
K-fibrations and non-commutative Torus bundles

joint with
Ryszard Nest, Herve Oyono-Oyono

Sibiu, June 15, 2007

Siegfried Echterhoff

Westfälische Wilhelms-Universität Münster

K-fibrations and non-commutative Torus bundles joint with Ryszard Nest, Herve Oyono-Oyono – p.1/??



Serre Fibrations

A Serre fibration in Topology is a continuous map p : Y → X
whch satisfies the HLP

Z × {0} Y

Z × [0, 1] X

h

ι

H̃

p

H

If p : Y → X is a fibration with X path connected, then all
fibres Yx = p−1({x}) are homotopy equivalent, and the fibration
behaves as a “locally trivial fibre bundle” up to homotopy.
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If p : Y → X is a fibration with X path connected, then all fibres
Yx = p−1({x}) are homotopy equivalent, and the fibration
behaves as a “locally trivial fibre bundle” up to homotopy.
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C*-Algebra bundles (or C0(X)-algebras)

A C*-algebra bundle over X is a C*-algebra A = A(X) together
with a nondegenerate *-homomorphism

Φ : C0(X) → ZM(A)

If Ix := Φ
(
C0(X \ {x})

)
A, then

Ax := A/Ix

is the fibre of A at x ∈ X. If a ∈ A, then

x 7→ ‖ax‖, ax := a + Ix ∈ Ax

is always upper semi continuous and vanishes at ∞. We say
that A(X) is continuous, if this map is continuous.
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Examples of C*-algebra bundles

• If f : Y → X is a continuous map, then C0(Y ) is a
C*-algebra bundle over X with fibre C0(Yx) via
Φ : C0(X) → Cb(Y ) = M(C0(Y )); Φ(g) = g ◦ f .

• Trivial bundles A(X) = C0(X,B)

• Locally trivial bundles: every x ∈ X has an open
neighbourhood U such that A(U) := Φ(C0(U))A ∼= C0(U,B)

• Continuous trace algebras (the case B = K).
• Let A([0, 1]) be given as

{f : [0, 1] → M2(C); f continuous and f(0) =
(

f11(0) 0
0 f22(0)

)
}

Then At = M2(C) for t 6= 0 and A0 = C2.
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Examples of C*-algebra bundles

• Heisenberg group algebra: C∗(H2) = C∗(U, V,W ) where
U, V,W are unitaries with relations

UV = WV U, UW = WU, V W = WV.

Functional calculus: Φ : C(T)
∼=
→ C∗(W ) ⊆ C∗(U, V,W ).

We get Az = C∗(Uz, Vz) with relation UzVz = zVzUz. Thus
Az = Aθ if z = e2πiθ.

• If 1 → Z → H → G → 1 is a central group extension, then
C∗(H) is a C*-algebra bundle over Ẑ via

C0(Ẑ) ∼= C∗(Z) → ZM(C∗(H))

where g ∈ C∗(Z) acts on C∗(H) via convolution. The fibre
C∗(H)χ for χ ∈ Ẑ is a twisted group algebra C∗(G,ωχ) of G.
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Examples of C*-algebra bundles

• Crossed products A(X) o G by fibre-wise actions.
We then have (A o G)x = Ax o G.
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K-theory, KK-theory and RKK-theory

KK-theory:
KK0(A,B) = {(E,φ, T )}/ ∼

with E a Hilbert B-module, φ → LB(E) a *-homomorphism and
T a “generalized” Fredholm operator.

KK1(A,B) = KK0(C0(R) ⊗ A,B) = KK0(A,C0(R) ⊗ B)

K∗(A) = KK∗(C, A) K∗(A) = KK∗(A, C) (K-homology).

If ϕ : A → B is a *-homomom., then [ϕ] = [B,ϕ, 0] ∈ KK(A,B).
Composition: KKi(A,B) × KKj(B,C) → KKi+j(A,C)

A and B are KK-equivalent if ∃ x ∈ KK(A,B), y ∈ KK(B,A)

such that x ⊗ y = [idA] and y ⊗ x = [idB ].
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K-theory, KK-theory and RKK-theory

KK-theory:
KK0(A,B) = {(E,φ, T )}/ ∼

with E a Hilbert B-module, φ → LB(E) a *-homomorphism and
T a “generalized” Fredholm operator.

