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1 Introduction

The author (1968 [16], 1971 [17]) proved that any derivation on a simple C∗-algebra

is induced by an element of its multiplier C∗-algebra and in particular, any deriva-

tion on a unital simple C∗-algebra is always inner. On the other hand, any ∗-
automorphism on a separable simple C∗-algebra is induced by an unitary element

of its multiplier C∗-algebra if and only if it is ∗-isomorphic to the C∗-algebra of

all compact linear operators on a separable Hilbert space, and in particular, any

∗-automorphism on a separable, unital simple C∗-algebra is always inner if and only

if it is ∗-isomorphic to a finite-dimensional full matrix algebra [18]. In the paper

[18], the author asked whether one can extend this result to non-separable cases,

and mentioned three outstanding problems of Naimark, Connes, Brown-Douglas-

Fillmore as related problems. Recently all of these three problems have been solved

in three different ways (Consistency [1], within ZFC [9] and Independency [14], [5]).

Since Naimark’s problem was negatively solved by Akemann-Weaver [1], the

author [19] has raised a new problem, which might substitute Naimark’s problem.

In the present paper, we shall, at first, briefly explain the recent papers of

Phillips-Weaver [14] and Farah [5] in which they prove that the statement of ”The

Calkin algebra has an outer ∗-automorphism” is undecidable within ZFC. Next we

shall discuss the outstanding problem of Kadison-Singer [11]. We shall show that

this problem is equivalent to a problem in the Calkin algebra and point out that this

hard problem might be interested from the view point of the set theory in Operator

algebras.
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2 Automorphisms on the Calkin algebra

Brown-Douglas-Fillmore [3] asked whether there exists a ∗-automorphism of the

Calkin algebra which sends the image of the unilateral shift to its adjoint.

The author [18] restated simply whether there exists an outer ∗-auto-

morphism on the Calkin algebra, because even this simplified problem seemed to

be difficult. Then, assuming the Continuum Hypothesis, Phillips-Weaver [14] has

proved that the Calkin algebra has 2ℵ1 outer ∗-automorphisms. Very recently, as-

suming the Open Coloring Axiom, Farah [5] proves that all ∗-automorphisms on the

Calkin algebra are inner.

Therefore these two results imply that the statement of “The Calkin algebra

has an outer ∗-automorphism” is undecidable within Zelmelo-Fraenkel set theory

with the axiom of choice (ZFC). Consequently this gives a complete solution to

Brown-Douglas-Fillmore problem.

Todorcevic’s Open Coloring Axiom follows from the Proper Forcing Axiom in

the set theory for negation of the Continuum Hypothesis.

In the first paper [5], Farah assumes also Martin’s Axiom, but in the second

paper [6] he assumes Open Coloring Axiom only.

3 On the problem of Kadison-Singer

Let H be a separable infinite-dimensional Hilbert space, B(H) the W ∗-algebra of

all bounded linear operators on H. Let (ξn) be a fixed orthonormal basis of H
and let (pn) be a family of mutually orthogonal one-dimensional projections such

that pnξn = ξn (n = 1, 2, 3, . . .). Let C be an atomic maximal commutative W ∗-

subalgebra of B(H) generated by {pn | n = 1, 2, 3, . . .}. Let P be a projection of

B(H) onto C given by P (a) =
∞∑

n=1

(aξn, ξn)pn (a ∈ B(H)).

Let C = C(βN) be the Gelfand representation of C, where βN is the Stone-

Čech compactification of all positive integers N, and C(βN) is the C∗-algebra of all

complex valued continuous functions on βN.

For t ∈ βN, put P (a)(t) = ϕt(a) (a ∈ B(H)); then by Anderson’s theorem

[2], ϕt is a pure state on B(H). If t ∈ N, then the restriction ϕt |C of ϕt to C
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has a unique pure state extension ϕt. Kadison-Singer problem is as follows: For

t ∈ βN \ N (namely free ultrafilter), can we conclude that ϕt |C has a unique pure

state extension?

