
These are preliminary notes from a series of lectures given by Cirto Ciliberto at
IMAR Bucharest, in February 2003. They refer to recent work in collaboration by
Ciliberto and Francesco Russo. The proof of Enriques’ theorem (see section ??) is
simplified in a separate file.

1. The tangent cone to a higher secant variety

We describe the tangent cone to the variety SkX of k+ 1 secant Pk, k ≥ 1, at a
general point of SlX , 0 ≤ l < k, where X ⊂ PN is an irreducible algebraic variety.
In characteristic zero the classical Terracini Lemma describes the tangent space to
SkX at a general point of it. By S(Y, Z) ⊂ PN we indicate the join of the irreducible
varieties Y, Z ⊂ PN . With this notation, SkX = S(X,Sk−1X) = S(SlX,ShX) if
l+ h = k − 1, l ≥ 0, h ≥ 0, S0X := X . The embedded projective tangent space to
a variety X at a point x ∈ X is indicated by TxX , while the tangent cone (scheme)
to X at a point x ∈ X by CxX . The dimension of SlX , l ≥ 1, is sl(X). We suppose
that SkX $ PN to avoid trivialities.

Our first result is the following.

Proposition 1.1. Let X ⊂ PN be an irreducible non-degenerate variety and let
h, l ∈ N be such that h + l = k − 1. If z ∈ ShX is a general point, then
S(TzS

hX,SlX) is an irreducible component of (CzS
kX)red. Moreover, multzS

kX ≥
deg(S(TzS

hX,SlX)) = deg(Xh+1), where Xh+1 ⊂ PN−sh(X)−1 is the projection of
X from the linear space TzS

hX.

Proof. The scheme CzS
kX is of pure dimension sk(X). By Terracini Lemma and by

the generality of z ∈ ShX , we get dim(S(TzS
hX,SlX)) = dim(S(ShX,SlX)) =

sk(X). Since S(TzS
hX,SlX) is irreducible, it is enough to prove the inclusion

S(TzS
hX,SlX) ⊆ CzS

kX .
Let w ∈ SlX be a general point. We claim that w 6∈ TzS

hX . By definition of h,
we have ShX 6= PN so that

V ert(ShX) :=
⋂

y∈ShX

TyS
hX

is either empty or a proper linear subspace of PN . If the general point of SlX is con-
tained in V ert(ShX), then X ⊆ SlX ⊆ V ert(ShX) and X would be degenerated,
contrary to our assumption.

Since w 6∈ TzS
hX , z is a smooth point of the cone S(w, ShX). ¿From Terracini

Lemma we deduce that

< w, TzS
hX >= TzS(w, ShX) = CzS(w, ShX) ⊆ CzS(SlX,ShX) = CzS

kX.

By the generality of w ∈ SlX we finally have S(TzS
hX,SlX) ⊆ CzS

kX . �

We collect some easy remarks on the behavior of higher secant varieties under
projection from a general point of a variety or from the tangent space to a higher
secant variety.
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Lemma 1.2. Let X ⊂ PN be an irreducible non-degenerate variety and let k ≥ 0
be an integer such that SkX $ PN . Then the general point x ∈ X does not belong
to V ert(SkX). Moreover, if πx : PN

99K PN−1 is the projection from a point
x ∈ X \ V ert(SkX), then πx(SkX) = Sk(πx(X)), dim(SkX) = dim(Skπx(X))
so that deg(SkX) = deg(πx

|SkX
) deg(Skπx(X)) + multx S

kX ≥ deg(Sk ix(X)) +

multx S
kX. In particular if deg(SkX) = deg(Skπx(X))+multx S

kX, then πx
|SkX

:

SkX 99K Skπx(X) is birational.

Proof. If the general point of X belongs to V ert(SkX), then V ert(SkX) would be
a proper linear subspace containing X and X would be degenerated, proving the
first assertion of the lemma.

If x ∈ X \ V ert(X), then dim(πx(X)) = dim(X) and

deg(X) = deg(πx|X
) deg(πx(X)) + multxX ≥ deg(πx(X)) + multxX.

So the assertion is true for k = 0 and we proceed by induction on k. By definition
Sk(πx(X)) = S(πx(X), Sk−1πx(X))) and by induction S(πx(X), Sk−1πx(X)) =
S(πx(X), πx(Sk−1X)). Moreover we have that πx(SkX) = πx(S(X,Sk−1X)) ⊆
S(πx(X), πx(Sk−1X)) and both are irreducible. To conclude it is enough to prove
that they have the same dimension. Recall that by the first part of the lemma
x 6∈ V ert(SlX) for every l ≥ 0 such that SlX $ PN so that πx restricted to X and
to Sk−1X is generically smooth. For general y ∈ X and for general z ∈ Sk−1X
we get by Terracini lemma that x 6∈< TyX,TzS

k−1X > because x 6∈ V ert(SkX).
The conclusion follows by generically smoothness and by Terracini lemma applied
to S(πx(X), πx(Sk−1X)): if y′ = πx(y) and z′ = πx(z) are the projections of the
general points y ∈ X and z ∈ Sk−1X , then Ty′πx(X), respectively Tz′πx(X), are
the projections of TyX and TzS

k−1X by generically smoothness and the restriction
of πx to < TyX,TzS

k−1X > is an isomorphism.
�

Let us recall the following notation. Let Sk
X ⊂ G(k,N) × PN be the abstract

symmetrized join of X and let pk
X : Sk

X → SkX ⊆ PN be the projection onto the
last factor. If dim(SkX) = dim(Sk

X) = (k + 1)n+ k, then pk
X is a generically finite

morphism, whose degree equals the number of (k + 1)-secant Pk passing through
the general point of SkX .

Lemma 1.3. Let X ⊂ PN be an irreducible non-degenerate variety and let k ≥ 0
be an integer such that SkX $ PN . Assume that dim(SkX) = (k + 1)n + k, i.e.
that pk

X is generically finite. Let x ∈ X \ V ert(SkX) and let πx be as above. If
πx : SkX 99K Skπx(X) is birational, then 0 < deg(pk

πx(X)) = deg(pk
X).

Proof. Letting notations as in the previous lemma, we have that πx induces a
commutative diagram of rational maps

Sk
X

pX
k

��

πx
//_______ Sk

πx(X)

p
πx(X)
k

��

SkX
πx

//______ Skπx(X)

and the conclusion follows. �
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2. Minimal degree of a higher secant variety

It is well known that an irreducible non-degenerate variety X ⊂ PN has degree
greater or equal to codim(X) + 1. Varieties whose degree is equal to codim(X) + 1
are called varieties of minimal degree. The degree of higher secant varieties satisfies
a stronger bound.

Let us indicate by Xh as above the projection of X from the tangent space to
Sh−1X at a general point on it. In particular X1 is the projection of X from a
general tangent space to X . By Xh we will indicate the projection of X from h
general points on it.

Theorem 2.1. Let X ⊂ Psk(X)+h, h = codim(SkX), be an irreducible non-
degenerate variety. Then

deg(SkX) ≥

(
codim(SkX) + k + 1

k + 1

)
.

If equality holds and if h ≥ 1, then:

i) CxS
kX = S(TxX,S

k−1X) for x ∈ X a general point and multx S
kX =(

k+h

k

)
;

ii) the projection of X from m points on it, Xm, 1 ≤ m ≤ h, are irreducible

varieties for which deg(SkXm) =
(
h−m+k+1

k+1

)
;

iii) for every 1 ≤ j ≤ h the projections πx : SkXj−1 99K SkXj are birational;
iv) the projections from the general tangent space to Sm−1X, Xm,1 ≤ m ≤ k,

are irreducible varieties for which deg(Sk−mX) =
(
h+k−m+1

k−m+1

)
so that Xk

is a variety of minimal degree;
v) if moreover X is not k-defective, then 0 < deg(pk

Xm
) = deg(pk

X) for every

1 ≤ m ≤ h so that νk(Xh) = deg(pk
X).

vi) if moreover X is not k-defective and if σk : X 99K Xk ⊂ Pn+h is the pro-
jection from TzS

k−1X, z ∈ Sk−1X general, then 0 < deg(σk) ≤ deg(pk
X).