RKK-Theory: Suppose A(X) and B(X) are C*-algebra
bundles over X. Then

RKK(X;A(X), B(X)) = {(E,φ, T )}/ ∼

such that the left and right actions of C0(X) on E coincide.
Kasparov product over X:

RKK(X;A(X), B(X))×RKK(X; B(X), D(X)) → RKK(X;A(X),D(X)).
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K-fibrations

Let A(X) be a C*-algebra bundle over X and let f : Z → X be a
continuous map. Then we define the pull-back f∗A(Z) of A(X)
along f as

f∗A(Z) = C0(Z) ⊗C0(X) A(X)

f∗A(Z) is a C*-algebra bundle over Z with fibres f∗Az = Af(z).

Definition
A(X) is a K-fibration if for every compact contractible space ∆
the evaluation map evv : f∗A(∆) → Af(v) induces an
isomorphism K∗(f

∗A(∆)) ∼= K∗(Af(v)).

A(X) is a KK-fibration if evv : f∗A(∆) → Af(v) is a KK-equiv.

A(X) is an RKK-fibration, if f∗A(∆) ∼RKK C(∆, Af(v)).
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K-fibrations

We have: RKK-fibration ⇒ KK-fibration ⇒ K-fibration.

We also have the following theorem, which follows from some
deep result of Dadarlat:

Theorem
If A(X) is a continuous and nuclear C*-algebra bundle. Then

A(X) is a KK-fibration ⇐⇒ A(X) is an RKK-fibration.

Idea: Let X = ∆ and consider

KK(Ax, A(∆))
⊗C(∆)
→ RKK(∆;C(∆, Ax), C(∆, A(∆))

→ RKK(∆;C(∆, Ax), A(∆)),

where the last map is given by restriction on the diagonal.
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Examples of K-fibrations and (R)KK-fibrations

• Locally trivial bundles are RKK-fibrations.

• Theorem. (E-Oyono-Nest)
Suppose G is an amenable group which acts fibre-wise on
the C*-algebra bundle A(X). Then:
If A(X) o K is a K-fibration (resp. KK-fibration) for all
compact subgroups K of G, then A(X) o G is a K-fibration
(resp. KK-fibration).
(The proof uses the Baum-Connes conjecture for G.)

• Corollary. If A(X) is a K-fibration (resp. KK-fibration) then
the same is true for A(X) o Zn or A(X) o Rn for every
fibre-wise action α : Z

n, Rn → Aut(A(X)).
• Corollary. If A(X) is a continuous-trace algebra over X

and if G is an amenable group acting fibre-wise on A(X),
then A(X) o G is an RKK-fibration.
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Examples of K-fibrations and (R)KK-fibrations

• The Heisenberg group algebra C∗(H2)(T) = C∗(U, V,W )(T)
is an RKK-fibration:
There is a fibre-wise action of T

2 on C∗(H2) given by

α(z,w)(U) = zU, α(z,w)(V ) = wV, α(z,w)(W ) = W.

With crossed-product C∗(H2) o T
2 ∼= C(T,K). It follows

then from Takesaki-Takai duality that

C∗(H2) ⊗K ∼= C(T,K) o Z2

• If 1 → Z → H → G → 1 is a central extension with G
amenable, then C∗(H)(Ẑ) is an RKK-fibration.
(Since C∗(H) ⊗K ∼= C0(Ẑ,K) o G for some fibre-wise
action of G)
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(Since C∗(H) ⊗K ∼= C0(Ẑ,K) o G for some fibre-wise
action of G)

K-fibrations and non-commutative Torus bundles joint with Ryszard Nest, Herve Oyono-Oyono – p.12/??



Examples of K-fibrations and (R)KK-fibrations

• The C*-algebra bundle

A([0, 1]) = {f : [0, 1] → M2(C) : f(0) =
(

f11(0) 0
0 f22(0)

)
}

is NOT a K-fibration.
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The K-theory group bundle

Suppose A(X) is a K-fibration. Then the K-theory group bundle
consists of the collection

K∗(A(X)) := {K∗(Ax) : x ∈ X}

together with isomorphisms cγ : K∗(Ax) → K∗(Ay) for every
continuous path γ : [0, 1] → X from x to y given by the
composition

cγ : K∗(Ax)
ev−1

0,∗

→ K∗(γ
∗A[0, 1])

ev1,∗

→ K∗(Ay).

We then have cγ◦γ′ = cγ ◦ cγ′ and cγ only depends on the
homotopy class of γ.

Proof. If Γ : [0, 1]2 → X is a homotopy for γ and γ′, then show
that both maps coincide with

K∗(Ax)
ev−1

0,0,∗

→ K∗(Γ
∗A([0, 1]2))

ev1,1∗
→ K∗(Ay).
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The K-theory group bundle

Observations.
• If X is simply connected and path connected, and if A(X) is

a K-fibration, then K∗(A(X)) is the trivial bundle
X × K∗(Ax). The trivialization map is given by

(y,K∗(Ay)) → (y,K∗(Ax)); (y, µ) 7→ (y, cy,x(µ))

where cy,x = cγ for any chosen path γ from x to y.

