
EQUATIONS OF MOTION GENERATED BY LINEAR

HAMILTONIANS ASSOCIATED TO THE JACOBI GROUP

STEFAN BERCEANU

Abstract. Using the coherent states attached to the complex Jacobi group GJ
n

=
Hn⋊Sp(n, R), based on the manifold DJ

n = C×Dn, we study some of the properties of
coherent states based on the manifold XJ

n
= Cn×Hn, where Dn (Hn) is the Siegel ball

(respectively the generalized Siegel upper half plane). Starting with the resolution of
unity on DJ

n proved for Perelomov’s coherent states attached to the Jacobi group GJ
n,

we obtain the resolution of unity on XJ
n

and the Kähler two-form ω′

n
on the manifold

XJ
n. This ω′

n is a “n”-dimensional generalization of Kähler-Berndt’s two-form ω′

1
on

X1. The motion associated to a Hamiltonian linear in the generators of the Jacobi
group GJ

n
is described by a Matrix Riccati equation on DJ

n
.
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1. Introduction

The coherent states offer a useful connection between classical and quantum mechan-
ics. On the other side, Perelomov’s [36] group-theoretic generalization of coherent states
can be used as a tool in the study of the geometry of manifolds on which the coherent
states are based [9]. It is well known that the symplectic methods have a large field of
applications in Physics, in particular in classical and quantum mechanics, but also in
Gaussian and Linear Optics [23, 22].

In this paper we continue the investigation of the so called Jacobi group started in
[10, 11] using Perelomov’s coherent states. The Jacobi group – the semidirect product
of the Heisenberg-Weyl group and the symplectic group – is an important object in
connection with Quantum Mechanics, Geometric Quantization, Optics [23, 22, 44, 4,
43, 32, 33, 41].

In [10] we have constructed generalized coherent states (CS) attached to the Jacobi
group, GJ

1 = H1 ⋊ SU(1, 1), based on the homogeneous Kähler manifold DJ
1 = H1/R×

SU(1, 1)/U(1) = C1 × D1. Here D1 denotes the unit disk D1 = {w ∈ C||w| < 1},
and Hn is the (2n + 1)-dimensional real Heisenberg-Weyl group with Lie algebra hn.
Using this construction, we have obtained a holomorphic discrete series representation
of the Jacobi algebra gJ1 = h1 ⋊su(1, 1) by holomorphic first-order differential operators
with polynomial coefficients on DJ

1 . In fact, this construction is nothing more that
an explicate realization of a well known holomorphic representation [37, 34] of the so
called coherent state-type groups [30, 34]. In [10] we have also emphasized that, when
expressed in appropriate coordinates on the manifold XJ

1 , which, as set, is XJ
1 = C×H1,

where H1 is the Siegel upper half plane H1 = {v ∈ C|ℑ(v) > 0}, the Kähler two-form
ω1 derived from the Kähler potential obtained from the scalar product of Perelomov’s
coherent state vectors based on D

J
1 , is identical with the one considered by Kähler-

Berndt [14, 16, 24, 25, 26], here denoted ω′
1. In the present paper we also give more

details about this identification.
In [11] we have considered coherent states attached to the Jacobi group GJ

n = Hn ⋊

Sp(n,R), based on the manifold DJ
n = Cn × Dn, where Dn is the Siegel ball. In the

present paper we give the Kähler two-form ω′
n on the manifold XJ

n = Cn × Hn, where
Hn is the Siegel upper half plane obtained by the Cayley transform of the Siegel ball
Dn. This ω′

n is a “n”-dimensional generalization of Kähler-Berndt’s two-form ω′
1 on XJ

1

to the corresponding one on XJ
n.

Let us recall several facts which were only emphasized in [10, 11]. Firstly, let me
mention that the Jacobi group is in fact a realization of the squeezed states in Quan-
tum Optics [47, 42, 18], a subject largely studied starting in the sixties, which has large
applications in detection of gravitational waves, spectroscopy with two and three-level
atoms in squeezed fields, quantum communications, Einstein-Podolsky-Rosen correla-
tions, entanglement, quantum cryptography, teleportation, .... [19].

Let us also remained that the squeezed states are a particular class of “minimum un-
certainty states” (MUS) — states which saturates the Heisenberg uncertainty relation.
The “Gaussian pure states” (“Gaussons”) [40] are more general MUSs; MUSs can be
considered as CSs indexed by points of manifold XJ

n, cf. §10.1 in [1]. The geometry of
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the semidirect product in §10.2 in [1] is based on the technique developed in [23], using
a definition of coherent states larger that used by Perelomov [36].

The connection of our construction of coherent states based on DJ
n and the Gaussons

is a subtle one. We have shown in [10] that the clue of this connection in the case n = 1
is offered by the Kähler-Berndt’s construction.

Let us point out that many of the mathematical formulas which appear in the context
of the Jacobi group have a direct physical interpretation. We just mention that the
linear fractional transformation is nothing else than the “ABCD” law for laser beams
[28, 29, 2] for a complex beam parameter; see also general results about the Gaussian
Optics - the ray transfer matrix, the eikonal approximation e.g. in [31, 3, 40].

Finally, let me recall that the denomination of “ Jacobi group” was firstly introduced
by mathematicians in [20]. The same group is known to physicists under other names,
as the Schrödinger group [35], see more references and a discussion of this remark in
the second reference [11]. Also the name of “Weyl-symplectic” group is used for the
same direct product of the Heisenberg-Weyl group and the symplectic group [45, 46].