The proposers inclined to the view that the problem has a negative solution,

when it was proposed in 1959. However most of the paper, which have been pub-

lished, are intended to obtain the positive solution, though no one has succeeded.

Even today, many researchers are very actively studying the problem, expecting

probably the positive solution. The main reason is due to the fact that the problem

is equivalent to many important open problems of several branches in mathematics,

applied mathematics and engineering. Concerning these matters, one can consult

with a nice survey by Casazza-Ficks-Tremain-Weber [4].

Also Reid [15] in 1971 proved the following interesting Theorem: Under the

assumption of the Continuum Hypothesis, if a free ultrafilter U is rare, then for the

corresponding t ∈ βN \ N, ϕt | C has a unique pure state extension ϕt.

In this paper, we shall present another consideration on the problem, which

might be interested from the view point of the set theory in operator algebras.

In our discussion, the so-called extension property of Stonean spaces will play an

important role. Since βN is a Stonean space, C(βN) has the extension property (cf.

Goodner [7], Nachbin [13] and Kelley [12] for real case and Hasumi [8] for complex

case).

Namely, let E be a real (complex) Banach space and F be a closed linear subspace

of E. Then any bounded linear mapping T of F into C(βN) can be extended to a

bounded linear mapping T̃ of E to C(βN) such that ‖T̃‖ = ‖T‖.
For a selfadjoint element a ∈ B(H), let L(a) = {c ∈ C | a 5 c} and U(a) = {c ∈

C | c 5 a}. Since the selfadjoint part Cr(βN) of C(βN) is a boundedly complete

lattice, there exists inf
c∈L(a)

c and sup
d∈U(a)

d.

Take arbitrary finite subset F = {cα1 , cα2 , . . . , cαn} of L(a). Then cF(t) =(
n∧

i=1

cαi

)
(t) = inf

15i5n
cαi

(t) (t ∈ βN).

Since C(βN) is a commutative W ∗-algebra, a decreasing directed set {cF} con-

verges to an element in C(βN) in the σ(C(βN), C(βN)∗)-topology, where C(βN)∗ is
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the predual of C(βN). This element is inf
c∈L(a)

c. Analogously we have sup
c∈U(a)

c.

Lemma 1 sup
c∈U(a)

c = inf
d∈L(a)

d = P (a) for all a ∈ B(H)s where B(H)s is the selfad-

joint part of B(H).

Proof. For arbitrary c1 ∈ U(a), d1 ∈ L(a) we have c1 5 a 5 d1; hence c1 5 d1

and so sup
c5a
c∈C

c 5 d1 and sup
c5a
c∈C

c 5 inf
d=a
d∈C

d. a 5 c implies P (a) 5 c, and so P (a) 5 inf
a5d
d∈C

d.

Analogously sup
c5a
c∈C

c 5 P (a).

Now suppose that P (a) < inf
c∈L(a)

c and put a0 = inf
c∈L(a)

c. Then −‖a + c‖1 − c 5
(a+c)−c 5 ‖a+c‖1−c; hence −‖a+c‖1−c 5 sup

c∈U(a)

c 5 inf
c∈L(a)

c = a0 5 ‖a+c‖1−c.

Therefore −‖a + c‖1 5 a0 + c 5 ‖a + c‖1 and so ‖a0 + c‖ 5 ‖a + c‖ (c ∈ C(βN)s).

Define T (λa + c) = λa0 + c (λ ∈ R, c ∈ C(βN)s); then ‖T‖ = 1; hence by the

extension property, there is a bounded linear mapping T̃ of B(H)s onto C(βN)s

such that T̃ (x) = T (x) for x ∈ Ra + C(βN)s and ‖T̃‖ = ‖T‖.
If h > 0, then ‖1− h

‖h‖‖ 5 1 and so ‖T̃ (1− h

‖h‖)‖ = ‖1− T̃ (
h

‖h‖)‖ 5 1; hence

T̃ (h) = 0.

Since T̃ (a) = a0 6= P (a), there is an element ξn0 in the orthonormal basis {ξn}
such that (a0ξn0 , ξn0) 6= (P (a)ξn0 , ξn0), because the predual of C(βN) = l1(N).

