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ABSTRACT. In this article we give a survey on some recent developments in
the theory of Koszul algebras.

Introduction

These notes reflect the content of the lecture on Koszul algebras given at the
“International Conference on Algebra and Geometry” held in Hyderabad, December
7-12, 2001. It is the aim of this text to explain also some of the background of the
theory and to point at some open problems. The definition and first properties of
Koszul algebras are given in Section 1, while in Section 2 we consider the Koszul
property for semigroup rings. A central result in this context is the theorem of
Laudal and Sletsjge which implies a characterization of Koszul semigroup rings by
its divisor posets. We describe some of its implications which leads to shelling and
sequential conditions for Koszulness. Sequential conditions for Koszulness are the
main topic of Section 3. This includes the notions strongly Koszul and universally
Koszul algebras. In Section 4 we study when a pure subring of a Koszul algebra is
again Koszul and describe some known cases. Finally the last Section 5 is devoted
to Koszul modules, a concept that has been introduced by Iyengar and the author.

As general references I recommend [16] and [10], and for questions regarding
infinite free resolutions I suggest to consult [3].

1. Koszul algebras

Let K be a field, S = K[z1,...,2Zy] a polynomial ring and A = S/I a stan-
dard graded K-algebra with graded maximal ideal m. Unless otherwise stated
we will always assume that the A-modules under consideration are graded and
finitely generated. Let M be an A-module, and let F' be its graded minimal free
A-resolution. Then F; = P; A(— j)Pi. We call the numbers 3;; the graded Betti
numbers of M. Notice that the vector spaces Tor: (K; M) are naturally graded and
that f;; = dimg Tor(K, M); for i and j.

We say that M has a d-linear resolution, if 3;; = 0 for all j # i+ d. This is
equivalent to say that M is generated in degree d and all matrices describing the
differentials of the free resolution F' of M have entries of linear forms.

DEFINITION 1.1. A is a Koszul algebra if the A-module K = A/m has linear
resolution.

The polynomial ring is the simplest example of a Koszul algebra. In this case
the Koszul complex provides a linear resolution of K. Less obvious, but also simple,
is the following example: Assume that I is generated by a regular sequence of
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quadrics. Then A = S/I is a Koszul algebra. In fact, the algebra is a complete
intersection and so the Tate resolution yields immediately the desired conclusion,
cf. [3, Theorem 6.1.8].

1.1. First properties of Koszul algebras. Let A = S/I be a standard
graded K-algebra. Consider the following properties:
(1) Ais a Koszul algebra,
(2) I is quadratically generated;
(3) I has a quadratic Grobner basis for some term order.

Then (3) = (1) = (2), and non of the implications can be reversed in general.

The implication (1) = (2) can be easily seen: Let fi,..., f,, be a minimal
homogeneous set of generators of I and write f; = >37_; fijz;. Let e: @,_, Ae; —
m be the epimorphism with e(e;) = x; for i = 1,...,n. Then besides of the linear

Koszul relations z;e; — zje;, Ker(e) is generated by the relations 3%, fije; for
i=1,...,n, where g = g + I. Thus we conclude that 82;(K) = 0 for 7 # 2 if and
only if I is generated by quadrics.

The implication (3) = (1) is based on two facts: Let < be a term order, and
denote by in(I) the initial ideal with respect to this term order. Then a deformation

argument (or a spectral sequence argument) shows that ﬂisj/ I(K ) < ,85/ in(D) (K) for
all 4 and j. The other fact needed is the following result [19]:
THEOREM 1.2 (Froberg). If I is generated by quadratic monomials, then A =

S/I is Koszul.

The implication (3) = (1) is one of the techniques used in many papers to show
that an algebra is Koszul.

On the other hand, there are examples (see Remark 2.4) of Koszul algebras
which have no quadratic Grobner basis for any term order.

We notice another fundamental property of Koszul algebras: Denote by H4(t) =
>, dimg A;t? the Hilbert series and by Pa(t) = dimg Tor; (K, K)t' the Poincaré
series of A, and let

e A(-2)P2 — A(-1)Pr —- A K —0
be the graded minimal free resolution of the Koszul algebra A. The additivity of
the Hilbert function implies that
1= Hu(t) — BitHa(t) + Bot’ Ha(l) — - -- = Ha(t)Pa(—t),

so that
(1+1t)¢

Q) ’
where d = dim A and Q(t) is a polynomial. In particular, Pa(t) is a rational
function of a particular nature.