The paper is laid out as follows. For self-contentedness, §2 recalls the basic facts
established in [10] about the algebra gJ1 and its holomorphic differential representa-
tion. §3 is devoted to comparison of our approach in [10] with that of Kähler-Berndt.
We have included in Remark 5 the differential action of the generators of the Jacobi
algebra gJ1 expressed in the Kähler-Berndt variables on XJ

1 . §4 recalls some facts es-
tablished in [11] about holomorphic representation of the Jacobi algebra gJn. In §4.2 is
presented the Kähler two-form ω on XJ

n, a generalization of Kähler-Berndt construction
on XJ

1 . The last section §4.3 presents the equations of motion on DJ
n generated by linear

Hamiltonians in the generators of the group GJ
n.

2. A holomorphic representation of the Jacobi algebra gJ1

2.1. The algebra. The Heisenberg-Weyl group is the group with the 3-dimensional
real Lie algebra

(2.1) h1 ≡ gHW =< is1 + xa+ − x̄a >s∈R,x∈C,

where a+ (a) are the boson creation (respectively, annihilation) operators which verify
the CCR (2.4a).

Let us also consider the Lie algebra of the group SU(1, 1):

(2.2) su(1, 1) =< 2iθK0 + yK+ − ȳK− >θ∈R,y∈C,

where the generators K0,+,− verify the standard commutation relations (2.4b).
The Jacobi algebra is defined as the the semi-direct sum

(2.3) gJ1 := h1 ⋊ su(1, 1),
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where h1 is an ideal in gJ1 , i.e. [h1, g
J
1 ] = h1, determined by the commutation relations:

[a, a+] = 1,(2.4a)

[K0, K±] = ±K± , [K−, K+] = 2K0,(2.4b)

[a,K+] = a+ ,
[

K−, a
+
]

= a,(2.4c)
[

K+, a
+
]

= [K−, a] = 0,(2.4d)
[

K0, a
+
]

=
1

2
a+, [K0, a] = −1

2
a.(2.4e)

2.2. The differential action. We suppose that we know the derived representation
dπ of the Lie algebra gJ1 (2.3) of the Jacobi group GJ

1 . We associate to the generators
a, a+ of the HW-group and to the generators K0,+,− of the group SU(1, 1) the operators
a, a+, respectively K0,+,−, where (a+)+ = a, K

+
0 = K0,K

+
± = K∓, and we impose to

the cyclic vector e0 to verify simultaneously the conditions

ae0 = 0,(2.5a)

K−e0 = 0,(2.5b)

K0e0 = ke0; k > 0, 2k = 2, 3, ....(2.5c)

We have considered in (2.5c) the positive discrete series representations D+
k of SU(1, 1)

[5].
Perelomov’s coherent state vectors associated to the group GJ

1 with Lie algebra the
Jacobi algebra (2.3), based on the manifold M :

M := H1/R × SU(1, 1)/U(1),(2.6a)

M = D
J
1 := C × D1,(2.6b)

are defined as

(2.7) ez,w := eza
++wK+e0, z, w ∈ C, |w| < 1.

The general scheme associates to elements of the Lie algebra g differential operators:
X ∈ g → X ∈ D1.

Lemma 1. The differential action of the generators (2.4a)-(2.4e) of the Jacobi algebra
(2.3) is given by the formulas:

a =
∂

∂z
; a

+ = z + w
∂

∂z
;(2.8a)

K− =
∂

∂w
; K0 = k +

1

2
z
∂

∂z
+ w

∂

∂w
;(2.8b)

K+ =
1

2
z2 + 2kw + zw

∂

∂z
+ w2 ∂

∂w
,(2.8c)

where z ∈ C, |w| < 1.
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2.3. The reproducing kernel.

Lemma 2. Let K = K(z̄, w̄, z, w), where z ∈ C, w ∈ C, |w| < 1,

(2.9) K := (e0, e
z̄a+w̄K−eza

++wK+e0).

Then the reproducing kernel is

(2.10) K = (1 − ww̄)−2k exp
2zz̄ + z2w̄ + z̄2w

2(1 − ww̄)
.

More generally, the kernel K : D
J
1 × D̄

J
1 → C is:

(2.11) K(z, w; z̄′, w̄′) := (ez̄,w̄, ez̄′,w̄′) = (1 − ww̄′)−2k exp
2z̄′z + z2w̄′ + z̄′2w

2(1 − ww̄′)
.

2.4. Formulas for the Heisenberg-Weyl group H1 and SU(1, 1). Let us recall
some relations for the displacement operator:

(2.12) D(α) := exp(αa+ − ᾱa) = exp(−1

2
|α|2) exp(αa+) exp(−ᾱa),

(2.13) D(α2)D(α1) = eiθh(α2,α1)D(α2 + α1), θh(α2, α1) := ℑ(α2ᾱ1).

Let us denote by S, the unitary squeezed operator, the Dk
+ representation of the group

SU(1, 1) and let us introduce the notation S(z) = S(w), where w and z, w ∈ C, |w| < 1,
z ∈ C, are related by (2.14c), (2.14d). We have the relations:

S(z) := exp(zK+ − z̄K−), z ∈ C;(2.14a)

S(w) = exp(wK+) exp(ηK0) exp(−w̄K−);(2.14b)

w = w(z) =
z

|z| tanh (|z|) , w ∈ C, |w| < 1;(2.14c)

z = z(w) =
w

|w|arctanh (|w|) =
w

2|w| log
1 + |w|
1 − |w| ;(2.14d)

η = log(1 − ww̄) = −2 log(cosh (|z|)).(2.14e)

Let us consider an element g ∈ SU(1, 1),

(2.15) g =

(

a b
b̄ ā

)

, where |a|2 − |b|2 = 1.