Now define ϕ(x) = (T̃ (x)ξn0 , ξn0)(x ∈ B(H)s) and ϕ̂(x+iy) = ϕ(x)+iϕ(y) (x, y ∈
B(H)s). then ϕ̃(h∗h) = 0 and ϕ̃(1) = 1; hence ϕ̃ is a state on B(H).

Since ϕ̃(c) = (cξn0 , ξn0) (c ∈ C), by the unicity of the pure state extension of

discrete pure states on C to B(H), ϕ̃(b) = (bξn0 , ξn0) = (P (b)ξn0 , ξn0) (b ∈ B(H)), a

contradiction. Hence P (a) = inf
c∈L(a)

c and analogously P (a) = sup
c∈U(a)

c. ¤

For a ∈ B(H), let W (a) be a σ(B(H), B(H)∗)-closed convex subset of B(H)

generated by {vav∗ | v ∈ Cu}, where B(H)∗ is the predual of B(H) and Cu is the

group of all unitary elements of C. Then by Markov-Kakutani fixed point theorem,

there is a fixed point a0 under {Ad v | v ∈ Cu}; hence va0v
∗ = a0 (v ∈ Cu). Since

C is a maximal commutative W ∗-subalgebra of B(H), a0 ∈ C.
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Moreover, ‖vav∗ + c‖ = ‖v(a + c)v∗‖ = ‖a + c‖ (c ∈ C); hence ‖a0 + c‖ 5 ‖a +

c‖ (c ∈ C). Define T (λa+ c) = λa0 + c (λ ∈ C, c ∈ C); then ‖T (λa+ c)‖ 5 ‖λa+ c‖;
hence T can be extend to a bounded linear mapping T̃ of B(H) onto C(βN) with

‖T̃‖ = ‖T‖. By a similar discussion with the proof of Lemma 1, we have

Lemma 2 T̃ = P on B(H) and so W (a) ∩ C = {P (a)} (a ∈ B(H)).

Let V (b) be the norm-closed convex subset of B(H) generated by {vbv∗ | v ∈ Cu}
for b ∈ B(H) and V (b)oo (resp. Coo) be the bipolar of V (b) (resp. C) in B(H)∗∗,

where B(H)∗∗ is the second dual of B(H).

Since V (b)oo is σ(B(H)∗∗, B(H)∗)-compact and vV (b)oov∗ ⊂ V (b)oo(v ∈ Cu),

V (b)oo is invariant under Ad v (v ∈ Cu): hence by Markov-Kakutani fixed point

theorem, V (b)oo ∩ C ′ 6= ∅, where C ′ is the commutant of C in the W ∗-algebra

B(H)∗∗. Then we have the following theorem.

Theorem 1 The following properties are mutually equivalent.

(1) Kadison-Singer problem is positive for all t ∈ βN \ N;

(2) for any commutative AW ∗-subalgebra D of B(H)∗∗ such that C ⊂ D ⊂
B(H)∗∗, let Q be a norm-one projection of B(H)∗∗ onto D; then Q(a) = P (a)

for all a ∈ B(H);

(3) V (a)oo ∩ C ′ = {P (a)} (a ∈ B(H));

(4) V (a) ∩ C = {P (a)} (a ∈ B(H));

(5) sup
c5b

c∈Cs

c(t) = inf
b5d
d∈Cs

d(t) for t ∈ βN \ N and b ∈ B(H)s;

(6) {cF} (resp. {dF}) converges P (b) uniformly on βN, where cF =
∨
i∈F

cαi
with

(cαi
)i∈F ⊂ U(b) (resp. dF =

∧
i∈F

dαi
with (dαi

)i∈F ⊂ L(b)) for every finite

subset F and every b ∈ B(H)s;