PA(t) = I‘IA(—t)_1 =

2. Affine semigroup rings and the Koszul property

A finitely generated additive subsemigroup S C Z™ containing 0 is called an
affine semigroup. We will assume that S is positive, that is, S has no invertible
elements. Then S can be embedded into N".

Let K be a field. For a € N*, a = (a1,...,an), we set 2° = [[;_; z{*. Then
K[S] = @,cq Kz C K[z1,...,2y,] is called the semigroup ring of S. Suppose that
S is generated by a1,...,ay. Then K[S] = K[z*,...,2%"]. In the following we
will also assume that K[S] is standard graded which is equivalent to say that the
generators ai, ..., a;, of S lie in a hyperplane.
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There is an interesting combinatorial characterization of affine semigroup rings
which are Koszul, due to Laudal and Sletsjge [24]. Define a partial order < on S:

a1 < ap if and only if there exists b € S such that az = a; + b.
For each a € S the open interval
(0,8) ={a€e S:0<b<a}

with the order < restricted to (0, a) is a finite poset. Let A, be the order complex
of (0,a). Recall that the faces of A, are just the chains (= totally ordered subsets
of (0,a)). The simplicial complexes A, are called divisor posets of S.

THEOREM 2.1 (Laudal-Sletsjge). Let A = K[S], then all the K -vector spaces
Torf‘(K, K) are Z™-graded, and for the graded components we have

TorA (K, K), = { ifags
Hi72(Aa§K) zfaES,

where ﬁ(F; K) denotes the reduced simplicial homology of a simplicial complex T.

A simplicial complex I is called Cohen-Macaulay over K if the Stanley Reisner
ring K[I'] is Cohen-Macaulay, see [10]. Using the above Theorem 2.1 and the
Stanley-Reisner criterion for Cohen-Macaulayness of simplicial complexes (cf. [10,
Corollary, 5.3.9]) one obtains

COROLLARY 2.2. If A = K|[S] is standard graded, then A is Koszul if and only
if A, is Cohen-Macaulay for a € S.

We write K[S] = K[x1,...,2,]/Is. The ideal Is (which is generated by bino-
mial ideals) is called the toric ideal of S. The property that Is has a quadratic
Grobner basis is reflected by the divisor complexes [23].

THEOREM 2.3 (Herzog-Reiner-Welker). If Is has a quadratic Grobner basis,
then each divisor complexr A, is homotopic to wedge of spheres.

In general it is hard to see whether A, is Cohen-Macaulay. On the other hand,
if A, is shellable, then A, is Cohen-Macaulay over any field.
Recall that A, is shellable if

(1) all maximal chains Ci,...,C, of the closed intervals [0, a] have the same
length; (This is the case if K[S] is standard graded)

(2) there exists an order of the maximal chains C; < C < --- < C,. such that
for all ¢ < j, there exists z € C; \ C; and k with ¢ < k < j such that
Cj \Ck = {.Z'}

REMARKS 2.4. (1) There is no affine Koszul semigroup known whose di-

visor posets are not shellable.

(2) If all divisor posets of S are shellable, then K[S] is Koszul for any base
field K.

(3) There is no affine semigroup ring known whose Koszulness depends on the
characteristic of K.

(4) Let K[S] = K[.’El.’EQ.CL';;, L1XL3L4,L1X4T5,L1L2T5,L2L3L6, .CL'4.CL'5.’E6,.Z‘2.'E5.CL'7].
Hibi and Ohsugi [27] have shown that all divisor posets of S are shellable,
while Is has no quadratic Grébner basis.

The following theorem [28] provides a sufficient condition for the shellability
of divisor posets.
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THEOREM 2.5 (Peeva-Reiner-Sturmfels). Suppose there exists a term order <
such that the initial ideal in< (Ig) is generated by squarefree monomials of degree 2
satisfying the following condition:

if ;x5 € inc(Ig), and i <1< j, then z;x; or zyz; € inc(Is).
Then all divisor posets A, are shellable.