Lemma 3. The (squeezed coherent state) vector

Ψα,w := D(α)S(w)e0;

and (Perelomov’s coherent state) vector

ez,w′ := exp(za+ + w′
K+)e0

are related by the relation

(2.16) Ψα,w = (1 − ww̄)k exp(− ᾱ
2
z)ez,w,

where z = α− wᾱ.
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2.5. The representation. From the following proposition we can see the holomorphic
action of the group Jacobi

(2.17) GJ
1 := H1 ⋊ SU(1, 1),

on the manifold DJ
1 (2.6b):

Proposition 1. Let us consider the action S(g)D(α)ez,w, where g ∈ SU(1, 1) has the
form (2.15), D(α) is given by (2.12), and Perelomov’s coherent state vector is defined
in (2.7). Then we have the formula (2.18) and the relations (2.19), (2.20)-(2.22) below:

(2.18) S(g)D(α)ez,w = λez1,w1, λ = λ(g, α; z, w),

(2.19) z1 =
α− ᾱw + z

b̄w + ā
; w1 = g · w =

aw + b

b̄w + ā
,

(2.20) λ = (ā + b̄w)−2k exp(
z

2
ᾱ0 −

z1
2
ᾱ2) exp iθh(α, α0),

(2.21) α0 =
z + z̄w

1 − ww̄
,

(2.22) α2 = (α + α0)a + (ᾱ+ ᾱ0)b.

Corollary 1. The action of the 6-dimensional Jacobi group (2.17) on the 4-dimensional
manifold (2.6b), where D1 = SU(1, 1)/U(1), is given by equations (2.18), (2.19). The
composition law in GJ

1 is

(2.23) (g1, α1, t1) ◦ (g2, α2, t2) = (g1 ◦ g2, g
−1
2 · α̃1 + α2, t1 + t2 + ℑ(g−1

2 · α1ᾱ2)),

where g · α̃ := αg is given by

(2.24) αg = aα + b ᾱ.

If g has the form given by (2.15), then g−1 · α̃ = αg−1 = āα− bᾱ.

Remark 1. Combining the expressions (2.19)-(2.22), the factor λ in (2.18) can be
written down as

(2.25) λ = (ā+ b̄w)−2k exp(−λ1),

where

(2.26) λ1 =
b̄z2 + (āᾱ + b̄α)(2z + z0)

2(ā+ b̄w)
, z0 = α− ᾱw,

or

(2.27) λ1 =
b̄(z + z0)

2

2(ā+ b̄w)
+ ᾱ(z +

z0
2

).

Note that the expression (2.25)-(2.27) is identical with the expression given in Theorem
1.4 in [20] of the Jacobi forms, under the the identification of c, d, τ, z, µ, λ in [20] with,
respectively, b̄, ā, w, z, α,−ᾱ in our notation. Note also that the composition law (2.23)
of the Jacobi group GJ

1 and the action of the Jacobi group on the base manifold (2.6b)
is similar with that in the paper [15]. See also §3 and the Corollary 3.4.4 in [16]. �
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Note that the second relation in (2.19) giving the fractional linear action of the group
SU(1, 1) on the homogeneous manifold D1 = SU(1, 1)/U(1) is the famous “ABCD”-law
in Optics [28, 29, 2].

2.6. The symmetric Fock space. The scalar product of functions from the space FK

corresponding to the kernel defined by (2.11) on the manifold (2.6b) is:
(2.28)

(φ, ψ) = Λ1

∫

z∈C;|w|<1

f̄φ(z, w)fψ(z, w)(1 − ww̄)2k exp− |z|2
1 − ww̄

exp−z
2w̄ + z̄2w

2(1 − ww̄)
dν1,

where the value of the GJ
1 -invariant measure dν1

(2.29) dν1 =
dℜwdℑw
(1 − ww̄)3

dℜzdℑz

is given in (2.36) and

(2.30) Λ1 =
4k − 3

2π2
.

We consider now the variables: z = x+iy; w = u+iv. With the change of variables

X =

√

1 + u

1 − u2 − v2
(x+

v

1 + u
y),(2.31a)

Y =
y√

1 + u
,(2.31b)

we have
dxdy =

√
1 − u2 − v2dXdY,

dν1 =
dudv

(1 − u2 − v2)5/2
,

and (2.28) becomes:

(2.32) (φ, ψ) = Λ1

∫

1−u2−v2>0

f̄φfψ exp[−(X2 + Y 2)]dXdY (1 − u2 − v2)2k− 5
2dudv.

2.7. The geometry of the manifold C × D1. We calculate the Kähler potential as
the logarithm of the reproducing kernel (2.11), f := logK, i.e.

(2.33) f =
2zz̄ + z2w̄ + z̄2w

2(1 − ww̄)
− 2k log(1 − ww̄).

The Kähler two-form ω1 is given by the formula:

(2.34) −i ω1 = fzz̄dz ∧ dz̄ + fzw̄dz ∧ dw̄ − fz̄wdz̄ ∧ dw + fww̄dw ∧ dw̄.
We can write down the two-form ω1 (2.34) as

(2.35) −i ω1 =
2k

(1 − ww̄)2
dw ∧ dw̄ +

A ∧ Ā
1 − ww̄

, A = dz + ᾱ0dw, α0 =
z + z̄w

1 − ww̄
.