(7) {cF} (resp. {dF}) converges to P (b) in the σ(B(H)∗∗, B(H)∗)-topology for all

b ∈ B(H)s.
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Proof. (1) ⇒ (2). Let Q be a norm-one projection of B(H)∗∗ onto D (it exists

always, because the spectrum space of D is Stonean). Let D = C(K) be the Gelfand

representation, and suppose that Q(a) 6= P (a) for some element a ∈ B(H). Then

there exists a point t0 ∈ K such that Q(a)(t0) 6= P (a)(t0). On the other hand

Q(c)(t0) = c(t0) = P (c)(t0) for c ∈ C. |Q(x)(t0)| 5 ‖Q(x)‖ 5 ‖x‖ (x ∈ B(H)) and

Q(1)(t0) = 1; hence x → Q(x)(t0) is a state on B(H). Since c → c(t0) (c ∈ C) is a

character of C, there exists a point s0 in βN such that c(t0) = c(s0) (c ∈ C); hence

by the (1), P (a)(t0) = Q(a)(t0), a contradiction.

(2) ⇒ (3). For b ∈ B(H)s, V (b)oo ∩ C ′ 6= ∅ by Markov-Kakutani fixed point

theorem. Take b0 ∈ V (b)oo ∩ C ′; then b0 ∈ (B(H)∗∗)s. Let D be a commutative

W ∗-subalgebra of B(H)∗∗ generated by b0 and C. Since ‖vbv∗+d‖ = ‖v(b+d)v∗‖ =

‖b + d‖ for d ∈ D and v ∈ Cu, ‖b0 + d‖ 5 ‖b + d‖ for d ∈ D. Now define

T (λb + d) = λb0 + d (λ ∈ C, d ∈ D); then T is a norm-one linear mapping of

{λb + D | λ ∈ C} onto D and so it can be extend to a norm-one projection T̃

of B(H)∗∗ onto D. By (2), T̃ (b) = b0 = P (b); hence V (b)oo ∩ C ′ = {P (b)}. For

a ∈ B(H), let a = a1 + ia2 (a1, a2 ∈ B(Hs); then a0 ∈ V (a)oo ∩C ′ implies
a0 + a∗0

2
∈

(V (a1)
oo ∩ C and

ia0 − ia∗0
2

∈ V (a2)
oo ∩ C; hence a0 = P (a).

(3)⇒ (4). since P (a) ∈ V (a)oo (a ∈ B(H)), there is a direct set of elements {xα}
in V (a) such that σ(B(H), B(H)∗)− lim

α
xα = P (a). Therefore by the convexity of

V (a), there is a sequence {yn} in V (a) such that {yn} converges to P (a) in norm;

hence V (a) ∩ C = {P (a)}.
(4) ⇒ (1). Suppose that ϕ is a state on B(H) such that ϕ(c) = c(t) for c ∈ C

(t ∈ βN). Then

|ϕ(a(c− c(t)1))| 5 ϕ(aa∗)1/2ϕ((c− c(t)1)∗(c− c(t)1))1/2 = 0;

hence ϕ(ac) = c(t)ϕ(a) (c ∈ C, a ∈ B(H)). Hence

ϕ(c1ac2) = c2(t)ϕ(c1a) = c2(t)ϕ(a∗c∗1) = c2(t)c1(t)ϕ(a∗) = c1(t)c2(t)ϕ(a).

for c1, c2 ∈ C and a ∈ B(H)). Hence ϕ(uau∗) = ϕ(a) for u ∈ Cu, and so ϕ(a) = ϕ(x)

for x ∈ V (a). Since V (a) ∩ C = {P (a)}, ϕ(a) = P (a)(t) (a ∈ B(H).

(1) ⇒ (5). Suppose that sup
c5b

c∈Cs

c(t) < inf
b5d
d∈Cs

d(t) for some t ∈ βN \ N. Clearly
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sup
c5b

c∈Cs

c(t) 5 P (b)(t) 5 inf
b5d
d∈Cs

d(t). Suppose that P (b)(t) < inf
b5d
d∈Cs

d(t) (put r). Then

−‖b + c‖ − c(t) 5 r 5 ‖b + c‖ − c(t) (c ∈ Cs). Hence |r + c(t)| 5 ‖b + c‖ (c ∈ Cs).