Not so many explicit examples of semigroups with shellable divisor posets are
known. We close this section with a nice class of such semigroups. In the next
section we shall see a few more examples.

Suppose A = K|[S] is standard graded. We say that A is a monomial alge-

bra with straightening law (ASL) if there exists a partial order on the set P =
{u1,...,u,} of monomial generators of A such that:

(ASL-1) the standard monomials , i.e. the monomials u;, - - -u;, with u; <--- <
u;, form a K-basis of A;

(ASL-2) if u,v € P are incomparable, and uwv = 3", a;uj,ux, with a; € K, a; # 0
and uj; < ug;. Then uj; <wu and ug; < v for all 4.

Given a finite lattice L. The ring
K[L] = K[zy: o € L)/ (aZ3 — TarpTavs)a,Bel
is called the Hibi ring of L.

THEOREM 2.6 (Hibi). If L is distributive, then K[L] is a domain and a mono-
mial ASL.

We have [2]

THEOREM 2.7 (Aramova-Herzog-Hibi). The divisor posets of a monomial ASL
are shellable.

3. Sequential conditions

Let A be a standard graded K-algebra. The following definition is due to
Herzog, Hibi and Restuccia [21]

DEFINITION 3.1. The algebra A is strongly Koszul if the graded maximal ideal

of A admits a system of homogeneous generators uj, - - . , 4, such that for all subse-
quences U;, ,-..,U; of ur,...,u, withi; <is <---<ipandforallj=1,...,k—1
the colon ideal (u;, ...,u;;_,) : u;; is generated by a subset of {uy,...,un}.

A basic and easy to prove property of strongly Koszul algebras is that any ideal
generated by a subset of uq, ..., u, has a linear resolution. In particular, a strongly
Koszul algebra is Koszul.

Let P be a finite poset, and let u,v € P. One says that v covers u if u < v,
and if there is no w € P such that u < w < v.

The poset is called locally upper semimodular (or wonderful) if whenever v; and
ve cover 4 and vy,vs < v for some v € P, then there is w € P with w < v such
that w covers each v; and vs.

One has the following nice result, see [8] or [10, Theorem 5.1.12].

THEOREM 3.2 (Bjorner). The order complex of a wonderful poset which has a
least and greatest element is shellable.

Now affine semigroup rings which are strongly Koszul can be characterized as
follows

THEOREM 3.3. Let A = K[S] be a standard graded affine semigroup ring. Let
ai,-..,a, be the generators of S and u; = %, 1 =1,...,n, be the corresponding
generators of the K-algebra A. Then the following conditions are equivalent:
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(a) A is strongly Koszul with respect to the sequence uy,. .., un,
(b) The divisor posets of S are wonderful.

Together with the theorem of Bjorner it follows that a strongly Koszul algebra
has shellable divisor posets.

It is an easy exercise to see that a K-algebra with quadratic monomial relations
is strongly Koszul, thus providing a proof of 1.2. Furthermore tensor products,
Segre products, fiber products and Veronese subrings of strongly Koszul algebras
are strongly Koszul. However, the strongly Koszul property is rather strict and
there are not so many examples. In [2] there is given a more flexible sequential
condition, called extendable sequentially Koszul, and it is shown that the divisor
posets whose affine semigroup rings are extendable sequentially Koszul are CL-
shellable.

Koszul filtrations introduced by Conca, Valla and Trung [15] are a natural
extension of the above concepts.

DEFINITION 3.4. Let A be a standard graded K-algebra. A family F of ideals
is called a Koszul filtration if

(1) every ideal I € F is generated by linear forms,

(2) (0),meF,
(3) for every I € F, I # 0, there exists J C I, J € F such that I/J is cyclic
and J: I € F.
For example if A is strongly Koszul with respect to the generators uy, ..., un,

then F = {I: I = (u;,,...,ui,)} is a Koszul filtration.

It is easy to see that all ideals I € F have linear resolutions. There are two
extreme cases of Koszul filtrations:
(1) A has a Grobner flag, i.e. F = {(0), (z1), (z1,22),.-.,(z1,...,2,) = m};
(2) A is universally Koszul, i.e. F is the set of all ideals generated generated
by linear forms.