For the volume form we find:

(2.36) ω1 ∧ ω1 = 4k(1 − ww̄)−34ℜzℑzℜwℑw.
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It can be checked up that indeed, the measure dν1 and the fundamental two-form ω1

are group-invariant at the action (2.19) of the Jacobi group GJ
1 (2.17).

3. Kähler-Berndt’s approach

3.1. An outline. Rolf Berndt -alone or in collaboration - has studied the real Jacobi
group GJ(R) in several references, from which I mention [14, 15, 16, 17]. The Jacobi
group appears (see explanation in [27]) in the context of the so called Poincaré group or
The New Poincaré group - the double cover of the de Sitter group SO0(4, 1) - investigated
by Erich Kähler as the 10-dimensional group GK which invariates a hyperbolic metric
[24, 25, 26]. Kähler and Berndt have investigated the Jacobi group GJ

0 (R) := SL2(R) ⋉

R2 acting on the manifold XJ
1 := H1 ×C, where H1 is the upper half plane H1 := {v ∈

C|ℑ(v) > 0}.
For self-contentedness, in Remarks 2 and 3 below, we briefly proof two results from

[16], which we need in order two express the two-form ω1 in the coordinates used by
Kähler and Berndt. The main ingredient in the proof of Remark 2 below is the Iwasawa
decomposition. Let us also mention that Iwasawa decomposition was largely used in
applications in Optics, see e.g. [39, 41].

Remark 2. The action of GJ
0 (R) on XJ

1 is given by (g, (v, z)) → (v1, z1), g = (M, l),
where

(3.1) v1 =
av + b

cv + d
, z1 =

z + l1v + l2
cv + d

; M =

(

a b
c d

)

∈ SL2(R), (l1, l2) ∈ R
2.

Proof. Let us use the notation of [16]. We denote GJ(R) := SL2(R) ⋉ H(R), where
here H(R) denotes the real HW group with the composition law:

(3.2) (λ, µ, κ)(λ′, µ′, κ′) = (λ+ λ′, µ+ µ′, κ+ κ′ +

∣

∣

∣

∣

X
X ′

∣

∣

∣

∣

),

∣

∣

∣

∣

X
X ′

∣

∣

∣

∣

= det

(

X
X ′

)

.

If g = (M,X, κ) ∈ GJ(R), where M ∈ SL2(R), X = (λ, µ), (X, κ) ∈ R3, then the
composition law in the real Jacobi group is

(3.3) gg′ = (MM ′, XM ′ +X ′, κ+ κ′ +

∣

∣

∣

∣

XM ′

X ′

∣

∣

∣

∣

).

The action of GJ(R) over the H(R) is

(3.4) M(X, κ)M−1 = (XM−1, κ).

Let us consider the Iwasawa decomposition for a matrix M ∈ SL2(R):

(3.5) M =

(

1 x
0 1

) (

y1/2 0
0 y−1/2

) (

cos θ sin θ
− sin θ cos θ

)

, y > 0.

If

(3.6) M =

(

a b
c d

)

,
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then we find for x, y, θ in (3.5)

(3.7) x =
ac+ bd

d2 + c2
; y =

1

d2 + c2
; sin θ = − c√

c2 + d2
; cos θ =

d√
c2 + d2

.

For g = (M,X, κ) ∈ GJ(R), the EZ-coordinates (Eichler-Zagier, cf. the definition at p.
12 and p. 51 in [16]) are (x, y, θ, λ, µ, κ). Let τ = x + iy ∈ H1, z = ξ + iη = pτ + q,
where

(3.8) (p, q) = XM−1 = (λd− µc,−λb+ µa)

If we attache a “∗” to the results of elements of the composition rule (3.3), we have

(3.9) x∗ =
AC +BD

D2 + C2
; y∗ =

1

D2 + c2
,

where

(3.10)

(

A B
C D

)

=

(

a b
c d

) (

a′ b′

c′ d′

)

.

We find out:

D2 + C2 = c2(a′2 + b′2) + d2(c′2 + d′2) + 2cd(a′c′ + b′d′),

i.e.

D2 + C2 = c2(a′2 + b′2) +
d2

y′
+ 2cd

x′

y′
.

Similarly,

AC +BD = ac(a′2 + b′2) + (ad+ bc)
x′

y′
+
bd

y′
.

We find for τ∗ = x∗ + iy∗

(3.11) τ∗ =
ac(a′2 + b′2)y′ + (ad+ bc)x′ + iy′ + bd

c2(a′2 + b′2)y′ + 2cdx′ + d2
.

Let us verify the first relation (3.1), in the present notation

(3.12) τ∗ =
aτ ′ + b

cτ ′ + d
,

where

(3.13) τ ′ = x′ + iy′ =
a′c′ + b′d′ + i

d′2 + c′2
.

Combining (3.12), (3.13), we find out

(3.14) τ∗ =
(ax′ + b)(cx′ + d) + acy′2 + iy′

(cx′ + d)2 + c2y′2
,

and we have to verify the identify (3.11) and (3.14).
In order to prove the second equation (3.1), we calculate firstly

(P∗, Q∗) = (LD −MC,−LB +MA),

where
(L,M) = (λ′ + λa′ + µc′, µ′ + λb′ + µd′),
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and we find

P∗ = λ′(cb′ + dd′) − µ′(ca′ + dc′) + λd− µc;(3.15a)

Q∗ = −λ′(ab′ + bd′) + µ′(ad′ + bc′) − λb+ µa.(3.15b)

Then we obtain

z∗ := P∗τ∗ +Q∗ =
(P∗a+Q∗c)τ

′ + P∗b+Q∗a

cτ ′ + d
.