Define f(b + c) = r + c(t); then |f(b + c)| 5 ‖b + c‖ (c ∈ Cs) and so |f(λb + c)| 5
‖λb + c‖ (λ ∈ R, c ∈ Cs). Therefore f can be extended to a real linear functional f̂

on B(H)s such that ‖f̂‖ = 1, and so f̂ can be extended to a state ϕ on B(H); then

ϕ(c) = c(t) (c ∈ C), but ϕ(b) 6= P (b)(t), a contradiction.

(5) ⇒ (6). sup
c5b

c∈Cs

c(t) = inf
b5d
d∈C

d(t) = P (b)(t) for all t ∈ βN implies that P (b) is

continuous on βN. Since cF(t) ↑ P (b)(t), it converges to P (b) uniformly on βN.

Also dF(t) ↓ P (a)(t) and so it converges to P (a)(t) uniformly.

(6) ⇒ (7). For µ ∈ C∗, lim
∫

cF(t)dµ(t) =
∫

P (b)(t)dµ(t) and lim
∫

dF(t)dµ(t) =
∫

P (b)(t)dµ(t); hence cF → P (b) and dF → P (b) in the σ(C, C∗)-topology.

(7) ⇒ (1). Put χt(c) = c(t) (c ∈ C); then χt ∈ C∗; hence cF(t) → P (b)(t)

and dF(t) → P (b)(t) for t ∈ βN; hence Kadison-Singer Problem is positive for all

t ∈ βN. ¤

Remark 1 From the proofs of (3) ⇒ (4) and (4) ⇒ (1) in Theorem 1, Kadison-

Singer problem is positive for all t ∈ βN \ N if and only if P (a) ∈ V (a)oo for all

a ∈ B(H). Therefore P (a) ∈ V (a)oo (a ∈ B(H)) implies V (a)oo ∩ C ′ = {P (a)}
(a ∈ B(H)).

Theorem 1 (7) implies that Kadison-Singer problem is equivalent to a prob-

lem concerning the σ(B(H)∗∗, B(H)∗)-topology. We shall discuss this topology in

the following. Let K(H) be the algebra of all compact linear operators on H;

then K(H)oo = B(H)∗∗z0, where z0 is a central projection of B(H)∗∗. Moreover

B(H)∗∗z0 = B(H)z0 and a 7→ az0 (a ∈ B(H)) is a ∗-isomorphism of B(H) onto

B(H)z0. Therefore we have: B(H)∗∗ = B(H)∗∗z0 ⊕ B(H)∗∗(1 − z0) = B(H)z0 ⊕
B(H)∗∗(1− z0).

Put C0 = C ∩ K(H); then (C0)
oo = Cz0 and so z0 ∈ (C0)

oo. B(H)(1 − z0) is

considered the Calkin algebra B(H)/K(H) and so B(H)∗∗(1−z0) is the second dual

of B(H)/K(H). Let a0 ∈ V (a)oo∩C ′ (a ∈ B(H)); then a0 = a0z0 +a0(1−z0). Since

a0z0 ∈ C ′z0 and C ′z0 = Cz0, a0z0 ∈ V (a)ooz0 ∩ Cz0; hence a0z0 = P (a)z0 (Lemma
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2). Since z0 ∈ (C0)
oo ⊂ Coo, P (a)z0 ∈ Coo. Therefore if a0(1 − z0) ∈ Coo(1 − z0),

then a0 ∈ Cooz0 ⊕ Coo(1− z0) = Coo; hence a0 ∈ V (a)oo ∩ Coo.

Lemma 3 If V (a)oo ∩ Coo 6= ∅, then V (a)oo ∩ Coo = {P (a)} (a ∈ B(H)).