Proof. By induction on k and h. For k = 0 we have the known bound for the
minimal degree of an algebraic variety, while for h = 0 it is obvious for every k.
Let us project X and SkX from a general point x ∈ X . Since codim(X1) = h− 1
and codim(Sk−1X1) = h, by lemma 1.2 and by proposition 1.1 and by induction
we get

deg(SkX) ≥ deg(SkX1) + multx(SkX) ≥

≥ deg(SkX1) + deg(Sk−1X1) ≥

k+h
(
k+1+(k+h

k )=(k+h+1
k+1 ).

)

Moreover if equality holds, by iterating the process we get all the assertions with
the exception of v) and vi). The conclusion of v) follows from lemma 1.3, while the
conclusion of vi) by deg(pk

X) = νk(Xh) ≥ δk(Xh) = deg(σk) by commutativity of
projections from linear spaces, by theorem νk(X) ≥ δk(X) and by the fact that a
variety of codimension at least 2 projects birationally from a point of itself. In other
words we have the next commutative diagram of rational maps, whose vertical maps
are birational being projections from h general points on a variety of codimension
al least h:
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X

��

σk(X)
//______ Xk

��

Xh

σk(Xh)
//______ Pn

�

Definition 1. Let X ⊂ PN be an irreducible non-degenerate variety of dimension
n. We say that X has minimal k-secant degree if SkX $ PN and if deg(SkX) =(
codim(SkX)+k+1

k+1

)
. We say that X is a variety with the minimal number of apparent

(k+1)-secant Pk−1, briefly MAk+1
k−1-variety, if sk(X) = (k+1)n+k and if νk(X) =

(
codim(SkX)+k+1

k+1

)
.

Remark 1. If X ⊂ PN is not k-defective, then νk(X) = deg(pk
X) deg(SkX) ≥

deg(SkX) ≥
(
codim(SkX)+k+1

k+1

)

We get that a MAk+1
k−1-variety is a variety of minimal k-secant degree.

We state an useful corollary of the above theorem and of theorem νk(X) ≥ δk(X),
whose proof is now immediate for h ≥ 1.

Corollary 2.2. Let X ⊂ PN be a MAk+1
k−1-variety for a given k ≥ 1. Let h =

N − (k + 1)n − k = N − sk(X). Then σk : X 99K Xk ⊆ Pn+h is birational and

Xk is a variety of minimal degree h+ 1. In particular a MAk+1
k−1-variety X ⊂ PN

is a rational variety such that the mobile part of the linear system of k-tangent
hyperplane sections is a rational variety.

The next corollary is very useful to generate new examples of varieties with
νk(X) = 1.

Corollary 2.3. Let X ⊂ P(k+1)n+k be a MAk
k−2-variety. Then the projection of

X from n+ 1 points of itself is a OAk
k−2-variety X̃ = Xn+1 ⊂ Pkn+k−1.

3. Examples of OAk+1
k−1-varieties and of MAk+1

k−1-varieties

In this section we construct examples of n-dimensional varieties X ⊂ PN , N ≥

(k + 1)n+ k, not k-secant defective and such that νk(X) =
(
k+codim(SkX)+1

k+1

)
.

Example 1. Rational normal scrolls. Let 0 ≤ a1 ≤ a1 ≤ ... ≤ an be integers and
set N = a1 + ... + an + n − 1. Recall that a rational normal scroll S(a1, ..., an) in
PN is the image of the projective bundle P(a1, ..., an) := P(OP1(a1)⊕ ...⊕OP1(an))
via the linear system |OP(1)|. The dimension of S(a1, ..., an) is n, its degree is
a1 + ... + an = N − n + 1 and S(a1, ..., an) is smooth if and only if a1 > 0.
Otherwise, if 0 = a1 = ... = ai < ai+1, it is the cone over S(ai+1, ..., an) with vertex

a Pi−1. One uses the simplified notation S(ah1
1 , ..., ahm

m ) if ai is repeated hi times,
i = 1, ...,m.

Recall that rational normal scrolls, the (cones over) Veronese surface in P5, and
quadrics, can be characterized as those non-degenerate irreducible varieties in a
projective space having minimal degree (see [EH]).
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Given positive integers 0 < m1 ≤ ... ≤ mh we will denote by Seg(m1, ...,mh) the
Segre embedding of Pm1 × ...× Pmh in PN , N = (m1 + 1) · · · (mh + 1)− 1. We use

the shorter notation Seg(mk1
1 , ...,m

ks
s ) if mi is repeated ki times, i = 1, ..., s. Recall

that Pic(Seg(m1, ...,mh)) ' Zh, generated by the line bundles ξi = pr∗i (OPmi (1)),
i = 1, ..., h. A divisor D on Seg(m1, ...,mh) is said to be of type (`1, ..., `h) if

OSeg(m1,...,mh)(D) ' ξ`1
1 ⊗ ...⊗ ξ`h

h . The hyperplane divisor of Seg(m1, ...,mh) is of
type (1, ..., 1).

Let X = S(a1, . . . , an) ⊂ PN be as above. Then dim(SkX) = (k+1)n+ k if and
only if a1 ≥ k and more precisely we have that

dim(SkX) = min{N,N + k + 1 −
∑

1≤j≤n; k≤aj

(aj − k)},

by applying Terracini Lemma and induction to projections from general tangent
spaces or by writing equations of SkX , see [Ro] and [CJ1] for this last point of view.
To calculate the degree of SkX , we will generalize Room specialization argument,
see [Ro] pg. 257. From the determinantal description of SkX $ PN as the variety
whose ideal is generated by (k + 2) × (k + 2) minors of a suitable one-generic
(k + 2) ×

∑
1≤j≤n; k≤aj

(aj − k) matrix of linear forms (a suitable Hankel matrix

of linear forms), see [CJ1], one gets codim(SkX) =
∑

1≤j≤n; k≤aj
(aj − k) − k − 1.

Then SkX is a specialization of the generic (k + 2)×
∑

1≤j≤n; k≤aj
(aj − k) matrix

of linear forms so that

deg(SkX) =

(∑
1≤j≤n; k≤aj

(aj − k)

k + 1

)
=

(
codim(SkX) + k + 1

k + 1

)
.

This yields νk(X) =
(
k+codim(SkX)+1

k+1

)
for every k such that N > (k+ 1)n+ k =

dim(SkX), i. e. for every k such that a1 ≥ k and N > (k + 1)n + k. From the
above description it also follows that, whenever SkX $ PN , Sing(SkX) = Sk−1X ,
k ≥ 1.

Let X = S(a1, . . . , an) ⊂ PN as above with a1 ≥ k and with N = (k + 1)n+ k.
We have SkX = PN and we prove that νk(X) = 1. Let H ∈ |OP(1)| and let F be a
fiber of the structural morphism π : X → P1. Then |H−kF | is generated by global
sections and h0(H − kF ) =

∑n

i=1(ai + 1− k) = k(n+ 1) + 1−n(k− 1) = k+n+ 1.
Let

φ1 = φ|H−kF | : X → Pk+n

and let
φ2 = φ|kF | : X → Pk.

Clearly φ1(X) = S(a1 − k, . . . , an − k). Let φ = (φ1, φ2). We get the commutative
diagram:

X

��

φ=(φ1,φ2)
// Pk × Pk+n

��

PN �

�

// P(k+1)(k+n+1)−1

Set P(k+1)(n+1)−1 := Pn,n+k. Now let ψ : Pn,n+k 99K G(k, n + k) be the map
which associates to a (k + 1) × (n + k + 1) matrix its equivalence class under
the action of GL(k + 1). It immediately follows that the closure of the fibers
of ψ are linear spaces of dimension k2 + 2k. Let us remark that ψ is given by
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forms of degree k + 1 vanishing with order al least k along Seg(k, n+ k) ⊂ Pk,n+k

and it is not defined along Sk−1Seg(k, n + k). Moreover, a linear fiber through

a general point p ∈ Pk,n+k, Pk2+k
p , can be interpreted as the linear span of a

Seg(k, k) = Pk × Pk
p ⊂ Seg(k, n+ k), which is the closure of the locus of points of

Seg(k, n+ k) described by the (k + 1)-secant Pk to Seg(k, n+ k) passing through
p.