The nominator E of the last expression of τ∗ should be identified with E = p′τ ′ + q′ +
λτ ′ + µ, i.e. it remains to verify that

P∗a+Q∗b = p′ + λ;

P∗b+Q∗d = q′ + µ′.

In conclusion, using the multiplication law (3.3), the Iwasawa decomposition (3.5) and
the equations (3.7), (3.8), we have obtained the action of GJ(R) on the base XJ

1

(3.16) g(τ, z) = (
aτ + b

cτ + d
,
z + λτ + µ

cτ + d
),

and Remark 2 is proved. �

Let us now recall that

(3.17) C−1SL2(R)C = SU(1, 1), where C =

(

i i
−1 1

)

.

If M ∈ SL2(R) is the matrix (3.6), then, under the transformation (3.17)

(3.18) M∗ = C−1MC =

(

α β
β̄ ᾱ

)

, α, β ∈ C, |α|2 − |β|2 = 1,

where

(3.19) 2α = a+ d+ i(b− c); 2β = a− d− i(b+ c).

Now we pass to the complex group GJ
C

= C−1GJ(R)C. We recall that the Jacobi
group GJ

C
is a group of Harish-Chandra type, (cf. e.g. p. 514 in [34]; see the defi-

nition in Ch. III §5 in [37] and Ch. XII.1 in [34]). Moreover, it is well known that
the Jacobi algebra (2.3) is a CS-Lie algebra (cf. e.g. Theorem 5.2 in [30]). The cor-
respondence between our notation and that of Berndt-Schmidt at p. 12 in [16] is as
follows: a+, a,K+, K−, 1, K0 corresponds, respectively to: Y+, Y−, X+,−X−,−Z0,

1
2
Z.

We see that under the transformation (3.17), g = (M,X, κ) ∈ SL2(R) ⋉ H(R) is
twisted to g∗ = (M∗, X∗, κ), where M∗ is given by (3.18), while, due to action (3.4),
X∗ = XC = (iλ− µ, iλ+ µ).

Also the map (3.17) induces a transformation of the bounded domain D1 into the
upper half plane H1 and

(3.20) τ ∈ H1 7→ τ∗ = C−1(τ) =
τ − i

τ + i
∈ D1.

The action C−1GJ
0 (R)C descends on the basis to the biholomorphic map: Č−1 : XJ

1 :=
H1 × C → DJ

1 := D1 × C: (τ, z) 7→ (τ∗, z∗). Here τ∗ is given by (3.20), while z∗ =
p∗τ∗ + q∗. So, (p, q) = (λ, µ)M−1, and (p∗, q∗) = (λ∗, µ∗)M∗

−1. But M∗ = C−1MC, and
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(p∗, q∗) = (p, q)C = (−q + ip, q + ip), and we get z∗ = 2iz
τ+i

. Note that at p. 53 in [16]
the factor 2i in this formula is missing.

In a different notation, we have shown that

Remark 3. The action C−1GJ
0 (R)C, descends on the basis to the biholomorphic map:

Č−1 : XJ
1 := H1 × C → DJ

1 := D1 × C:

(3.21) w =
v − i

v + i
; z =

2iu

v + i
, w ∈ D1, v ∈ H1, z ∈ C.

�

The GJ
0 (R)-invariant closed two-form considered by Kähler-Berndt is:

(3.22) ω′
1 = α

dv ∧ dv̄
(v − v̄)2

+ β
1

v − v̄
B ∧ B̄, B = du− u− ū

v − v̄
dv, v, u ∈ C, ℑ(v) > 0,

cf.§36 in [26]; see also §3.2 in [14], where the first term is misprinted as α dv∧dv̄
v−v̄

.
Under the mapping (3.21), the two-form ω1 (2.35) reads

(3.23) −i ω′
1 = − 2k

(v̄ − v)2
dv ∧ dv̄ +

2

i(v̄ − v)
B ∧ B̄,

i.e. (3.22). In fact, we have proved that

Remark 4. When expressed in the coordinates (v, u) ∈ XJ
1 which are related to the

coordinates (w, z) ∈ DJ
1 by the map (3.21) given by Remark 3, the Kähler two-form

(2.35) is identical with the one (3.23) considered by Kähler-Berndt.

If we use the EZ coordinates adapted to our notation

(3.24) v = x+ iy; u = pv + q, x, p, q, y ∈ R, y > 0,

the GJ
0 (R)-invariant Kähler metric on XJ corresponding to the Kähler-Berndt’s Kähler

two-form ω (3.23) reads

(3.25) ds2 =
k

2y2
(dx2 + dy2) +

1

y
[(x2 + y2)dp2 + dq2 + 2xdpdq],

i.e. the equation at p. 62 in [16] or the equation given at p. 30 in [14].
Equation (3.25) can be written in a form to show the positive-definiteness of the

metric

(3.26) ds2 =
k

2y2
(dx2 + dy2) +

x2 + y2

y
(dp+

x

x2 + y2
dq)2,

The Kähler two-form (3.22) of Kähler-Berndt corresponds (cf. equation (9) in Ch.
36 of [24]) to the Kähler potential

(3.27) f ′ = −λ
2

log
v − v̄

2i
− iπµ

(u− ū)2

v − v̄
, u ∈ C, v ∈ H1.
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3.2. New results.

