calculations with the convention that =1 for

d=1.

2*2

We want to express these quantities in the new notation introduced in the subsection 2.1

and to compare the norms [|ully,, and [|u}., . So, we first remark that T'y = I (oo, = ﬁ, oo)

.. d
and that the norm [ully, coincides with Jul "0t = |ul ( T ) . On the other

hand, we recall that the norm [lul|}, is associated to the set I( o1, 5 1,2) cie [Jullly,

coincides with [Jul| (2’1’2* 1’2)’ . Then we may prove the following result.

Lemma 2. One has |lul|y,; < cllully,, for each u € Ly, with some constant ¢ > 0.

Proof :
The points defining the sets I (oo, 1%0, 2(1’170),oo> and I( 1, 2*2*1’ ) obviously satisfy
the inequalities
1 d 2% 2d
> 2 >1 > = >2

et T (10 "2 -1 d+2 ="
and hence for each pair (p,q) € T'}, there exists a pair (p,q) € (2, 1, 2* T, ) such that
p < pand ¢ < q. This implies the 1nclu51on

L= 3 raqgxoyc /i S pagogx0),

(p,tI)EF(ﬁ (p,q)EI(Q,l, 2% _1 92)

and the asserted inequality. [J
We now consider the following assumption:
Assumption (HD6p)

b
* \P 201* \ 2 2
w () (Jl7];,) (e

b
% 2
) ) < 00,
0;t
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for each ¢ > 0, where 6 € [0, 1] and p > 2 are fixed numbers. By the preceding Lemma and
since in general one has [u, ;,, < c|lullp,;, it follows that this property is stronger than
(HD#).
As now we want to establish a maximum principle, we have to assume that & is bounded
with respect to the space variable, so we introduce the following:
Assumption (HIocp)

B ¢ll%, < oo,

where p > 0 is a fixed number.

Then we have the following result which generalizes the maximum principle to the stochas-
tic framework.
Theorem 6. Assume (H), (HDOp), (HIccp) for some 6 € [0,1[, p > 2, and that the
constants of the Lipschitz conditions satisfy a + ’82—2 +728% < \. Let u € Uyoe (&, f, g, h) be
such that u™ € H. Then one has
14 p
4 S 0,4 |[* p * 2 012l 2
Bt e < w08 (1 (101" () (1))
where k (t) is constant that depends of the structure constants and t > 0.
Proof: R
Set v = U (f"‘,f,g,h) the solution with zero Dirichlet boundary conditions, where the
function fis defined by fz f+ 0, with f%= =0v (—fo) . The assumption on the Lip-
schitz constants ensure the applicability of the theorem 11 of [5], which gives the estimate
* 2 2
oo < £ (HFFHZ’ - (HfO’JrH";t) - <‘ o-t) " (H‘ho‘ o-t) ) ’
because ]/"D = fO+. Then (u—v)* € # and we observe that all the conditions of the
preceding theorem are satisfied so that we may apply it and deduce that u < wv. This
implies u™ < v and the above estimate of v leads to the asserted estimate. [J

Remark 5. As noted in Subsection 2.3 the condition ut € H means that u < 0 on the
lateral boundary [0,00[x00. Similarly, concerning the next theorem, we observe that the
condition (u — M)t € H means that u < M on the lateral boundary [0, 0o[xO.

Let us generalize the previous result by considering a real It6 process of the form

t di oy
Mt:m-l-/ bsds-l—Z/ 0j,sdB},
0 - 0
Jj=1

where m is a real random variable and b = (b);5¢, 0 = (01,4,...,04,4),5, are adapted
processes. B a
Theorem 7. Assume (H), (HDOp), (Hloop) for some 0 € [0,1[, p > 2, and that the

constants of the Lipschitz conditions satisfy o + 6 +72/8% < X. Assume also that m and
the processes b and o satisfy the following mtegmbzlzty conditions

p(1-0)

t ) p(1-9) t ) B
E |m|P < oo, E(/ b5|19ds> < 00, E(/ |os|1€ds> < 00,
0 0
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for each t > 0. Let u € Uy (€, f. g, h) be such that (u— M) belongs to H. Then one has
« \ P
_I_
0;t
] )
) (e —oP [ )
0;T T 0;T

where k (t) is the constant from the preceding corollary. The right hand side of this es-
timate is dominated by the following quantity which is expressed directly in terms of the

characteristics of the process M,
£\ 2 £\ 2
2
> <H‘h0‘ )
0;T 0;T

B = M) oy < B ) B[ - ) + (H(f<.,.,M, 0)-b)"