Let us indicate by ψ̃ : PN
99K G(k, n + k) the restriction of ψ to PN ⊂ Pk,n+k.

The morphism ψ̃ is defined on PN . Indeed, by the above description it is sufficient
to show that a general point p ∈ PN has rank k+1, thought as a point of Pk,n+k.
We have to go back through the commutative diagram above. The point p belongs
to a k + 1-secant Pk, let us say < p0, . . . , pk > with pi’s general on X . Then also
their images through φ1 and φ2 will generate a Pk in the respective space. Modulo a
projective change of coordinates in Pk, respectively Pn+k, we can suppose φi(pj) =

(0 : . . . : 0 : 1︸︷︷︸
j

: 0 : . . . : 0). The claim easily follows.Moreover, ψ̃ is dominant since

for a general fiber F of ψ we have dim(F∩PN ) ≥ k2+k+N−(k+1)(n+k+1)+1 = k.

By the theorem of the dimension of the fibers, the general fiber of ψ̃ has dimension
k = (k + 1)n + k − (k + 1)n and its closure, being the intersection of two linear

spaces, is a Pk, which is (k + 1)-secant to X . Since ψ̃ is defined by forms of degree
k+ 1 vanishing with order at least k along X , a (k + 1)-secant Pk passing through

a general point of PN is contracted by ψ̃ so that it coincides with the fiber passing
through the general point. Then through a general point of PN there passes a
unique (k + 1)-secant Pk, i.e. νk(X) = 1.

We now consider the case of some hyperquadric fibrations.

Example 2. Hyperquadric fibrations. Let X = P(a1, ..., an) := P(OP1(a1) ⊕ ... ⊕
OP1(an)) and let notations be as in the previous section. Let φ1 = φ|H|(X) =

S(a1, . . . , an) ⊂ PN , 0 ≤ a1 ≤ . . . ≤ an, N + 1 =
∑n

i=1 ai + n. Suppose also
that

∑
ai ≥ 2, i.e. that φ1(X) $ PN . Then |H + F | is very ample on X and

φ2 = φ|H+F |(X) = S(a1 + 1, . . . , an + 1) ⊂ PN+1. Finally let φ3 = φ|2H+F | : X →

P(n+1)(N+1).
Then we claim that φ3(X) ⊂ P(n+1)(k+1)−1 is a OAN+1

N−1-variety. The verification
is similar to the case of the rational normal scrolls, since we have a diagram:

X

φ3

��

φ=(φ1,φ2)
// PN × PN+n

��

PN �

�

// P(N+1)(N+n+1)−1

Set PN,n+N := P(N+1)(N+n+1)−1. By restricting to P(n+1)(N+1)−1 the rational map

ψ : PN,n+N 99K G(N,n+N), we obtain SNX = P(n+1)(N+1)−1 and νN (φ3(X)) = 1
since the general fiber of the restriction is once again a (N+1)-secant PN to φ3(X).

Example 3. 5-Veronese embedding of P2 and its tangential projections from 1,2
or 3 points. We prove that the 5-Veronese embedding of P2, X = ν5(P2) ⊂ P20,
and its tangential projections from 1, 2 or 3 points, X i ⊂ P20−3i, i = 1, 2, 3, are
smooth surfaces such that ν6(X) = 1, respectively ν6−i(X

i) = 1.
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We will slightly modify and adapt to our need a construction of N. Shepherd-
Barron. Let us first consider the case of X = ν5(P2) ⊂ P20. Let F ∈ |OP2×P2∗(1, 1)|
and let p1 and p2 indicate the projections (or their restrictions to F ) of P2 × (P2)∗.
Let us recall that F = {(x, l) ∈ P2× (P2)∗ : x ∈ l}. Let φ = φ|OF (1,2)| : F ↪→ P14.

Since every fiber of p2 : F → (P2)∗ is embedded as a line in P14, we get an
isomorphism of (P2)∗ with a subvariety of G(1, 14). Let X ⊂ G(1, 14) ⊂ P104 be
the image of (P2)∗ ⊂ G(1, 14) under the Plücker embedding of G(1, 14). We claim
that X is the 5-Veronese embedding of P2.

To prove this let us introduce the following Schubert cycles in G = G(1, N).
A = {l ∈ G : l lies in a given hyperplane }, B = {l ∈ G : l meets a given
linear space of codimension 3}, C = {l ∈ G : l meets a given linear space of
codimension 2}. Then C is a hyperplane section of G in its Plücker embedding
and C2 = A + B. Note that deg(X) = X · C2 = X · A + X · B. The embedding
of X is given by a complete linear system, because it is G-equivariant (see [SB]),
so that it is enough to prove that deg(X) = 25. By definition in our example,
X ·A = deg(F ) = (p∗1O(1) + p∗2O(2))3 = 18. Let H ⊂ P14 be a general hyperplane
and let S ∈ |F ∩ H |. Then X · A is equal to the number of fibers of p2 that lie
in H , i.e. the number of exceptional curves contracted by p2 : S → (P2)∗. Then
X · A = 9 −K2

S = 7, since KS = OS(−1, 0) and
K2

S = (p∗1O(−1))2 · (p∗1O(1) + p∗2O(2)) = 2. Finally deg(X) = 18 + 7 = 25 and
the conclusion follows. By the above discussion the linear span of X ⊂ P104 is
< X >= P20.

Let us recall that given a vector space W of odd dimension 2k + 1, there is a
natural rational map ψ : P(Λ2W ∗) 99K P(W ∗), associating to a skew 2-form its
kernel; recall that a skew 2-form has even rank. Then the general fiber of ψ is a
linear space and if dim(W ) = 2k + 1, then the map is given by forms of degree k
vanishing with order al least k − 1 along G(1, 2k) ⊂ P(Λ2W ∗).

For W = H0(OF (1, 2)) we get a rational map ψ : P104
99K P14 for which the

closure of a general fiber F is a P90. In [SB], lemma 12, it is shown that the locus of
indetermination of ψ does not contain S6X =< X >, the last equality being well
known. The general fiber F will cut < X >= P20 in a linear space of dimension
at least 90+20-104=6, so that the restriction of ψ to < X >, ψ : P20

99K P14 is
dominant and the closure of a general fiber is then a linear space of dimension 6
by the above analysis and by the theorem of the dimension of the fibers. Then a
7-secant P6 passing through a general point of P20 is contracted by ψ so that it
coincides with the general fiber of ψ restricted to P20, i.e. ν6(X) = 1.

Now we slightly modify the construction to show that the surfaces X i, i = 1, 2, 3,
have ν6−i(X

i) = 1. We will treat the case i = 1 for simplicity since the other follows
by applying the same construction. Let p ∈ (P2)∗ be general and let l ⊂ P2 be the
corresponding line. We prove that the projection of X ⊂ P20 from the tangent
space at the general point p is isomorphic to the image in (the Plücker embedding
of) G(1, 12) of the projection of the scroll F from the line l, i.e. if πl : P14

99K P12

is projection from the line l, if F ′ = πl(F ) and if X ′ ⊂ G(1, 12) ⊂ P77 is the
corresponding image of the scroll F ′, then X ′ ' Blp(P2)∗, < X ′ >= P17 and
X ′ is embedded by quintics having a double point at p, i.e. X ′ = X1. In the
Plücker embeddings, the natural map π̃l : G(1, 14) 99K G(1, 12) clearly corresponds
to projection from the tangent space to G(1, 14) at the point l ∈ G(1, 14). This
gives that πl(X) = X ′ is a surface whose hyperplane section in its linear span are
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represented on X by a linear system of quintics having only a singular point at
p. Recall that TlG ∩ G = {l′ ∈ G : l ∩ l′ 6= ∅} so that TlG(1, 14) ∩ X = {l′ ∈

X : l ∩ l′ 6= ∅} = l as sets. Set P2 × Blp((P2)∗ ⊃ F̃ = Blp−1
2 (p)F → Blp(P2)∗ and

let φ : F̃ → P12 be the map given by the linear system |p∗1(O(1)) + p∗2(O(2)) − Ẽ|,

where p1 and p2 are the projections of P2×Blp((P2)∗ and where Ẽ is the exceptional

divisor of F̃ . Then F ′ ' φ(F̃ ) from which it follows X ′ ' Blp(P2)∗. To get the
conclusion it is sufficient to show that deg(X ′) = 21. We have to make exactly the
same calculation as before. Now X ′ · B = deg(F ′) = 15 and X ′ · A = 6 so that
deg(X ′) = 21. This shows that π̃l restricted to X is exactly the projection of X
from TlX , that < X1 >= P17 = S5X , where the last equality follows from Terracini
lemma. Then reasoning as above, now with the corresponding ψ : P77

99K P12 and
by restricting to the linear span of < X1 >= P17 ⊂ P77, we get a rational map
ψ : P17

99K P12, whose general fiber is a 6-secant P5 to X1, i.e. ν5(X
1) = 1.