Remark 5. When expressed in the coordinates (v, u) ∈ XJ
1 = H1 × C, related with the

coordinates (w, z) ∈ DJ
1 = D1 × C by (3.21), the differential action of the generators

(2.4a)-(2.4e) of the Jacobi algebra (2.3), given by Lemma 1, becomes

a =
v + i

2i

∂

∂v
; a

+ =
2iu

v + i
+
v − i

2i

∂

∂u
;(3.28a)

K− =
(v + i)2

2i

∂

∂v
+
v + i

2i
u
∂

∂u
; K0 = k +

uv

2i

∂

∂u
+
v2 + 1

2i

∂

∂v
;(3.28b)

K+ = − 2u2

(v + i)2
+

2k(v − i)

v + i
+
u(v − i)

2i

∂

∂u
+

(v − i)2

2i

∂

∂v
.(3.28c)

We recall the expression (2.28) of the scalar product, where dν1 is given by (2.29),
which gives the resolution of unit. We introduce the change of variables given by (3.21)
and we get the scalar product

(3.29) (φ, ψ) = Λ1

∫

XJ
1

f̄φ(v, u)fψ(v, u)K
−1
1 (v, u)dν ′1.

Here K1(v, u) is the value of the reproducing kernel (2.10) in the new variable (3.21),
while dν1 represents the GJ

0 (R)-invariant measure on XJ
1 .

The reproducing kernel K = (ez̄,w̄, ez̄,w̄) in the new variables (3.21) is

(3.30) K1 =

[ |v + i|2
2i(v̄ − v)

]2k

expF,

where

(3.31) F = 2|v + i|−2

[

|u|2 − (uv̄ − ūv)2 + (ū− u)2

2i(v̄ − v)

]

,

or

(3.32) F = 2|v + i|−2

[

|u|2 +
ℑ(uv̄)2 + (ℑu)2

ℑv

]

.

The Kähler potential is f1 = logK1.
It is obtained

∂2F

∂u∂ū
=

2

i(v̄ − v)
,(3.33)

∂2F

∂u∂v̄
=

2(u− ū)

i(v̄ − v)2
,(3.34)

∂2F

∂v∂v̄
=

2(u− ū)2

i(v̄ − v)3
.(3.35)

So, it can be verified that formula (2.34) in the new variables u, v gives indeed the
Kähler-Berndt two-form ω1 (3.23). However, note that the Kähler-Berndt potential
(3.27) is different of our f1.
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We introduce the variables

v = x+ iy, x, y ∈ R, y > 0,(3.36)

u = m+ in,m, n ∈ R.(3.37)

We have to calculate

(3.38) ∆ = det

∥

∥

∥

∥

A B
C D

∥

∥

∥

∥

where

detA = det

∥

∥

∥

∥

∂ℜw
∂x

∂ℜw
∂y

ℑw
∂x

∂ℑw
∂y

∥

∥

∥

∥

= det

∥

∥

∥

∥

∥

4x(y+1)
E2 2−x2+(y+1)2

E2

−2−x2+(y+1)2

E2

4x(y+1)
E2

∥

∥

∥

∥

∥

=
4

E2
,

detB = det
(ℜw,ℑw)

(m,n)
= 0,

detD = det

∥

∥

∥

∥

∂ℜz
∂m

∂ℜz
∂n

ℑz
∂m

∂ℑz
∂n

∥

∥

∥

∥

= det

∥

∥

∥

∥

2y+1
E

−2 x
E

2 x
E

2y+1
E

∥

∥

∥

∥

=
4

E
,

where
E = x2 + (y + 1)2.

Also

1 − ww̄ =
4y

E
.

We find:

(3.39) dν ′1 =
1

4y3
dxdydmdn.

It can be verified that the measure dν ′1 is invariant under the action (3.1) of the real
Jacobi group GJ

0 (R). In fact, we have obtained the “resolution of unity” on the manifold
XJ

1 :

Remark 6. Let us consider the Jacobi group GJ
0 (R) with the composition rule (3.2) and

the action (3.1) on the manifold XJ
1 . The Kähler two-form ω′

1 is given by (3.23), where
B si given in (3.22). The symmetric Fock space FK1 attached to the reproducing kernel
(3.30)-(3.31), K1 : XJ

1 × XJ
1 → C, is endowed with the scalar product (3.29), where the

normalization constant Λ1 is given in (2.30), and the GJ
0 (R)-invariant measure dν ′1 is

given by (3.39).

4. The Jacobi group GJ
n

4.1. The symmetric Fock space. The Heisenberg-Weyl group Hn is the nilpotent
group with the (2n+ 1)-dimensional real Lie algebra isomorphic to the algebra

(4.1) hn =< is1 +
n

∑

i=1

(xia
+
i − x̄iai) >s∈R,xi∈C,

where a+
i (ai) are the boson creation (respectively, annihilation) operators which verify

the CCR

(4.2) [ai, a
+
j ] = δij ; [ai, aj] = [a+

i , a
+
j ] = 0.
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The vacuum verifies the relations:

(4.3) aieo = 0, i = 1, · · · , n.
The displacement operator

(4.4) D(α) := exp(αa+ − ᾱa) = exp(−1

2
|α|2) exp(αa+) exp(−ᾱa),

verifies the composition rule:

(4.5) D(α2)D(α1) = eiθh(α2,α1)D(α2 + α1), θh(α2, α1) := ℑ(α2ᾱ1).

Here we have used the notation αβ =
∑

i αiβi, where α = (αi). The composition law
of the HW group Hn is:

(4.6) (α2, t2) ◦ (α1, t1) = (α2 + α1, t2 + t1 + ℑ(α2ᾱ1)).