• In general, if X is path connected, there is an action of
π1(X) on K∗(Ax), and K∗(A(X)) is the trivial bundle if and
only if this action is trivial.
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The Leray-Serre Spectral sequence

Let X0 ⊆ X1 ⊆ · · · ⊆ Xn = X be the sceleton of a finite
simplicial complex X. Put Ap := A(Xp), Ap,p−1 = A(Xp \ Xp−1).
We then have short exact sequences

0 → Ap,p1
→ Ap → Ap−1 → 0

which gives the long exact sequences

Kq(Ap,p−1)
ι
→ Kq(Ap)

j
→ Kq(Ap−1)

∂
→ Kq+1(Ap,p−1) →

Now put Ap,q = Kq(Ap) and Ep,q
1 = Kq(Ap,p−1). Then we get the

exact couple
⊕p,qA

p,q ⊕Ap,q

⊕Ep,q
1

j

ι ∂
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The Leray-Serre Spectral sequence

Let {Ep,q
r , dr : Ep,q

r → Ep+r,q+1
r } be the spectral sequence

derived from the above exact couple. We have

d1 : Epq
1 = Kq(Ap,p−1)

ι
→ Kq(Ap)

∂
→ Kq+1(Ap+1,p) = Ep+1,q+1

1

The higher terms are derived from this iterative by

Ep,q
r+1 = (kernel dr/ image dr)p,q.

This process stabilizes eventually with

Ep,p−q
∞ := F q

p /F q
p+1, for F q

p := kernel
(
Kq(A(X)) → Kq(Ap)

)

Since Xn = X we obtain a filtration

{0} = F q
n ⊆ F q

n−1 ⊆ · · · ⊆ F q
−1 = Kq(A(X)).
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The Leray-Serre Spectral sequence

Theorem (E-Nest-Oyono) Suppose A(X) is a K-fibration over
the finite simplicial complex X. Then the E2-term of the above
described spectral sequence is given by Ep,q

2
∼= Hp(X,Kq(A)),

the cohomology of X with coefficients in the K-theory group
bundle K∗(A(X)).

• The case A(X) = C(X) is the classical Atiyah-Hirzebruch
spectral sequence for the K-theory of X.

• If A(X) is a KK-fibration, then a similar result holds for the
K-homology of A(X).

• If A(X) ∼RKK B(X), then the spectral sequences of A(X)
and B(X) coincide, i.e., the spectral sequence is an
invariant for RKK-equivalence.
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Non-commutative principle torus bundles

Let p : Y → X be a principal T
n-bundle. Then by Phil Green:

C0(Y ) o T
n ∼= C0(X,K) K := K(L2(Tn))

Definition. A C*-algebra bundle A(X) is a non-commutative
principal Tn-bundle (or NCP Tn-bundle), if it is equipped with a
fibre-wise action α : T

n → Aut(A(X)) such that

A(X) oα T
n ∼M C(X,K).

Example. The Heisenberg-algebra C∗(H2)(T) = C∗(U, V,W )

with respect to the canonical T
2-action.

By Takesaki-Takai duality we get A(X) ∼M C0(X,K) obα Z
n and

vice versa, so that NCP-bundles are up to C0(X)-linear Morita
equivalence precisely the crossed products C0(X,K) o Zn for
fibre-wise actions of Z

n.
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Classification of NCP-bundles

Let Hn be the group generated by {f1, . . . , fn, gij , 1 ≤ i < j ≤ n}

with relations fifj = gijfjfi and gij is central for all ij.

Then C∗(Hn) = C∗(U1, . . . Un,Wij), where Ui = δfi
,Wij = δgij

. It
has the centre

C∗({Wij : 1 ≤ i < j ≤ n}) ∼= C(T
n(n−1)

2 ).

Consider the action α : T
n → Aut(C∗(Hn)) given by

α(z1,...,zn)(Ui) = ziUi, α(z1,...,zn)(Wij) = Wij .

One checks that C∗(Hn) oα Tn ∼= C(T
n(n−1)

2 ,K).

Thus C∗(Hn) is a NCP Tn-bundle with base T
n(n−1)

2 .
Notice that C∗(H2) is the Heisenberg group algebra.
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Classification of NCP-bundles

Theorem (E-Williams, 1996) Every NCP T
n-bundle over a given

space X is stably isomorphic to one of the form

Y ∗ (f∗C∗(Hn))(X)

where f : X → T
n(n−1)

2 is a continuous map and p : Y → X is a
(commutative) principal bundle over X.