In the same way we can iterate the projection from tangent space and get smooth
surfaces X i ⊂ P20−3i such that ν6−i(X

i) = 1.

Example 4. Let X ⊂ PN ⊂ PN+l+1 be an irreducible non-degenerate (in PN )
variety of dimension n and let L = Pl ⊂ PN+l+1, l ≥ 0, be such that L ∩ PN = ∅.
Let Y = S(L,X) be the cone over X with vertex L. Then dim(Y ) = n+ l+1. More
generally for everym ≥ 1 we have SmY = S(L, SmX) so that sl(Y ) = sl(X)+l+1,
hm(Y ) := N + l+ 1− sm(Y ) = N − sm(X) = hm(X) and deg(SmY ) = deg(SmX)
for every m ≥ 1. In particular if X has minimal k-secant degree, then Y has
minimal k-secant degree.

We now slightly modify the above example to motivate the hypothesis we will
introduce in our classification theorems in the following sections.

Example 5. Let C ⊂ P2k+1 ⊂ P3k+2, k ≥ 1, be a rational normal curve of degree
2k + 1. Take L = Pk ⊂ P3k+2 such that L ∩ P2k+1 = ∅ and a morphism φ : C →
C ′ ⊂ Pk and take X = ∪p∈C < p, φ(p) >⊂ P3k+2. Then νk(X) = νk(C) = 1 and
as soon as k ≥ 3, one can take as φ a general projection of C and obtain examples
of smooth surfaces X ⊂ P3k+2, which not linearly normal, i.e. such that the linear
system of hyperplane section of X is not complete. Let us remark that such a
surface X is k-weakly defective being contained in a cone of vertex a Pk over the
curve C, see [CC].

This example could also be generalized to higher dimensions but we leave the
details to the reader.

4. On a theorem of Castelnuovo-Enriques

labelCasEnr In this section we prove a theorem of Enriques, generalising to
arbitrary surfaces a result proved by Castelnuovo for rational surfaces, see [En] and
[Ca].

Theorem 4.1. (Enriques, [En]) Let S be a smooth irreducible projective surface
and let D ⊂ S be an irreducible curve of geometric genus g ≥ 2. Suppose that
r = dim(|D|) ≥ 3g + 5 and suppose there does not exist an irreducible rational
curve F ⊂ S such that F 2 = 0 and such that F ·D = 1, i.e. φ|D|(S) ⊂ Pr is not

ruled. Then r = 3g + 5, D2 = 4g + 4 and (S,D) is one of the following:

(1) S ' P2 and D ∈ |OP2(4)|;
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(2) S ' Fa, a ≥ 0, and D is of type 2E + (a + g + 1)F with 0 ≤ a ≤ g + 1,
where E is a (−a)-curve and F a fiber of the ruling. The divisor D is
very ample if and only if 0 ≤ a ≤ g. If a + 1 + k ≡ 0, (mod 2), then
φ|D|(S) is (k + 1)-defective, while if If a+ k ≡ 0, (mod 2), then φ|D|(S) is

a OAk+2
k -surface.

Corollary 4.2. Let S ⊂ Pr, r ≥ 3g + 5, g ≥ 2, be an irreducible non-degenerate
surface which is not ruled and having general hyperplane section H of geometric
genus g. Then r = 3g+5, S has at most one singular point, the general hyperplane
section is smooth, S has degree 4g + 4 and it is one of the following:

(1) S ' P2 and D ∈ |OP2(4)|;
(2) S ' Fa, a ≥ 0, and H is of type 2E + (a+ g + 1)F with 0 ≤ a ≤ g, where

E is a (−a)-curve and F a fiber of the ruling.
(3) S is isomorphic to the 2-Veronese embedding of a cone over a rational

normal curve of degree a, Sa ⊂ Pa+1, a ≥ 3 and g = a− 1.

During the proof of this result and of some of its consequences we use a theorem
of M. Reid, proved via Mori theory, which we recall here.

Theorem 4.3. (Reid, [Re]) Let S be a smooth irreducible projective surface and
let D be a nef and big divisor on S such that D ·KS < 0. Define

ρ = ρD = sup{m ∈ Q : D +mKS ≥ 0}.

Then ρ, 2ρ or 3ρ ∈ Z, and D + ρKS has a Zariski decomposition

D + ρKS = P +N,

such that:

(1) P is nef and P 2 = 0;
(2) N ≥ 0 and P · C = 0 for every C in the support of N ;
(3) the negative part N can be contracted out by a sequence of contractions

S → S1 → . . . → Sk = S#, where each step contracts out a single (−1)-
curve Ei, with

Ei ·Di = µi < ρ

(here Di is the direct image of D on Si);
(4) the surface S# is called the #-minimal model of (S,D) and it is either a

weak conic bundle, i.e. there exists a morphism π : S# → B with B a
smooth curve such that −KS# is nef and big relatively to π, or S# is a
weak del Pezzo surface, i.e. −KS# is nef and big. Moreover, in the first
case, if F is a fiber, then

D# · F = 2ρ ∈ Z,

while in the second case

D# + ρKS# = 0,

where D# is the image of D on S#.
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Proof. (of theorem 4.1). By eventually blow-up S and by resolving the singularities
of a general member of |D|, we can suppose that D is smooth. Set d = D2. From
the exact sequence

0 → OS → OS(D) → OD(D) → 0,

we get dim(|D|D|) ≥ 3g + 4 so that D|D is non-special by Clifford theorem. From
Riemann-Roch theorem we get that r ≥ 3g+5 gives 3g+5 ≤ d+1−g, i.e d ≥ 4g+4.

We have KS ·D = 2g − 2 − d ≤ 2g − 2 − 4g − 4 = −2g − 6 < 0 so that S has
negative Kodaira dimension. On the other hand,

(D + 2KS) ·D = d+ 2(2g − 2 − d) = 4(g − 1) − d ≤ −8,

yields ρ = ρ(D) < 2. With the notations of theorem 4.3, we have µi < ρ < 2 so
that µi = 0, 1. Then D# is smooth and irreducible, g(D#) = g, and dim(|D#|) ≥
dim(|D|) ≥ 3g + 5 and we can suppose
S = S# and D = D#.
Suppose that S is a weakly del Pezzo surface. Then

0 < D2 = ρ2K2
S,

yields K2
S > 0. On the other hand,

2g − 2 = (D +KS) ·D = (−ρ+ 1)KS · (−ρ)KS = ρ(ρ− 1)K2
S ,

so that

ρ2K2
S = d ≥ 4g + 4 = 2ρ(ρ− 1)K2

S + 8,

i.e.

ρ2K2
S − 2ρK2

S + 8 ≤ 0.

Finally from

0 < (ρ− 1)2K2
S ≤ K2

S − 8,

we deduce K2
S = 9 and S ' P2. Since D ∈ |OP2(a)|, a ≥ 3, and since

a2 = d ≥ 4g + 4 = 2(a− 1)(a− 2) + 4,

we necessarily have a = 3 and we are in case 1).
Now we treat the case in which S is a weak conic bundle. Since 2ρ = D · F ≥ 2,

where the last inequality comes from the hypothesis of the theorem, and since
2 ≤ 2ρ < 4, we have to consider the cases 2ρ = 2, 3.