If we identify R2n with Cn, (p, q) 7→ α:

(4.7) α = p+ iq, p, q ∈ R
n,

then

ℑ(α2ᾱ1) = (pt1, q
t
1)J

(

p2

q2

)

,where J =

(

0 1
−1 0

)

.

The Jacobi algebra is the the semi-direct sum

(4.8) gJn := hn ⋊ sp(n,R),

where hn is an ideal in g, i.e. [hn, g] = hn, determined by the commutation relations:

[a+
k , K

+
ij ] = [ak, K

−
ij ] = 0,(4.9a)

[ai, K
+
kj] =

1

2
δika

+
j +

1

2
δija

+
k ,(4.9b)

[K−
kj, a

+
i ] =

1

2
δikaj +

1

2
δijak,(4.9c)

[K0
ij, a

+
k ] =

1

2
δjka

+
i ,(4.9d)

[ak, K
0
ij] =

1

2
δikaj .(4.9e)

The generators K0,+,− of sp(n,R) verify the commutation relations

[K−
ij , K

−
kl] = [K+

ij , K
+
kl] = 0,(4.10a)

2[K−
ij , K

+
kl] = K0

kjδli +K0
ljδki +K0

kiδlj +K0
liδkj,(4.10b)

2[K−
ij , K

0
kl] = K−

il δkj +K−
jlδki,(4.10c)

2[K+
ij , K

0
kl] = −K+

ikδjl −K+
jkδli,(4.10d)

2[K0
ji, K

0
kl] = K0

jlδki −K0
kiδlj .(4.10e)

Now we briefly fix the definition concerning the symplectic group. For g ∈ GL(2n,R),
we have

(4.11) g ∈ Sp(n,R) ↔ gtJg = J.
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If in (4.11) g ∈ GL(2n,C), then g ∈ Sp(n,C). We remind also that g ∈ U(n, n) iff

gKg∗ = K, where K =

(

1 0
0 −1

)

.

Under the identification (4.7) of R2n with Cn, we have the correspondence

(4.12) A ∈M(2n,R) → AC ∈M(2n,R)C, AC = C−1AC, C =

(

i1 i1
−1 1

)

,

where

M(2n,R)C =

{(

P Q
Q̄ P̄

)

, P,Q ∈M(n,C)

}

.

We extract from [38], [6], [21]

Remark 7. To every g ∈ Sp(n,R) as in (4.11), g 7→ gc ∈ Sp(n,R)C ≡ Sp(n,C) ∩
U(n, n), or denoted just g

(4.13) g =

(

a b
b̄ ā

)

,

where

aa∗ − bb∗ = 1; abt = bat,(4.14a)

a∗a− btb̄ = 1; atb̄ = b∗a.(4.14b)

If g ∈ Sp(n,R) is given by (4.13), then

(4.15) g−1 =

(

a∗ −bt
−b∗ at

)

.

Perelomov’s coherent state vectors associated to the group GJ
n with Lie algebra the

Jacobi algebra (4.8), based on the complex N -dimensional, N = n(n+3)
2

, manifold M :

M := Hn/R × Sp(n,R)/U(n),(4.16a)

M = D
J
n := C

n × Dn,(4.16b)

are defined as

(4.17) ez,W = exp(X)e0, X :=
∑

i

zia
+
i +

∑

ij

wijK
+
ij, z ∈ C

n;W ∈ Dn.

The vector e0 verify (4.18) and (4.19)

(4.18) aieo = 0, i = 1, · · · , n.

K
+
ije0 6= 0,(4.19a)

K
−
ije0 = 0,(4.19b)

K
0
ije0 =

k

4
δije0.(4.19c)

The scalar product of functions in the symmetric Fock space is [11]

(4.20) (φ, ψ) = Λn

∫

z∈Cn;1−WW̄>0

f̄φ(z,W )fψ(z,W )QK−1dzdW.
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Here the density of the volume form is

Q = det(1 −WW̄ )−(n+2),

the reproducing kernel K is

(4.21) (ez,W , ez,W ) = det(M)
k

2 exp
1

2
[2 < z,Mz > + < Wz̄,Mz > + < z,MWz̄ >],

and

M = (1 −WW̄ )−1,

(4.22) dz =

n
∏

i=1

ℜziℑzi; dW =
∏

1≤i≤j≤n

ℜwijℑwij ,

Λn =
k − 3

2π
n(n+3)

2

n−1
∏

i=1

(k−3
2

− n+ i)Γ(k + i− 2)

Γ[k + 2(i− n− 1)]
.

Comparatively with the case of the case of the symplectic group, a shift of p to p−1/2
in the normalization constant Λn = π−nJ−1(p) is obtained [11].

4.2. The Kähler two form on XJ
n = Hn × R2n. On the manifold DJ

n, we have the
Kähler two-form [11]:

(4.23) −i ωn =
k

2
Tr(C ∧ C̄) + Tr(AtM̄ ∧ Ā),

where

A = dz + dWx̄,

C = MdW, M = (1 −WW̄ )−1

x = (1 −WW̄ )−1(z +Wz̄),W ∈ Dn, z ∈ C
n.

Now we consider the real Jacobi group GJ
n(R) = Sp(n,R) ⋉ Hn(R), where Hn(R) is

the real Heisenberg-Weyl group of real dimension (2n + 1). Let g = (M,X, k), g′ =
(M ′, X ′, k′) ∈ GJ

n(R), where X = (λ, µ) ∈ R2n and (X, k) ∈ Hn(R). Then the composi-
tion law in GJ

n(R) is

(4.24) gg′ = (MM ′, XM ′ +X ′, k + k′ +XM ′JX ′t).