Algebras with Grobner flags can be characterized as follows

THEOREM 3.5 (Blum, Conca-Rossi-Valla). The following conditions are equiv-
alent:

(a) A has a Grébner flag (with respect to the generators 1, ..., Ty);

(b) Let < be the reverse lezicographical order induced by the total order x, >
ZTp—1 > --->x1. Thenin(I) is generated by monomials of degree 2, and
if xix; € inc(I) with i < j, then z;zy, € inc(I) for all k withi < k < j.

A full classification of universally Koszul domains is given by Conca [12].

THEOREM 3.6. Assume char K = 0, and that the standard graded K -algebra A
is a domain. Then the following conditions are equivalent:

(a) A is universally Koszul;
(b) A is isomorphic to either
(1) a hypersurface ring defined by a quadric;
(2) the coordinate ring of a rational normal scroll of type (a,...,ax)
withk =1 or k=2 and a1 = as;
(3) the Veronese ring K[x,y,2]® (which is the coordinate ring of the
Veronese embedding P2 — P ).

4. Subrings of Koszul algebras

Let A be a standard graded K-algebra. Let B be a finitely generated K-
subalgebra B of A. The K-subalgebra B is called a pure subalgebra of A if for every
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A-module M, the natural map M = M ®p B — M ®p A is injective. For example,
if B is a direct summand of A, then B is a pure subring.

In the sequel we will always assume that B is generated over K by homogeneous
elements of A, and that B can be given again a standard grading.

QUESTION 4.1. Suppose that A is Koszul and B is a pure subring of A. Is then
B again Koszul?

There are several special results which indicate that this might be true. The
oldest result in this direction is [7]

THEOREM 4.2 (Barcanescu-Manolache). Segre products of Veronese subrings
of polynomial rings are Koszul.

Later this result was generalized [6] as follows

THEOREM 4.3 (Backelin-Froberg). Veronese subrings and Segre products of
Koszul algebras are Koszul.

Let R = @(m)el\p R(; ;) be a bigraded K-algebra. We say R is standard graded
if Ro,0) = K and if it is generated as a K-algebra by R; o) and Rg,1)-

The (c,e)-diagonal Ra of R is the pure subalgebra @@,y R(sc,se) of R. For
example if A and B are standard graded K-algebras, then the (c,e)-diagonal of
A ®k B is the Segre product of the dth Veronese subring A of A and the eth
Veronese subring B(®) of B.

The following theorem [9] generalizes all the above results

THEOREM 4.4 (Blum). Let R be a standard bigraded Koszul algebra. Then
every diagonal subalgebra of R is again Koszul.

There is a rather strong version of pure subrings in the context of toric rings.
Let K[S] = K[z™,...,2%"] C K[z1,...,2,] be a semigroup ring, and let T be
a subset of {1,...,n}. In [26] the algebra K[St] = K[S]N K[{z;: i € T}] is
called a combinatorial pure subring of K[S], and it is shown that combinatorial
pure subrings of Koszul algebras are Koszul.

Backelin [5] introduced the rate of a standard graded K-algebra. The rate
measures how much the algebra deviates from being Koszul. Using this concept he
proved

THEOREM 4.5 (Backelin). Let R be a standard graded K-algebra. Then for
d > rate(R), the dth Veronese algebra RY is Koszul.

So the theorem says that even if R is far from being Koszul, the Veronese
subring R(9 is Koszul for d > 0. There are results of the same spirit, for example,
the result by Eisenbud, Reeves and Totaro [18] which gives a bound ¢ in terms of
the regularity of A for which A(%) is Koszul for d > c.

Similar results hold for “large” diagonals [13].

THEOREM 4.6. Let A be a bigraded K-algebra. Then there exist co and eq
(depending on the bigraded shifts of the free resolution A over its polynomial pre-
sentation) such that the (c,e)-diagonal algebra Aa is Koszul for all ¢ > ¢o and
e>eg.