(Jlat- o

EOB[[€—m)* 2+ mp + (1704 ]5,)" + (Hg“

1-6

t . p(1-6) t ) 3
+ (/ bs|19ds> + (/ |as|19ds> ]
0 0

Proof:
One immediately observes that u — M belongs to U, (5 —m, f,7, E) , where

f(t,w,x,y,z) =f(tawaxay+Mt (w)az) _bt (CO),
g(t,w,fx,y,z) :g(t,w,x,y+Mt (W),Z),

h(t,w,az,y,z) :h(t,w,x,y-l—Mt (w),z) — 0 (w)

In order to apply the preceding theorem we only have to estimate the zero terms. So we
—0 —0

see that f, = f; (M, 0) — b, g0 = g (M;,0),h; = hy (M;,0) — 0y, and hence we get the

first estimate from the statement. Further we may write

_0’+

Fi o <CIM|+ £ + (bl
02 2
971" <207 |M[” + 21g]|",

—0l2
Rl <3C2 M+ 3|RY|" + 3o,

Then we have the estimates

t 1-6
s 1
Hf H < HfO,-i'H;,t-l-CSup‘Mt|+ </ ‘bs|1*9 ds) ’
0t ; s<t .

*

<[l +2¢?sup ag?,

0; s<t

-0 2|* ¢ 2 o
Hh §3H‘h0‘ H +3CQSuth|2+3</ 0| T-0 ds) .
t 0t s<t 0

*
0;
On the other hand, one has

t
sup | M| <|m|+ [ |bs|ds+ sup|Ny|,
s<t 0 s<t
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where we have denoted by IV; the martingale Z;ll:l fot 0, sdBZ . The inequality of Burkholder

-Davis -Gundy implies
t P t 7
|m|? + </ |bsds> + </ |og|? ds) ,
0 0

and this allows us to conclude the proof. O

Esup|M;|? < cE
s<t

4 Burgers type equations

All along this section, we relax the hypothesis on the predictable random function g which
is assumed to be locally Lipschitz with polynomial growth with respect to y. We shall
generalize some results from Gyongy and Rovira [7]. Indeed, we shall assume that the
assumption (H) holds, but instead of the condition (iii) we assume the following:

Assumption (G): there exists two constants C' > 0 and r > 1, and two functions g, §
such that

(i) the function g can be expressed by : ¢(t,w,z,y,2) = §(t,w,z,y,2) + §(t,w,y),
V(t,w,z,y,2) ERy x 2 x O xR xRe,

1
.o d ! 1 2 ! ’
(11) (Zi:l |gz~(t,w,x,y,z)—gi(t,w,x,y,z)|2>2 SC(1+|y‘r+‘yl‘T) ‘y_y‘+a|z_z‘7

1
d |- _ 3
(111) (Zi:l |gi(t7w7 z,y, Z) - g?(tawa $)|2) ’ < O|y‘ +a ‘Z|,
where « is the constant which appears in assumption (H).

We first consider equation (1) with null Dirichlet boundary condition
ut(z) =0, forallt >0, ze€00.

and the initial condition u(0,.) = &(.)
The effect of the polynomial growth contained in the term § will be canceled by the
following simple lemma

Lemma 3. Let u € H}(O), ¢ € C! (R) with bounded derivative and F a real-valued
bounded measurable function. Then

/Oai(zp(u(x)))F(u)(x)dxzo, Wi=1, - d.

Proof : We define y
Gly) = / W (2)F() dz. Wy € R
0

so that 0;G(u) = G'(u)dju = 0;(1p(u)) F(u). Then, we deduce that the integral from the
statement becomes [, 8;(G(u(z))) dz, which is null because u € Hj(O). O
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The natural idea is to approximate the coefficient g by a sequence of globally Lipschitz
functions. To this end we define, for all n > 1, the coefficient ¢g" by:
V(t7w7x7y7z) E R"’ X Q X O X R X Rd’ gn(tﬂwﬂxﬂy7'z) = g(t7w7x7 ((_n) vy) /\n7z)'
In the same way, we define g", §", so that ¢" = g" + §".
One can easily check that for all n € N, ¢™% = ¢° and that the following relations hold:
d 1
(X197 (thw w9, 2) = gf (bw, 2,y 2)2) T < CL+20) ly =y |+ alz = 2,
i=1
d ) (1)
(3107t 9.2) - ) ) < C(L+[yl) + alz— 21,
i=1
with the same constants C, a, r as in hypothesis (G), so we are able to apply Theorem
11 of [5] (or Theorem 3 above) and get the solutions u, = U(&, f,g", h) for alln = 1,2, ....