If A(X) is any NCP Tn-bundle, we can twist it by a commutative
bundle p : Y → X by defining

Y ∗ A(X) = (C0(Y ) ⊗C0(X) A(X))T
n

where Tn acts diagonally on the balanced tensor product.
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Problems

Question 1 When are two given NCP Tn-bundles A(X) and
B(X) RKK-equivalent?

Question2 When is a given NCP Tn-bundles A(X) RKK-trivial
(i.e., RKK-equivalent to a trivial bundle)?

Question2 When is a given NCP T
n-bundles A(X)

RKK-equivalent to a commutative principle bundle?
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The K-theory bundles of NCP-bundles

We can explicitly compute the action of π1(X) on the fibre

K∗(Ax) ∼= K∗(C(Tn)) ∼= Λ∗(Zn).

The key-result is the computation for the Heisenberg-bundle
over T. The fibre at 1 ∈ T is C(T2) and we get

Lemma. (E-Nest-Oyono) Let γ be the positive generator of
π1(T). Then cγ : K1(C(T2)) → K1(C(T2)) is trivial and
cγ : K0(C(T2)) → K0(C(T2)) is given by the matrix

(
1 −1

0 1

)

with respect to the generators {[1], β} of K0(C(T2)) ∼= Z
2.
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The K-theory group bundles of NCP-bundles

Scetch of proof. We have γ : [0, 1] → T; γ(t) = e2πit. Recall that
γ∗(C∗(H2)) = C[0, 1] ⊗γ C∗(H2).

Let

U ′ = 1 ⊗γ U and V ′ = 1 ⊗γ V ∈ C[0, 1] ⊗γ C∗(H2)

Then [U ′], [V ′] are elements of K1(γ
∗(C∗(H2))) which restrict to

the standard generators [u], [v] of K1(C(T2)) at 0 and 1.

This implies that cγ([u]) = [u] and cγ([v]) = [v].
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the standard generators [u], [v] of K1(C(T2)) at 0 and 1.

This implies that cγ([u]) = [u] and cγ([v]) = [v].
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The K-theory group bundles of NCP-bundles

Action on K0(C(T2))

For each θ ∈ [0, 1] the generators of K0(Aθ) are given by [1] and
the projective module Eθ which is a closure of Cc(R) with
respect to a certain Aθ-valued inner product and with right action
of Aθ given by

(ξ · Uθ)(x) = ξ(x + θ + 1), (ξ · Vθ)(x) = e2πixξ(x).

Rieffel computes τ([Eθ]) = θ + 1, from which we conclude that
[Eθ+1] = [Eθ] + [1] for all irrational θ, and hence for all θ. Thus

cγ([E0]) = [E1] = [E0] + [1]

One can check that [E0] = −[β] + [1] and the result then
follows from the obvious fact cγ([1]) = [1].
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The K-theory group bundles of NCP-bundles

Lemma (E-Nest-Oyon) Let A(X) = Y ∗ f∗(C∗(H2))(X) for some
function f : X → T and some principal T2-bundle p : Y → X.
Assume that x ∈ X with f(x) = 1. Then the action of γ ∈ π1(X)

on K1(C(T2)) is trivial and the action on K0(C(T2)) is given on
the generators [1], [β] by the matrix

(
1 − < f, γ >

0 1

)
,

where < f, γ > is the winding number of f ◦ γ : T → T.

A similar (but more technical) result also holds for higher
dimensional NCP torus bundles.

Corollary. The K-theory group bundle of A(X) is trivial if and
only if f is homotopic to a constant map.
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RKK-triviality for NCP torus bundles

Theorem (E-Nest-Oyono) Let A(X) be any NCP Tn-bundle.
Then A(X) is RKK-equivalent to a commutative bundle
p : Y → X (or rather C0(Y )(X)) if and only if the K-theory
bundle of A(X) is trivial.

Proof. If two maps f1, f2 : X → T
n(n−1)

2 are homotopic, then one
can show directly that f∗

1 (C∗(Hn))(X) ∼RKK f∗
2 (C∗(Hn)).

The result then follows from the above and the classification of
NCP-bundles.

Theorem (E-Nest-Oyono) The NCP-bundle A(X) is
RKK-equivalent to the trivial bundle X × T

n if and only if the
K-theory group bundle is trivial and the map

d2 : H0(X,K1(Ax)) → H2(X,K0(Ax))

in the Larey-Serre spectral sequence is the trivial map.
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