Proof. For a1 ∈ V (a)oo ∩ Coo, there is a directed set {aα} in V (a) such that

σ(B(H)∗∗, B(H)∗)−lim aα = a1. Let P ∗∗ be the second dual of P ; then P ∗∗(lim aα) =

lim P ∗∗(aα) = lim P (aα) = lim P (a) = P (a) = P ∗∗(a1) = a1, because P ∗∗ is a

projection of B(H)∗∗ onto Coo. Hence P (a) = a1. ¤

Therefore if a0(1 − z0) ∈ Coo(1 − z0), then a0(1 − z0) = P (a)(1 − z0) and so

a0 = P (a). Now we have the following theorems.

Theorem 2 Kadison-Singer problem is positive for all t ∈ βN \ N if and only if

V (a)oo ∩ Coo 6= ∅ for all a ∈ B(H).

This is clear from Theorem 1, Remark 1 and Lemma 3.

Theorem 3 Suppose that a0 ∈ V (a)oo ∩ C ′ for a ∈ B(H). Then a0 = P (a) if and

only if a0(1− z0) ∈ Coo(1− z0).

Now we shall show that Kadison-Singer problem can be reduced to a problem

on the Calkin algebra. By Johnson-Parrott theorem [10], C + K(H)/K(H) is a

maximal commutative C∗-subalgebra of B(H)/K(H) and so C(1− z0) is a maximal

commutative C∗-subalgebra of B(H)(1 − z0). Hence C ′(1 − z0) in B(H)(1 − z0) =

C(1− z0). Therefore we have the following theorem.

Theorem 4 Kadison-Singer Problem is positive for all t ∈ βN \ N if and only if

V (a)oo(1− z0) ∩ C ′(1− z0) ∩B(H)(1− z0) 6= ∅ for all a ∈ B(H).

Proof. Suppose that V (a)oo(1−z0)∩C ′(1−z0)∩B(H)(1−z0) 6= ∅ for all a ∈ B(H);

then V (a)oo(1−z0)∩C ′(1−z0)∩B(H)(1−z0) = V (a)oo(1−z0)∩C(1−z0) 6= ∅. Let

b0 ∈ V (a)oo(1− z0) ∩ C(1− z0); then b0 = x(1− z0) = c(1− z0), where x ∈ V (a)oo

and c ∈ C. Hence vx(1− z0)v
∗ = vc(1− z0)v

∗ = vcv∗(1− z0) = c(1− z0) for v ∈ Cu.

Since vx(1 − z0)v
∗ = vxv∗(1 − z0), there is an element a0 ∈ V (a)oo ∩ C ′ such that
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a0(1 − z0) = c(1 − z0) ∈ Coo(1 − z0). Hence by Theorem 3, a0 = P (a) and so by

Theorem 2, Kadison-Singer problem is positive for all t ∈ βN \ N.

Conversely if V (a)oo(1− z0)∩C ′(1− z0)∩B(H)(1− z0) = ∅ for some a ∈ B(H),

P (a) 6∈ V (a)oo ∩ C ′; in fact, if P (a) ∈ V (a)oo ∩ C ′, then P (a)(1− z0) ∈ V (a)oo(1−
z0) ∩ C ′(1− z0) ∩B(H)(1− z0). ¤

Therefore the following problem would be interesting in the aspect of axiomatic

set theory in operator algebras.

Problem 1 Can we extend Markov-Kakutani fixed point theorem to the Calkin al-

gebra in the set theory related to operator algebras?

Finally we shall state one more problem. Let D be a commutative W ∗-subalgebra

of B(H)∗∗ such that Coo $ D ⊂ C ′ in B(H)∗∗. Then there exists a norm-one

projection Q of B(H)∗∗ onto D. If one can take the Q which is σ(B(H)∗∗, B(H)∗)-

continuous, then D = Q(B(H)∗∗) = σ(B(H)∗∗, B(H)∗)-closure of Q(B(H)); hence

Q(B(H)) 6⊂ Coo. Therefore Kadison-Singer problem is negative for some t ∈ βN\N.

The following problem is interesting in the theory of operator algebras within ZFC.

Problem 2 Is there a commutative W ∗-subalgebra D of C ′ in B(H)∗∗ satisfying the

above condition?
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