Suppose 2ρ = 3. By theorem 4.3

D +
3

2
KS = P,

and

8 ≥ K2
S =

4

9
(D−P )2 =

4

9
(D2−2D·P ) =

4

9
(D2−2D2−3D·KS) = −

4

9
(D2+3D·KS) =

= −
4

9
(d+3(2g−2−d))) = −

4

9
(6(g−1)−2g) =

8

9
(d−3(g−)) ≥

8

9
(4g+4−3g+3) =

=
8

9
(g + 7) ≥ 8.

Then K2
S = 8, g = 2 and d = 4g + 4 = 10. From

D · P = D2 +
3

2
(KS ·D) = 10 +

3

2
(2 − 10) = −2,

we get a contradiction since P is nef and D is an effective divisor.
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Suppose now ρ = 1. Reasoning as above one gets

8 ≥ K2
S = (D − P )2 = D2 − 2D · P = D2 − 2D2 − 2D ·KS = d− 4(g − 1) ≥ 8.

Hence K2
S = 8 and S ' Fa, a ≥ 0. With the standard notations

D = 2E + βF,

with β ≥ 2a because D is an irreducible smooth curve. Since KS = −2E− (a+2)F
and KS +D = (β − a− 2)F , we obtain

2g − 2 = 2(β − a− 2),

i.e.

β = a+ g + 1.

Finally from 0 ≤ D ·E = −2a+β = −2a+a+g+1 = g+1−a we get the restriction
0 ≤ a ≤ g + 1. Moreover, if D is very ample, then D · E > 0, i.e. a ≤ g. It is a
standard fact in the theory of ruled surfaces, that on the contrary if 0 ≤ a ≤ g, the
divisorD = 2E+(a+g+1)F is very ample. In any case we have that D is generated
by global sections, that D2 = 4g + 4 and that dim(|D|) = 3g + 5. If a = g + 1,
then φ = φ|D| contracts the curve E to a point and it is an isomorphism outside E

and φ(S) = S̃ has a unique singular point of multiplicity a. The surface S̃ ⊂ P3k+2

is the 2-Veronese embedding of the rational normal cone over the rational normal
curve of degree a so that it is (k + 1)-defective. In the same way, we see that if
a + 1 + k ≡ 0, (mod 2), then φ|D|(S) is the 2-Veronese embedding of a smooth
rational normal scroll so that it is (k + 1)-defective. If a + k ≡ 0, (mod 2), then

φ|D|(S) is a OAk+2
k -surface, see example 2. �

Proof. (of corollary 4.2). Let π : S̃ → S be a desingularisation of S and let
D = π∗(H). Then D is nef and big, the general element of |D| is irreducible and
of geometric genus g and s = dim(|D|) ≥ r ≥ 3g + 5. There does not exists on S
an irreducible rational curve F such that F 2 = 0 and such that D · F = 0, because
otherwise S would be ruled. Then by theorem 4.1, we have that s = r = 3g + 5
and the conclusion easily follows. �

We are ready to give an application of the theorem of Reid and of the theorem of
Enriques, which will be very useful for classification in the next section. We refrain
for the moment to formulate it in the maximal generality, i.e. for singular surfaces,
the adaptation being almost obvious.

Theorem 4.4. Let S be a smooth surface and H ⊂ S be an irreducible curve of
geometric genus g ≥ 2, which is an ample divisor. Suppose that r = dim(|D|) ≥
3g+α, α ≥ 2, and suppose there does not exist an irreducible rational curve F ⊂ S
such that F 2 = 0 and such that F ·H = 1, i.e. φ|H|(S) ⊂ Pr is not ruled. Then S
is rational, H is very ample, α ≤ 5, and (S,H) is one of the following:

(1) the 4-Veronese embedding of P2, g = 3; or one of its projections from
i = 1, 2 points on it, g = 3, α = 5 − i;

(2) S is the linear projection from β = 5 − α, 0 ≤ β ≤ 3, distinct points of

a surface S̃ ⊂ P3g+5 of degree d = 4g + 4 and genus g, i.e. of a surface

S̃ ' Fa, a ≥ 0, whose hyperplane section is of type 2E + (a+ g + 1)F with
0 ≤ a ≤ g, where E is the (−a)-curve and F a fiber of the ruling of Fa;
α = 5 − β.
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(3) S ' Q ⊂ P3 and H ∈ |OQ(3, 3)|, g = 4 and α = 3.
(4) the 5-Veronese embedding of P2, g = 6; or one of its tangential projections

from 1, 2 or 3 point, g = 6 − j, j = 1, 2, 3, α = 2;

Proof. From H ·KS = 2g− 2− 4g−α+1 = −2g− 1−α < 0 we deduce that S has
negative Kodaira dimension. Since d = H2 ≥ 4g+1 ≥ 9, the linear system |KS +H |
is base point free by Reider’s theorem, taking into account the hypothesis. We have
to consider two cases: either (KS +H)2 > 0 and the general element D ∈ |KS +H |
is smooth and irreducible or (KS + H)2 = 0 and |KS + H | is composed with a
pencil. Let us consider first the last case. Let ψ : S → C be the Stein factorization
of φ|KS+H| and let F be a general fiber of ψ. Then F is an irreducible smooth

curve such that F 2 = 0 and such that KS · F = −H · F < 0, i.e. F ' P1 and
KS ·F = −2 = −H ·F . Since (H+mKS) ·F = 2−2m < 0 for every m > 1, letting
notations as in theorem 4.3, ρ(H) = 1 so that (S,H) is a weakly conic bundle by
theorem 4.3. Since H · F = 2, there are at most two irreducible components in
the reducible fibers of the fibration and these are necessarily (−1)-curves. From
0 = (KS + H)2 = K2

S + 2KS · H + d = K2
S + 4g − 4 − d ≤ K2

S − 3 − α, we get
K2

S ≥ α+ 3 so that S is rational, d = 4g + α− 1 and K2
S = α+ 3. There at most

0 ≤ β = 8 − K2
S = 5 − α ≤ 3 singular fibers. After contracting β (−1)-curves

Ei, one in each reducible fiber, we get a surface S̃ and a morphism ϕ : S → S̃. If

H̃ is the image of the smooth irreducible curve H , then H̃ is smooth, irreducible

and dim(|H̃ |) = 3g + α + β = 3g + 5; recall that H · Ei = 1 for each i. Then we
apply theorem 4.1 and get case 2 taking into account that since h1(OS(H)) = 0,

the divisor H̃ on S̃ is easily seen to be very ample.
Let us consider the case in which D ∈ |KS +H | is a nef and big divisor. We have

3 ≤ h0(OS(D)) = h0(OH(KH))−h1(OS) ≤ h0(OH (KH)) = g. Since (D+KS)·H =
(H + 2KS) · H = d + 4g − 4 − 2d < 0 and since D · KS = 2g − 2 − d + K2

S ≤
−2g−α−1+K2

S < 0 (if K2
S = 9 we get S ' P2 and the inequality holds for g ≥ 3),

we get ρ(D) < 1 so that ρ(D) = 1/2, 1/3 or 2/3. Let f : S → S# be the reduction
to the #-minimal model. In each case Ei · Di = 0 yields that, D = f∗(D#) so
that D# is ample and ρ(D#) = 1/2, 1/3 or 2/3. Since ρ(D#) is not an integer, the
surface S# is minimal, i.e. it is, respectively, either a P1-bundle relatively to D#,
or S# = P2 and D# = O(1) or O(2). Suppose S# is a P1-bundle over a smooth
curve E of genus g(E) = h1(OS). We have 1 ≤ (D#)2 = D2 = K2

S +4g−4−2d+d,
so that K2

S ≥ d+ 1 − 4g + 4 ≥ α+ 4 ≥ 6 and a fortiori K2
S# = 8, i.e. h1(OS) = 0,

and once again S is rational. In conclusion in each case D# is a smooth rational
curve on S#, which is a very ample divisor. From the rationality of S we deduce
(D#)2 = h0(OS#(D#)) − 2 = h0(OS(D)) − 2 = g − 2. Hence D# embeds S#

in Pg−1 as a smooth surface of minimal degree g − 2. Moreover d = 4g + α − 1
and K2

S − 3 − α = D2 = (D#)2 = g − 2. From 9 ≥ K2
S = g + α + 1 we deduce

3 ≤ g ≤ 8 − α and we can now conclude the classification.
Suppose α = 4 so that g = 3 or 4. If g = 4, then K2

S = 9, S ' P2 and this case
is not possible. Suppose g = 3. Then S# = P2, K2

S = 8 so that S ' BlpP2 and
H ∈ |π∗(OP2(4)) −E|.