We know that for ¢ fixed, E[Ju" ., is finite. The key point is that this quantity does
not depend on n. This is the aim of the following

Lemma 4. Assume that conditions (H)(i)-(ii), (G), (HDOp) and (HIoop) are fulfilled
for some 0 € [0,1] and p > 2, and that the constants of the Lipschitz conditions satisfy

o+ & 47282 < \. Then, for fired t >0,
B 0B e < k(0 B (el + 7015, + 1 5 + im0 25577

where k(t) only depends on C, o and 3.

Proof. Thanks to the Ito’s formula (see Lemma 7 in [5]) , we have for all ] > 2, n € N and
t>0:

t
/O ()| de + /0 £ (1 ()" sgn(ul), ul) ds = /O () di

t
y / / sgn(u)|u? (2)" £ (s, 2, ul, Vul) dzds
0 (@)
d t
S -0 Y [ [ )l 20 e) aits, s Vi) do ds
i=1 70 7O

di t .
+1 Z/ / sgn(u)|up(z)|" " by (s, z, u?, V) dzd B

(=1 <~ [ -2
S [ @) 20 s, V) dads,
2 IhJo !

P-almost surely.
The midle term in the the right hand side can be written as

d t
3 / / 2 (@) [0 (2) gF (s, 7., Vul) e ds
i=1 70 JO

d t
-y / / (@) =205 () 37 (5, 2, Vul) d ds
i=1 70 JO
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because by Lemma 3 we have

t
/ /O (@) 202 () 7 (5, u?) dz ds = 0.
0

Now, as
1G(t,w, z,uf, Vu)| < |3t w,2)| + Cluf| + a|Vull,

and as f and h satisfy similar inequalities with constants which do not depend on n, we can
follow exactly the same arguments as the ones in [5] (Lemmas 12, 14, 16 and 17) replacing
g by g and this yields the result.

Let us remark that in [5], we first assume that initial conditions are bounded and then pass
to the limit. Here, it is not necessary since a priori we know that E [|u" %, ., is finite. O

We need to introduce the following

Definition 2. We denote by Hy the subset of processes u in H such that for allt >0
E || u ||oooot< +0o0.

We are now able to enounce the following existence result which gives also uniform esti-
mates for the solution :

Theorem 8. Assume that conditions (H)(1)-(ii), (G), (HDOp) and (HIocop) are fulfilled
for some 6 € [0,1] and p > 2, and that the constants of the Lipschitz conditions satisfy

o+ ’82—2 + 7282 < \. Then the equation (1) admits a unique solution u € Hy. Moreover

B )% e < % (8) B (€12 + 1750 + g Pl + 15021507
where k is a function which only depends on structure constants.

Proof: We keep the notations of previous Lemma and so consider the sequence (uy)nen.
For all n € N, we introduce the following stopping time:

Tp = inf{t > 0, [|u"||00,00;t > n}.
Now, let n € N be fixed, we set 7 = 7, A Tp,11. Define now for i =n,n + 1

i {uft ift<r

V, = .
t P,_,u®  elsewhere,

where (Pt)t>g is the semigroup associated to A with zero Dirichlet condition.

One can verify that v' = U({, 1<y - f,l{t<T} gnt 1{t<7‘} h). Tt is clear that the
coefficients of the equation satisfied by v* fulfill hypotheses (H) and that moreover 1<,y -
g"*! is globally Lipschitz continuous. Hence, by Theorem 3 (or Theorem 11 of [5]) this
equation admits a unique solution. So, we conclude that v™ = v™*! which implies that
Tut1 > Tn and u” = w1 on [0,7,]. Thanks to previous Lemma, we have

lim 7, =400, P —a.e.
n—-+oo
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We define uy = lim, o uf. It is easy to verify that u is a weak solution of (1) and that it
satisfies the announced estimate.

Let us prove that u is unique. Let v be another solution in H;,. By the same reasoning as
the one we have just made, one can prove that u = v on each [0, v,] where for all n € N,

vp, = inf{t > 0, ||v]/00,00;t > 1}

As v € Hy, limy, 1 oo vy = +00 a.e. and this leads to the conclusion. O

Remark 6. The function k which appears in the above theorem only depends on structure
constants but not on r.