We shall also consider the restricted real Jacobi group GJ
n(R)0, consisting only of ele-

ments of the form above, but g = (M,X).
We consider also the manifold

X
J
n := Hn × R

2n,

where Hn is Siegel upper half-plane

Hn := {Z ∈M(n,C)|Z = U + iV, U, V ∈M(n,R), V > 0, U t = U ;V t = V }
Let us consider an element g = (M, l) in GJ

n(R)0, i.e.

(4.25) M =

(

A B
C D

)

∈ Sp(n,R), l = (l1, l2) ∈ R
2n,
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and v ∈ Hn, z ∈ Cn ≡ R2n. Then the action of the group GJ
n(R)0 on the base manifold

XJ
n is given by the formula (M, l) × (v, z) → (v1, z1) ∈ XJ

n, where

v1 = (Av +B)(Cv +D)−1;(4.26a)

z1 = (z + vlt1 + lt2)(Cv +D)−1.(4.26b)

Now we consider the transformation

w = (v − i)(v + i)−1;(4.27a)

z = 2i(v + i)−1u(4.27b)

of XJ
n → DJ

n. Equation (4.27a) is nothing else than the linear fractional transformation
(4.26a) corresponding the a matrix M = C−1 where C is given by (4.12) – the Cayley
transform of the Siegel half-plane Hn into the Siegel unit ball Dn. Under the same
transformation, C−1Sp(n,R)C → Sp(n,R)C, and the linear fractional transformation
(4.26a) on Hn determined by a matrix (4.25) becomes linear fractional transformation
on Dn with the matrix C−1MC [38].

Under the transformation (4.27), the two-form (2.35) on DJ
n becomes on XJ

n

(4.28)

−i ω′
n =

k

2
Tr(pt ∧ p̄) +

2

i
Tr(BtD ∧ B̄), D = (v̄ − v)−1, p = Ddv,B = du− dvD(ū− u),

(4.28) is a “n”-dimensional generalization of Berndt-Kähler two-form (3.23).
We want now to determine a “resolution of unity” on XJ

n. We apply the change of
coordinates (4.27) in (4.20). We get

(4.29) (φ, ψ) = Λ

∫

XJ
n

f̄φ(v, u)fψ(v, u)Q1K
−1
1 dvdu,

where dv and du are written down with the convention (4.22), i.e.

(4.30) dv =
∏

1≤i≤j≤n

dℜvijdℑvij, du =

n
∏

i=1

dℜuidℑui.

K1 is the reproducing kernel (4.21) in the new variables:

(4.31) K1(u, v; ū, v̄) = det k/2 |v + i|2
A

expF,

(4.32)
1

2
F = 2ūtA−1u− [ut(v + i)−1(v̄ + i)A−1u+ cc], A = 2i(v̄ − v).

The expression (4.32) can be put into a form which generalizes the expression (3.31)-
(3.32) in the case n = 1:

(4.33) F = 2
[

ūtL−1u+ (ℑu)tℑ(L−1(ℑv)−1u)
]

+ ℜ
[

(ūtL−1v̄v − utL−1v̄2)(ℑv)−1u
]

,

where L is hermitian and symmetric matrix L = (v̄ − i)(v + i).

Q1, the GJ
n(R)0-invariant measure on XJ

n, is calculated as Q1 = Q∂(z,w)
∂(v,u)

, applying the

Lemma at p. 398 in Berezin’s paper [12]. It is obtained

(4.34) Q1 = 2−n(n+3)[det(2i(v̄ − v))]−(n+2).

We have also the
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Remark 8. Let us consider the real Jacobi group GJ
n(R)0 acting on the base manifold

XJ
n by the formula (4.26). Then the symmetric Fock space attached to the reproducing

kernel K1 obtained from the kernel K (4.21) by the substitution (4.27) is given by square-
integrable functions with respect to the scalar product (4.29), where group-invariant
measure Q1 is given by (4.34) and the integration variables are defined in (4.30). The
manifold XJ

n is endowed with the Kähler form (4.28), which generalize the corresponding
one (3.23) for n = 1 used by Kähler-Berndt.

4.3. Equations of motion. Passing on from the dynamical system problem in the
Hilbert space H to the corresponding one on M is called sometimes dequantization,
and the system on M is a classical one [7, 8]. Following Berezin [13], the motion on the
classical phase space can be described by the local equations of motion. We consider
an algebraic Hamiltonian linear in the generators of the group of symmetry

(4.35) H =
∑

λ∈∆

ǫλXλ.

The classical motion and the quantum evolutions generated by the Hamiltonian are
given by the same equations of motion on M = G/H [7, 8]:

(4.36) iżα =
∑

λ

ǫλQλ,α,

where the differential action corresponding to the operator Xλ in (4.35) can be ex-
pressed in a local system of coordinates as

Xλ = Pλ +
∑

β

Qλ,β∂β .

Above λ denotes a root, while β denotes a positive root.
The Hamiltonian

H = ǫiai + ǫia
+
i + ǫ0ijK

0
ij + ǫ−ijK

−
ij + ǫ+ijK

+
ij

implies the Matrix Riccati equation on D
J
n

{

iż = ǫ+Wǫ+ ǫ+zW + 1
2
zǫ0,

iẆ = Wǫ+W +Wǫ0 + ǫ−.
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