Suppose α = 3, so that g = 3, 4 or 5. If g = 5, then K2
S = 9, S ' P2 so this case

cannot exist. If g = 4, then S ' S# ' Q ⊂ P3 and H ∈ |OQ(3, 3)|. If g = 3, then
S# = P2, K2

S = 7 so that S ' Blp1,p2P
2 and H ∈ |π∗(OP2(4)) −E1 −E2|.
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Suppose finally α = 2.
If g = 6, then K2

S = 9 so that S = S# ' P2, D# ∈ |OP2(2)| and H ∈ |OP2(5)|.
If g = 5, then K2

S = 8 so that S = S# ' BlpP2, D# ∈ |π∗(OP2(2)) − E| and
H ∈ |π∗(OP2(5)) − 2E|.

If g = 4, then K2
S = 7 so that S ' BlpQ, where Q = P1 × P1 = S#,

D# ∈ |OQ(1, 1)| and H ∈ |π∗(OQ(3, 3)) − E|. The pair (S,H) is isomorphic to
(Blp1,p2P2, π∗(OP2(5))−2E1−2E2). If g = 3, then K2

S = 6 so that S ' Blp1,p2,p3P
2,

because (S#, D#) = (P2,OP2(1)), and H ∈ |π∗(OP2(4))−E1 −E2 −E3|. The pair
(Blp1,p2,p3P

2, π∗(OP2(4))−E1−E2−E3) is isomorphic to (Blq1,q2,q3P
2, π̃∗(OP2(5))−

2Ẽ1 − 2ldeE2 − 2Ẽ3), concluding the proof of the theorem. �

5. Some general Lemmas

The two next lemmas are consequences of theorem 1.4 of [CC] we partially recall
here.

Theorem 5.1. ([CC], th. 1.4) Let X ⊂ PN be a non-degenerate irreducible variety
of dimension n. If X is not k-weakly defective for a given k such that N ≥ (n +
1)(k+ 1), then, given p1, . . . , pk+1 general points on X, the general (k+ 1)-tangent
hyperplane section H ∈ |O(1)−2p1 . . .−2pk+1| is tangent to X only at p1, . . . , pk+1.
Moreover such a hyperplane section H has ordinary double points at p1, . . . , pk+1.

The first consequence we are interested in is the following.

Lemma 5.2. Let X ⊂ PN be an irreducible non-degenerate variety, which is not
(k − 1)-weakly defective for a fixed k ≥ 2 such that N ≥ kn + k. Let p1, . . . , pk−1

be general points on X and let z ∈< p1, . . . , pk−1 > be a general point of Sk−2X.
Let π : X 99K Y ⊂ PN−(k−1)n−k+1, N − (k− 1)n− k+ 1 ≥ n+ 1, be the projection
from TzS

k−2X. Then π is a birational morphism. In particular, if N ≥ 2n + 2
and X is not 1-weakly defective, then the projection from a general tangent space
is birational onto the image.

Proof. Since X is not (k − 1)-weakly defective, we have sl(X) = (l + 1)n + l for
every l ≤ k− 1 so that by Terracini’s lemma dim(Y ) = sk−1(X)− sk−2(X)− 1 = n
and π is generically finite. Suppose that given a general pk ∈ X there exists a
point q ∈ X \ (TzS

k−2X ∩ X), q 6= pk and q ∈ π−1(π(pk)). Let π(pk) = y ∈ Y .
Then < TyY, TzS

k−2X >=< Tpk
X,TzS

k−2X >=< TqX,TzS
k−2X > by generic

smoothness, from which it follows that the general hyperplane tangent at p1, . . . , pk

is also tangent at q. Since X is not (k − 1)-weakly defective, theorem 5.1 implies
N < kn+ k, contrary to our assumption. �

In the sequel we also need this fact.

Lemma 5.3. Let X ⊂ PN be an irreducible non-degenerate surface, which is not
(k − 1)-weakly defective for a fixed k ≥ 1 such that N ≥ 3k + 2. Let B =

∑
niΓi,

ni ≥ 0, be the fixed part of the linear system of hyperplane sections tangent at k−1
general points p1, . . . , pk−1 and let |A| be its mobile part. If ni > 0 for some i, then
ni = 1 and Γi is an irreducible smooth curve. Moreover, if B 6= ∅, then either B

is a smooth rational curve passing through p1, . . . , pk−1 or B =
∑k−1

i=1 Γi, with Bi a
smooth rational curve passing through pi, i = 1, . . . , k− 1, and Γi ∩Γj = ∅ if i 6= j.
If moreover the general tangent projection from k − 1 tangent spaces is a surface
Y ⊂ PN−3k+3 with general hyperplane section a smooth rational curve, then A is
rational.
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Proof. Let C be a general hyperplane section tangent at the general points p1, . . . , pk−1

and let |C| = |A| + B. By a standard analysis and by theorem 5.1, i.e. by
the fact that C has only ordinary double points at p1, . . . , pk−1, we get that, if
B 6= ∅, A is irreducible and smooth, that ni = 1 if positive, that each Γi is
smooth and that only the two above cases are possible. So it suffices to show
that each Γi is a rational curve. By projecting X from the span of the tangent
space to p1, . . . , pi−1, pi+1, . . . , pk−1, we get an irreducible surface Y ⊂ PN−3k+3,
with N − 3k + 3 ≥ 5, which is birational to X by lemma 5.2 and which is not
0-weakly defective. Then the general hyperplane section tangent to Y at a general
point is necessarily reducible and has only a double point as its singularities. This
forces Y to be either the Veronese surface in P5 or a not developable scroll over a
curve. Then either A and each Γi are rational curves smooth at pi, each one being
birational to a conic, or the linear system of tangent hyperplane sections has a fixed
part consisting of a line and once again Γi is rational being birational to a line. The
conclusion follows. �

6. Classification of curves with minimal higher secant degree

Let C ⊂ PN be an irreducible non-degenerate curve. Then it is well known that
sk(C) = min{2k + 1, N}. From now on let us suppose that k ≥ 1 is such that
2k+ 1 ≤ N and let hk = N − 2k− 1 = codim(SkX). Let us recall that in this case
we always have deg(pk

C) = 1.

Theorem 6.1. Let C ⊂ PN be an irreducible non-degenerate curve linearly normal
curve. Let k ≥ 1 be such that 2k+ 1 ≤ N and let hk = N − 2k− 1 = codim(SkX).

Then νk(C) =
(
k+hk+1

k+1

)
if and only if C ⊂ PN is a rational normal curve of degree

N . If hk > 0, then deg(Sk(C)) =
(
k+hk+1

k+1

)
if and only if C ⊂ PN is a rational

normal curve of degree N .

Proof. The curve is linearly normal and rational so that the conclusions easily
follow. �

7. Classification of OAk+1
k−1-surfaces

In this section we furnish the classification of smooth linearly normal surfaces
X ⊂ P3k+2, k ≥ 2 such that νk(X) = 1. It can be easily extended to the classifica-
tion of such surfaces with at most a finite number of singular points.

Theorem 7.1. (Bronowski, [Br])Let X ⊂ P3k+2, k ≥ 2, be a smooth projective
irreducible linearly normal surface such that νk(X) = 1. Then X is one of the
following:

(1) a rational normal scroll S(a1, a2) with k ≤ a1 ≤ a2, d = a1 + a2 = 3k + 1
and sectional genus g(X) = 0.