In the setting of this section, with (H) (iii) replaced by (G), one may define local solutions
without lateral boundary conditions by restricting the attention to processes u € H;,e such
that [|u| o0,y < 00 a.s. for any ¢ > 0 and such the relation 6 of the definition is satisfied.
Then Proposition 1, Corollary 2 and Theorems 5, 6, 7 of the preceding section still hold
for such bounded solutions. The proof follows from the stopping procedure used in the
proof of Theorem 8.

5 Appendix

As we have relaxed the hypothesis on f° which does not necessarily satisfy an L?-condition
but only L', we need to introduce another notion of solution with null Dirichlet conditions
at the boundary of O, which is a solution in the L' sense.

5.1 Weak L' -solution

Since this notion intervenes only as a technical tool, we develop only the striclly necessary
aspects related to it. It is defined by using the duality of L' with L. To this end we
introduce a few notations concerning the extension of our operator to L' (0).

Let (P;);>0 be the semi-group (in L?(0)) whose generator is L = —A. It is well-known that
for all t > 0, P, can be extended to a sub-Markovian contraction of L'(O) that we denote
by Pt(l). Following [2], Proposition 2.4.2, we know that (Pt(l))tzo is a strongly continuous
contraction semi-group in L'(©), whose generator L(!) is the smallest closed extension on
LY(O) of (L, D(A)). We set A = —L(1) and denote by D(AM) its domain.

Let us also put the following notation:

Do (A) = {u € D(A) N L® (0) JAu € L™ (O)},

[uloo = llullee + [Aully »

for each u € Dy (A) . It is not difficult to see that the space Dy, (A) endowed with the
norm [-] is a Banach space and that it is dense both in D (A) and D (A(l)). Then a
suitable space of test functions is defined by

DO = Cgo ([0,00D ®,Doo (A) .

We start presenting some facts in the deterministic setting. Analogous to Lemma 2 of [4]
one has the following result.
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Lemma 5. Ifu: R, — L' (O) is such that

t
/ / \ug (z)] dxds < 0o
0 JO

t
//(us,at(p—Atps)ds:O,
0 O

for any ¢ € Dy, then u =0, as an element of L} (R_|_;L1 ((’))) .

loc

and

This last lemma allows us to extend the notion of solution of the equation
0w — Lu =w (%)
to the L' framework as follows.

Definition 3. Let w € L}, (Ry ;L' (0)) and ¢ € L' (O) be given. Then we say that

loc

u€ L) (R+;L1 ((’))) is a weak L' -solution of the equation () with the initial condition

loc
ug = &€ and zero Dirichlet conditions at the boundary of O provided that one has

[ G drp = A + (i gl di+ (6 n) =0,
0
for any ¢ € Dy.

The solution is expressed in terms of the semigroup (Pt(1)> as stated in the next lemma
>0

with same proof as the one of Lemma 3 in [4].

Lemma 6. If w € L}, (R+;L1 ((9)) and ¢ € L' (O), then there erists a unique weak L'
-solution of () with initial condition ug = & and zero Dirichlet boundary conditions and it
18 expressed by

t
up = / Pt(i)swsds + Pt(l)ﬁ,
0
for any t > 0.

We now turn out to the stochastic case.
The space of all predictable processes with trajectories in Lj . (]RJF;LZ ((9)) , a.8., and such
that .

E Jullj i < oo,

for each ¢ > 0, will be denoted by P (Ll) ,fori=1,2.
Definition 4. Now let w € P (L) ,w",w" € P(L?),i=1,...d,j = 1,...d1 and £ €

bl
L' (Q,Fo, P; L' (0)) be given and set ,w' = (w', ..., w'?) ,w" = (0", ..., w"¥) . Then we
say that a process u € P (Ll) represents a weak L' -solution of the equation

d dy
i=1 j=1
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with initial condition ug = £ and zero Dirichlet conditions at the boundary of O provided
that the following relation holds, a.s.,

d

/[; [(us,ascp - A‘Ps) wsa‘ps Z 6190

i=1

o
+/ (nga QOS) ng + (57@0) = 07
0
for each test function ¢ € Dy.

It is easy to see that, in the case where, besides the preceding conditions, the trajectories
of the solution u belong a.s. to Lloc (R_|_;H[} (O)) , the above relation is equivalent to

o) d
/0 [(us,astp) — & (us, 0s) + (ws, ) Z 81‘,0

i=1

+/ ( ’sljagps) ng_l—(ﬁa‘pO) =0.
0

So, on account of the Proposition 7 of [4] and of the preceding lemma, if w € P (LQ) and
¢ € L? (0, Fy, P; L? (0)) the notion of a weak L'-solution of (**) just introduced coincides
with the notion of a weak solution previously defined, with f = 0 = w,¢g = ¢ = w’ and
h = hY = w'". Moreover, we have the following general explicit expression for the solution,
similar to Proposition 7 of [4].