This theorem has the following interesting consequence
COROLLARY 4.7. Let I be a graded ideal in the polynomial ring K[zy,...,zy],
and let d be the highest degree of a generator of I. Then there exist integers co and

eo such that the K-subalgebra K[(I¢)eqtc] of K[z, .. ,zys] is Koszul for all ¢ > ¢
and e > eg.
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5. Koszul duals and Koszul modules

In this section I discuss extensions of a theorem of Eisenbud, Floystad and
Schreyer [17], based on a joint paper with Iyengar [22].

Let K be field, V a finite dimensional K-vector space, E = AV the exterior
algebra and M a finitely generated graded E-module. Let F' be the graded minimal
free resolution of M. The linear part F“" of F is obtained from F by erasing all
terms of degree > 1 from the matrices representing the differentials of F'. Notice
that F'"" is a complex.

THEOREM 5.1 (Eisenbud-Schreyer). The linear part F'" of F predominates
eventually, i.e. .
Hy(F'"™) =0 for i>0.

We define
lpd(M) = inf{i: H;(F"") # 0}.
This is the smallest number from which on the linear part predominates.
There is no global bound for Ipd. In fact, consider the free E-resolution F' of K.
This is known to be linear. Therefore Ipd(K) = 0. Since E is injective, dualizing
into E yields an exact sequence

0—K"—F} —F' —F/ —---

Suppose dimV = n, then K* = K(—n). Thus, composing F' and F* we get the
exact complex graded

.- — Fi(—n) — Fy(—n) — Ff — F} — ---
Let M; be the ith syzygy module of K. Then the truncated complex
-oo— Fi(—n) — Fy(-n) - Ff — Ff —---— F', — F', —0
is a graded minimal free resolution of M. It follows that lpd(M}) =i — 1.

The question arises to what extend Theorem 5.1 is also true for other alge-
bras. We will concentrate our attention to commutative rings and algebras. So
let (R,m, K) be either a local ring or a standard graded K-algebra with graded
maximal ideal m, and M a finitely generated R-module (which should be graded if
R is standard graded).

Let F be the (graded) minimal free resolution of M. The linear part can be
described as follows: We define a filtration F of F, setting F;F; = m’~'F; for all
i,7. Then F is a filtered complex and for the associated graded complex we have

grz(F) = Flin,

If Ipd(M) = 0, then F'" is a minimal (linear) graded A-resolution of gr,, (M),
where A = gr..(R).

DEFINITION 5.2. The R-module M is Koszul if Ipd(M) = 0, that is, if F'" is
acyclic.

For the ring R itself we say that R is Koszul if K = R/m is a Koszul R-module.
We notice that a standard graded K-algebra is Koszul in the classical sense of
Section 1 if and only if it is Koszul in this new sense. Moreover, if R is Koszul,
then A = gr,..(R) is Koszul as well.

Suppose Ipd(K) < co. In case R is standard graded, it is easy to see that this
implies that the regularity reg(K) of K is finite. Now a theorem of Avramov and
Peeva [4] implies that R is Koszul. Thus we have

THEOREM 5.3. Let R be a standard graded K -algebra. The following conditions
are equivalent:
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(a) Ipd(K) < oo,
(b) R is Koszul.

In particular, if lpd(M) < oo for all graded R-modules, then R is Koszul.

We do not know if the same result holds in the local case. We say that R is a
finite lpd-ring if all finitely generated (graded) R-modules have finite 1pd.

PROPOSITION 5.4. Suppose Ipd(M) < oo. Then M has a rational Poincaré

series of the form
H,, M) (—-t)
Pur(t) = Qur(t) + —ZnD 2
2 (t) = Qur(t) + —52 00
where Qur(t) is a polynomial.
The proposition implies in particular that for finite lpd rings all finitely gener-
ated R-modules M have a rational Poincaré series with a denominator not depend-
ing on M but only on A.

ExAMPLE 5.5 (Roos). Let R = Kl[z1,%2,%3,%4]/ (23, 23,23, 33, 2122, T324).
Then R is Koszul by Theorem 1.2 of Froberg. However, the graded R-module
M = R/(xz1 — 3,71 — 4) has no rational Poincaré series. In particular, R is not
a finite lpd-ring.