(2) the image in P3k+2 of a S(a1, a2) ⊂ Pk with 0 ≤ a1 ≤ a2, a1 + a2 = k − 1
by the linear system |2H + F |, H ∈ |OS(a1,a2)(1)|, F a fiber of the ruling.
In this case d = 4k and g(X) = k− 1 and the hyperplane sections of H are
hyperelliptic curves.

(3) X is the linear projection from 3 distinct points of a surface X̃ ⊂ P3k+5 of

degree d = 4k + 4 and genus k, i.e. of a surface X̃ ' Fa, a ≥ 0, whose
hyperplane section is of type 2E + (a + k + 1)F with 0 ≤ a ≤ k, where
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E is the (−a)-curve and F a fiber of the ruling of Fa. Then d = 4k + 1,
g(X) = 4k and the hyperplane sections are hyperelliptic curves.

(4) the 5-Veronese embedding of P2, k = 6, or one of its tangential projections
from 1, 2 or 3 point and k = 6− j, j = 1, 2, 3. In this case d = 25− 4j and
g(X) = 6 − j, j = 0, 1, 2, 3.

Proof. A consequence of the analysis of the hyperplane sections tangent at k points
and of theorem 4.4. �

8. Classification of surfaces with the minimal number of apparent

double points

We apply theorem 2.1 to the study of surfaces X ⊂ PN such that SX $ PN is

a proper subvariety and such that ν(X) =
(
h+2

2

)
, where h1(X) = codim(SX) ≥ 1,

or to secant defective surfaces of minimal secant degree. This immediately yields
N − 1 ≥ s1(X) = s(X) ≥ 4. For simplicity let h1(X) = h.

Theorem 8.1. Let X ⊂ Ps(X)+h, h ≥ 1, be an irreducible non-degenerate smooth
surface of minimal secant degree

(
h+2

2

)
and with s(X) = 4. Then X is one of the

following:

(1) the Veronese surface in P5;
(2) a singular rational normal scroll;

Proof. If s(X) = 4 by a well known theorem of Severi we have that X is either a
cone or the Veronese surface. The Veronese surface has secant variety of degree 3
so that SX is of minimal degree in this case. If X is a cone, then it is a cone over a
rational normal curve because its tangential projection is a rational normal curve.
A cone over a rational normal curve is a singular rational normal scroll in PN and
these varieties have minimal secant degree. �

Theorem 8.2. Let X ⊂ P5+h, h ≥ 1, be a smooth non-degenerate surface with(
h+2

2

)
apparent double points. Then X is one of the following:

(1) a smooth rational normal scroll of degree 4 + h;
(2) a del Pezzo surface of degree 5 + h, 1 ≤ h ≤ 4.

Proof. Such a surface is linearly normal, see for example [CMR]. By corollary 2.2,
the projection from a general tangent space to X is birational and maps X onto a
rational normal scroll in P2+h. Then a general tangent hyperplane section C of X is
rational and has a unique double point as its singularities since X is neither a cone,
neither a tangent developable so that it has no dual defect. If C is irreducible, then
the general hyperplane section has genus 1, being smooth and of arithmetic genus
one, and the claim easily follows. If C is reducible, then X is a not developable
scroll and the tangent hyperplane section consists of a line and of a unisecant curve,
which is then a rational curve, so that X has as general hyperplane section a smooth
rational curve. Then X is a rational normal scroll. �
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9. A theorem of Bronowski and the classification of surfaces of

minimal k-secant degree

In [Br] Bronowski ”obtained” the classification of surfaces X ⊂ P3k+2 such that
νk(X) = 1, which we fixed in the previous sections. In the same paper Bronowski
also ”classifies” surfaces in P3k+2 such that sk(X) < 3k+2 and such that sk−1(X) =
3(k − 1) + 2 = 3k − 1, k ≥ 2. From general facts, it easily follows that sk(X) =
sk−1(X) + 2 = 3(k − 1) + 4 = 3k + 1 because SkX $ PN , so that SkX is an
hypersurface. The conclusion of the theorem of Bronowski is clearly false without
additional assumptions as the following example shows.

Example 6. Let C ⊂ PM , M ≥ 2k + 2, k ≥ 1, be a smooth non-degenerate
curve. Take PM+k ⊇ PM and a Pk−1 = L ⊂ PM+k such that L ∩ PM = ∅.
Consider the variety Y = S(L,C) ⊂ PM+k of dimension k + 1. Take a smooth,
irreducible, non-degenerate surface X in Y . Then X is a smooth surface such that
SkX ⊆ SkY = S(L, SkC). If M = 2k + 2, the variety S(L, SkC) is an irreducible
hypersurface, because SkC is. If moreover, SkX is at least an hypersurface (this
always happens for k = 2, M = 6 and X smooth), we get SkX = S(L, SkC), i.e.
SkX is an hypersurface of degree deg(SkC), which is a cone. For arbitrary smooth
C ⊂ P2k+2, for example a rational normal curve of degree 2k + 2, we certainly get
examples not contained in Bronowski’ s list.

This opens the problem of classifying the surfaces contained in Bronowski’ s list.
One immediately remarks that all these surfaces are also surfaces of minimal k-
secant degree k+2 and that, naturally, after the classification of surfacesX ⊂ P3k+2

with νk(X) = 1, it is natural to ask for the classification of k-defective surfacesX ⊂
P3k+2 of minimal k-secant degree k+2 and more generally of MAk−1

k+1-surfaces. This
is done in the next theorems, which together with theorem 7.1, finally completely
clarify the content of Bronowski’ s results on page 311 of [Br] and naturally extend
them. The conclusion of the ”theorem” of Bronowski is got by applying a theorem
of Enriques, see our theorem 4.1.

Let us remark that for k = 1 Severi’ s theorem yields that the Veronese surface is
the unique 1-defective surface which is not 0-weakly defective, so that Bronowski’
s ”theorem” can be interpreted as a generalization of this consequence of Severi’s
theorem.

Theorem 9.1. (Bronowski, [Br]) Let X ⊂ PN , N ≥ 3k+ 2, be an irreducible non-
degenerate linearly normal surface with at most a finite number of singular points,
which is not (k − 1)-weakly defective and such that sk(X) < 3k + 2.

Then N = 3k + 2, SkX is an hypersurface and X is one of the following:

(1) the Veronese surface in P5 (deg(SX) = 3);
(2) there exists a desingularization φ : X ′ → X such that X ′ ' Fa, a ≥ 0, and

φ∗(H) is of type 2E+(a+k)F with 0 ≤ a ≤ k and a+k = 2β (deg(X) = 4k,
g(H) = k − 1, deg(Sk(X)) = k + 2); if 0 < a < k, then X ′ = X, while if
a = k, X ′ has only a singular point, being the 2-Veronese embedding of a
rational normal scroll which is a cone;

(3) the 4-Veronese embedding of P2 (deg(X) = 16, g(H) = 3, deg(S4X) = 6).

Proof. ¿From general facts, it easily follows that sk(X) = sk−1(X)+2 = 3(k−1)+
4 = 3k + 1 because SkX $ PN and sl(X) = 3l + 2 for 0 ≤ l ≤ k − 1.
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We can suppose k ≥ 2 by Severi’ theorem, which says that the Veronese surface is
the unique surface, not a cone, of PN , N ≥ 5 such that dim(SX) = 4. Let us recall
that cones are 0-weakly defective surfaces. Since X is not (k− 1)-weakly defective,
the projection π from the tangent space to Sk−2X is birational by lemma 5.2 and
maps X onto an irreducible surface Y ⊂ PM , M ≥ 5, such that dim(SY ) = 4, i.e.
Y is either the Veronese surface and M = 5, i.e. N = 3k + 2, or Y is a cone. This
last case cannot occur because otherwise X would be (k − 1)-weakly defective. In
conclusion, Y ⊂ P5 is the Veronese surface, N = 3k + 2, X has at most a finite
number of singular points and SX is an hypersurface. The general element |A|
of the mobile part of the linear system of the (k − 1)-tangent hyperplane sections
|C| = |A| + B of X projects birationally onto a rational normal curve of degree 4,
so that it is rational.