Lemma 7. Ifwe P (LY),w = (v, ..., w) v = (", .. W) Wk W e P (L?) k=
1,...,d,l =1,...,d, and &€ € L' (Q Fo, P;L! (O)), then there exists a unique weak L'
-solution of the equation (xx). The solution is expressed by

t
ut:Pt(1)§+/ P! )swsds-l—/ Py (Zaw“) ds-l—Z/ P, w!dBI.

=1

5.2 Ito’s formula

We now can prove the following version of Ito’s formula.

Proposition 2. Let us assume hypotheses of the preceding Lemma and that u belongs to
H. Let ¢ : R — R be a function of class C?, assume that ¢' and ¢" are bounded and
¢ (0) = 0. Then the following relation hold a.s. for all t > 0:

/Otp(ut(as))dx-l—/oté'(gp'(us),us)ds:/Ogo(f(a:))dx-l-/ot (¢ (us) ,w,) ds

d1
- /Otz (05 (¢ (us)) ,w?) ds + % /Ot (cp" (us), ‘w;"2> ds + ; /Ot (' (us) ,w!) dBI.
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Proof : We denote by v = (v;),5, the process defined by

L a
vt:/ Pt(f)swsds.
0

Let us define for all n € N* and ¢ > 0,

Sn = Pil)é.a ’U? = Plvtaw? = Pil)wt-

Since u belongs to H, then process £ + v also belongs to H.
We fix n for the moment. It is known that the semigroup has bounded densities, so that
there exists some constants K;,¢ > 0, such that

[PVs| < s,

and

9 SKtHlea

for any f € L' (0). So, it is clear that ¢" belongs to L' (R, Fo, P; L (O) N D(A)) and
that for all T > 0 (w}),eo,r] belongs to LY(Q x [0,T];D(A)). As a consequence, v" is
D(A)-differentiable and for all ¢ > 0:

n n n
atvt = wt + Avt .

Consider now sequences (w*)pen<, 1 < i < d of adapted processes in C([0,00)) ®
L*(Q) ® D(A%?) which converge to w', 1 < i < d, in P(L?) and sequences (w"*)cn-,
1 < j < dy of adapted processes in C2°([0,00)) ® L?(w) ® D(A) which converge to w7,
1 <j<dy, in P(L?).
We set for all £k € N*:

then we know that for all ¢

t t d di
u?,k = P¢" -I-/ P,_swids +/ P (Z 81'11)';”“) ds + Z/ Pt,sng,kng_
0 0 i=1 j=1"0
Lemma 6 in [5] ensures that u™F — o™ = U(&™,0,w"*, w"*) is an L?(O)-valued semi-

martingale hence u™* is also a semi-martingale since v" is differentiable.
Thanks to the Ito’s formula (see Lemma 7 in [5]), we have

Lo (@) ar= [ oty [ (o () ant)ass [ (o () wr) as
[ ayad ] (b ok [ e

As a consequence of Lemma 6 in [5], we know that u™* tends to u" in H so, making k
tend to +oo and using the fact that for all &,

- [ () ) as= [ (o () ) as,

.k

Wy
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we get :

/OSO(U? (:v))der/OtS(so’ (uf) ,ug) ds:/@w(ﬁ” (:v))der/Ot (' (ug) ,wy) ds

t d ) 1 rt di ot ‘ .
- /0 (0 (¢ () wl) ds + /0 (" (u2) Jwl*) ds + 3 /0 (¢' (u) , wli) dBI.
i=1 Jj=1

As we assume that & + v belongs to H, u”™ tends to v in ‘H as n tends to +o0, so

t t
lim E (¢ (uf),u})ds = / E (¢ (us) ,us) ds
0

n—-+0o0o 0

Moreover, for all n

t t
| s = f (so'mz),Pi”ws) ds
0 0 n
t
_ / n
= /0<P111<,0 (us),ws>ds

Since ¢" is bounded and u™ tends to u in H, it is easy to prove that Pi¢' (u™) converges

to ¢’ (u) in P(L?). Then, thanks to the dominated convergence theorem, we get that for

a subsequence:
t

lim (¢ (uf),w}) ds = /0 (¢ (us) , wy) ds.

n—-+0o0o 0

We then obtain the result by making n tend to 4+o0o in the other terms of the equality
without any problem. O
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