For further discussions we need a characterization of Koszul algebras, due to
Lofwall ([25]): Extg(K,K) with the Yoneda product is an associative, graded
K-algebra. We denote by At the K-subalgebra of Extr(K,K) generated by

Exth(K, K). The following conditions are equivalent:

(a) R is Koszul;
(b) Extr(K, K) = Exta(K, K) and AL = Ext(K, K).
If A is Koszul, then A is called the Koszul dual of A and one has (4A+)+ = A.

Let M be a finitely generated (graded) R-module, z1, ..., =z, a minimal system
of generators of m, and y;: m/m? — R/m the K-linear map with y;(z;) = d;;. Then
Yi,-..,Yn is a K-basis of (m/m?)* = Extk (K, K), and hence a system of generators
of AL. There is a natural action

Exth(K, K) x Tori'(M,K) — Tor; | (M, K),
making Tor®(M, K) a left A--module. We define a complex
L(M) = A®g Tor®(M, K)
of free A-modules with differential
A@Torf(M,K) — A@ Torf |(M,K), 1 ®&m Y i @y
i=1

We have the following result (similar to Theorem 4.3 of Eisenbud, Floystad and
Schreyer, see [17])

THEOREM 5.6. Let F' be a minimal free R-resolution of M. Then
Flin = [,(M).

From this description of the linear part one deduces

COROLLARY 5.7. For all i and j one has

H;(F'™); = Ext’* (Exta(M, K), K));.
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Let N be a graded At-module (for example, Ext4(M, K)). Then

reg 4. (N) = sup{j: Exty.(N,K) ; ; # 0 quadfor some integer i}.
Thus Corollary 5.7 implies
COROLLARY 5.8. Ipd(M) =reg 4. (Exta(M, K)).

THEOREM 5.9 (Backelin, Roos). Let S be a local complete intersection, S — R
a Golod homomorphism and M a finitely generated R-module. Then

Exteq(k, k) (Extr(M, K), K) s a finitely generated Extpy (ki) (K, K)-module.

Assume that in addition to the hypotheses of 5.9, R is a Koszul ring. Then
Ext 41 (Exta(M, K), K) is a finitely generated A-module, and hence

reg 1 Ext4(M,K) < 00, and Ipdp(M) < 0.
Therefore we get

COROLLARY 5.10. Koszul rings which are Golod quotients of complete inter-
sections are finite Ipd rings.

5.1. Global bounds. Consider the K-algebra A = K[x1,...,z,]/(@?,...,22).
Then A is a finite Ipd ring. However, the same argument as in the case of an exterior
algebra (cf. Section 3) shows that there is no global bound for linear dominance.

Let A be a standard graded K-algebra. We set

gllpd(A) := sup{lpd4(M): M is a finitely generated graded A-module}.

Similarly we define gllpd(R) for a local ring R.

The question is whether there exist algebras with finite global Ipd. It would be
interesting to have full classification of such algebras.

Suppose that K is infinite, A is Cohen-Macaulay and Koszul. Then it is easily
seen that A is Golod if and only if A has minimal multiplicity, or equivalently,
m? = (x1,...,24)m for any system of parameters of x = x1,...,24 € A;. In other
words, if m is the graded maximal ideal of A = A/(x)A, then m? = 0. From this
one concludes that if M is the first syzygy module of a maximal graded Cohen-
Macaulay A-module, then m(M/(x)M) = 0. In particular, M/(x)M is isomorphic
to a direct sum of copies of K (a), and so has finite Ipd over A. This property can be
lifted to M. Hence, since every (d + 1)th syzygy module of some graded A-module
is a first syzygy module of graded maximal Cohen-Macaulay A module, we have

THEOREM 5.11. Let A be a standard graded Cohen-Macaulay Koszul K -algebra.
If A is Golod, then gllpd A < dim A + 1.

If we skip the Cohen-Macaulay hypothesis we still get a global, but slightly
weaker bound for lpd. The precise statement is

THEOREM 5.12. Let R be local ring which is Koszul and Golod. Then
gllpd R < 2embdim R.

Among the Gorenstein Koszul algebras only the hypersurface rings have finite
global lpd.

THEOREM 5.13. Let A be a standard graded Gorenstein Koszul k-algebra. Then
the following conditions are equivalent:
(1) gllpd A < oo;
(2) A is a hypersurface ring.
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