If B = ∅, then C is irreducible and having k − 1 ordinary double points as
singularities, it has arithmetic genus k − 1 and degree deg(C) = 4k. Then the
linear system of the hyperplane sections of X has geometric genus k−1 and degree
4k and by applying the theorem of Enriques, theorem 4.1, we get cases 2 and 3 if
k ≥ 3. For k = 2 we get a surface with sectional genus 1 and degree 8, which is
necessarily as in case 2 as one easily sees, i.e. it is the 2-Veronese embedding of a
quadric surface in P3.

Let us suppose now B 6= ∅. If B has a unique irreducible component, necessarily
a smooth rational curve, then we have dim |B| = k − 1 and B2 = k − 2. Moreover,
since dim(A) = k+4, we get A2 = k+3; from A ·B = k−1 we get deg(X) = C2 =
k + 3 + 2k − 2 + k − 2 = 4k − 1; moreover we know that the sectional genus of a
general hyperplane section is k−2. Suppose that k ≥ 3. Since 3(k−2)+5 = 3k+2
and since (X,H) is not ruled by lines H · B = 2k − 3 ≥ 2, we see that this case
does not exist by theorem 4.1. If k = 2 we are in the next case we now discuss.

Finally if B consists of k−1 irreducible components, then they belong to a pencil
of lines and C = A + (k − 1)F is a rational normal scroll of degree 3k + 2. This
case does not exists since a rational normal scroll cannot project onto the Veronese
surface. �

As we saw it is not possible to eliminate the hypothesis of (k − 1)-weakly de-
fectiveness in the above theorem. Since (k − 1)-weakly defective surfaces, which
are not (k − 1)-defective were completely classified in [CC], theorem 1.4, one gets
the following result which can be considered the natural generalization of Severi’ s
theorem.

Theorem 9.2. Let X ⊂ PN , N ≥ 3k + 2, be an irreducible non-degenerate k-
defective, not (k−1)-defective, linearly normal surface with at most a finite number
of singular points and with minimal k-secant degree.

Then X is one of the following:

(1) the Veronese surface in P5;
(2) N = 3k + 2 and there exists a desingularization φ : X ′ → X such that

X ′ ' Fa, a ≥ 0, and φ∗(H) is of type 2E + (a + k)F with 0 ≤ a ≤ k and
a+ k = 2β (deg(X) = 4k and g(H) = k − 1);

(3) the 4-Veronese embedding of P2 in P14 (deg(X) = 16 and g(H) = 3);
(4) k ≥ 1 and X is a (k−1)-weakly defective surface lying on a k+1-dimensional

cone over a curve C ⊂ PM , M ≥ 2k + 2, and with vertex a linear space of
dimension Pk−1.
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Finally as a corollary of the above results we get the classification of irreducible
k-defective, not (k−1)-defective, surfaces in PN , N ≥ 3k+2, with minimal k-secant
degree.

Corollary 9.3. Let X ⊂ PN , N ≥ 3k + 2, be an irreducible non-degenerate k-
defective linearly normal surface with minimal k-secant degree. Then X is one of
the following:

(1) the Veronese surface in P5;
(2) there exists a desingularization φ : X ′ → X such that X ′ ' Fa, a ≥ 0, and

φ∗(H) is of type 2E+(a+k)F with 0 ≤ a ≤ k and a+k = 2β (deg(X) = 4k
and g(H) = k − 1);

(3) the 4-Veronese embedding of P2 (deg(X) = 16 and g(H) = 3);
(4) k ≥ 1 and X is a (k−1)-weakly defective surface lying on a k+1-dimensional

cone over a rational normal curve C ⊂ P2k+2 and with vertex a linear space
of dimension Pk−1.

Once again since (k − 1)-weakly defective surfaces are completely classified and
since, for N ≥ 3k+3, deg(pk

X) ≥ 2 implies that X is k-weakly defective by theorem
5.1 and by Terracini lemma, in order to conclude the classification of surfaces of
minimal k-secant degree it suffices to classify surfaces X ⊂ P3k+2+h, h ≥ 1, such
that νk(X) =

(
h+k+1

k+1

)
, i.e. MAk+1

k−1-surfaces. The proof is completely parallel to

the classification theorem of OAk+1
k−1-surfaces, but in easier since the theorem of

Enriques immediately applies and gives that one a prori possible case does not
exist.

Theorem 9.4. Let X ⊂ P3k+2+h, h ≥ 1, be an irreducible non-degenerate linearly
normal MAk+1

k−1-surface with at most a finite number of singular points. Then X
is one of the following:

(1) a rational normal scroll S(a1, a2) of degree d = 3k+1+h and type (a1, a2)
with k ≤ a1 ≤ a2;

(2) a rational surface of degree 5 + h with elliptic curve sections, 1 ≤ h ≤ 4,
i.e. a del Pezzo surface with at most a singular point (k = 1).

(3) 1 ≤ h ≤ 3 and X is the projection from 3−h point of a surface X̃ ⊂ P3k+5

for which there exists a desingularization φ : X̃ ′ → X̃ such that X̃ ′ ' Fa,
a ≥ 0, and φ∗(H) is of type 2E + (a + k + 1)F with 0 ≤ a ≤ k + 1 and
a+ k = 2β (deg(X) = 4k + 1 + h and g(H) = k);

(4) the 4-Veronese embedding of P2 (deg(X) = 16, g(H) = 3, k = 3, h = 3 and
ν3(X) = 35) or one of its projections from 3 − h points on it, 1 ≤ h ≤ 2,
k = 3;

(5) S ' Q ⊂ P3 and H ∈ |OQ(3, 3)|, g = 4 and α = 3.
(6) X is the 3-Veronese embedding of P2 (k = 2 and ν2(X) = 4).
(7) k ≥ 1 and X is a k-weakly defective surface lying on a k + 1-dimensional

cone over a rational normal curve C ⊂ P2k+1+h and with vertex a linear
space of dimension Pk.

Proof. If it is k-weakly defective, being not k-defective, we are in case 6) by the
classification theorem of [CC]. So from now on we suppose X is not k-weakly
defective.

By corollary 2.2, the surface X projects birationally from a general tangent space
to Sk−1X onto a surface of minimal degree in P2+h, so that the linear system of
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hyperplane sections tangent at k general points, |C| = |A|+B has rational mobile
part.

If there are not fixed components, i.e. B = ∅, then pa(C) = k so that a general
hyperplane section has genus k and degree 4k+1+h. We have that either k = 1 and
X is a (possible singular) del Pezzo surface as in case 2) or, if k ≥ 2, by applying
the theorem 4.1 that 3k + 2 + h ≤ 3k + 5, i.e. h ≤ 3. Moreover, if h = 3, then
X is either as in case 3) or 4) with h = 3 by the above mentioned theorem and
these cases have the minimal number of apparent (k+ 1)-secant (k− 1)-planes. By

projecting them from 1 or 2 we obtain MAk+1
k−1-surface, see theorem 2.1, and it can

easily seen that the #-minimal model of the desingularization of a surface with a
finite number of singular points in P3k+2+h, 1 ≤ h ≤ 2, of degree 4k + 1 + h and
sectional genus k is either as in case (3) or as in case (4) with h = 3.

If B consists of a smooth rational curve passing through the fixed k points , then
the sectional genus of a general hyperplane section is k − 1 and A · B = k ≥ 2.
If k ≥ 3, from 3k + 2 + h > 3(k − 1) + 5 = 3k + 2 and from theorem 4.1, we see
that this case cannot occur. Suppose k = 2. Then from dim |A| = k + 2 + h and
from dim |B| = k we get A2 = k + 1 + h and B2 = k − 1, i.e. deg(X) = C2 =
k + 1 + h+ 2k + k − 1 = 4k + h = 8 + h. Then necessarily h = 1, deg(X) = 9 and
X is the 3-Veronese embedding of P2, which is a surfaces with the minimal number
of apparent 3-secant lines.

If B consists of k ≥ 1 smooth rational curves which are lines with respect to A,
then one immediately sees that we are in case (1). �
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