K-fibrations and non-commutative Torus bundles

joint with Ryszard Nest, Herve Oyono-Oyono

Sibiu, June 15, 2007

Siegfried Echterhoff

Westfälische Wilhelms-Universität Münster

Serre Fibrations

A Serre fibration in Topology is a continuous map $p:Y\to X$ whch satisfies the HLP

Serre Fibrations

A Serre fibration in Topology is a continuous map $p: Y \to X$ which satisfies the HLP

Serre Fibrations

A Serre fibration in Topology is a continuous map $p: Y \to X$ which satisfies the HLP

If $p: Y \to X$ is a fibration with X path connected, then all fibres $Y_x = p^{-1}(\{x\})$ are homotopy equivalent, and the fibration behaves as a "locally trivial fibre bundle" up to homotopy.

C*-Algebra bundles (or $C_0(X)$ -algebras)

A C*-algebra bundle over X is a C*-algebra A = A(X) together with a nondegenerate *-homomorphism

 $\Phi: C_0(X) \to ZM(A)$

C*-Algebra bundles (or $C_0(X)$ -algebras)

A C*-algebra bundle over X is a C*-algebra A = A(X) together with a nondegenerate *-homomorphism

$$\Phi: C_0(X) \to ZM(A)$$

If $I_x := \Phi(C_0(X \setminus \{x\}))A$, then

$$A_x := A/I_x$$

is the fibre of A at $x \in X$. If $a \in A$, then

$$x \mapsto ||a_x||, \quad a_x := a + I_x \in A_x$$

is always upper semi continuous and vanishes at ∞ .

C*-Algebra bundles (or $C_0(X)$ -algebras)

A C*-algebra bundle over X is a C*-algebra A = A(X) together with a nondegenerate *-homomorphism

 $\Phi: C_0(X) \to ZM(A)$

If $I_x := \Phi(C_0(X \setminus \{x\}))A$, then

$$A_x := A/I_x$$

is the fibre of A at $x \in X$. If $a \in A$, then

$$x \mapsto ||a_x||, \quad a_x := a + I_x \in A_x$$

is always upper semi continuous and vanishes at ∞ . We say that A(X) is continuous, if this map is continuous.

• If $f: Y \to X$ is a continuous map, then $C_0(Y)$ is a C*-algebra bundle over X with fibre $C_0(Y_x)$ via $\Phi: C_0(X) \to C_b(Y) = M(C_0(Y)); \Phi(g) = g \circ f.$

• If $f: Y \to X$ is a continuous map, then $C_0(Y)$ is a C*-algebra bundle over X with fibre $C_0(Y_x)$ via $\Phi: C_0(X) \to C_b(Y) = M(C_0(Y)); \Phi(g) = g \circ f.$

• Trivial bundles $A(X) = C_0(X, B)$

- If $f: Y \to X$ is a continuous map, then $C_0(Y)$ is a C*-algebra bundle over X with fibre $C_0(Y_x)$ via $\Phi: C_0(X) \to C_b(Y) = M(C_0(Y)); \Phi(g) = g \circ f.$
- Trivial bundles $A(X) = C_0(X, B)$
- Locally trivial bundles: every $x \in X$ has an open neighbourhood U such that $A(U) := \Phi(C_0(U))A \cong C_0(U, B)$

- If $f: Y \to X$ is a continuous map, then $C_0(Y)$ is a C*-algebra bundle over X with fibre $C_0(Y_x)$ via $\Phi: C_0(X) \to C_b(Y) = M(C_0(Y)); \Phi(g) = g \circ f.$
- Trivial bundles $A(X) = C_0(X, B)$
- Locally trivial bundles: every $x \in X$ has an open neighbourhood U such that $A(U) := \Phi(C_0(U))A \cong C_0(U, B)$
- Continuous trace algebras (the case $B = \mathcal{K}$).

- If $f: Y \to X$ is a continuous map, then $C_0(Y)$ is a C*-algebra bundle over X with fibre $C_0(Y_x)$ via $\Phi: C_0(X) \to C_b(Y) = M(C_0(Y)); \Phi(g) = g \circ f.$
- Trivial bundles $A(X) = C_0(X, B)$
- Locally trivial bundles: every $x \in X$ has an open neighbourhood U such that $A(U) := \Phi(C_0(U))A \cong C_0(U, B)$
- Continuous trace algebras (the case $B = \mathcal{K}$).
- Let A([0,1]) be given as

 $\{f: [0,1] \to M_2(\mathbb{C}); f \text{ continuous and } f(0) = \begin{pmatrix} f_{11}(0) & 0 \\ 0 & f_{22}(0) \end{pmatrix} \}$

Then $A_t = M_2(\mathbb{C})$ for $t \neq 0$ and $A_0 = \mathbb{C}^2$.

• Heisenberg group algebra: $C^*(H_2) = C^*(U, V, W)$ where U, V, W are unitaries with relations

 $UV = WVU, \quad UW = WU, \quad VW = WV.$

Functional calculus: $\Phi : C(\mathbb{T}) \xrightarrow{\cong} C^*(W) \subseteq C^*(U, V, W)$. We get $A_z = C^*(U_z, V_z)$ with relation $U_z V_z = z V_z U_z$. Thus $A_z = A_\theta$ if $z = e^{2\pi i \theta}$.

• Heisenberg group algebra: $C^*(H_2) = C^*(U, V, W)$ where U, V, W are unitaries with relations

 $UV = WVU, \quad UW = WU, \quad VW = WV.$

Functional calculus: $\Phi : C(\mathbb{T}) \xrightarrow{\cong} C^*(W) \subseteq C^*(U, V, W)$. We get $A_z = C^*(U_z, V_z)$ with relation $U_z V_z = z V_z U_z$. Thus $A_z = A_\theta$ if $z = e^{2\pi i \theta}$.

• If $1 \to Z \to H \to G \to 1$ is a central group extension, then $C^*(H)$ is a C*-algebra bundle over \widehat{Z} via

$$C_0(\widehat{Z}) \cong C^*(Z) \to ZM(C^*(H))$$

where $g \in C^*(Z)$ acts on $C^*(H)$ via convolution. The fibre $C^*(H)_{\chi}$ for $\chi \in \widehat{Z}$ is a twisted group algebra $C^*(G, \omega_{\chi})$ of G.

• Crossed products $A(X) \rtimes G$ by fibre-wise actions. We then have $(A \rtimes G)_x = A_x \rtimes G$.

KK-theory:

$$KK_0(A,B) = \{(E,\phi,T)\} / \sim$$

with *E* a Hilbert *B*-module, $\phi \rightarrow \mathcal{L}_B(E)$ a *-homomorphism and *T* a "generalized" Fredholm operator.

KK-theory:

$$KK_0(A,B) = \{(E,\phi,T)\} / \sim$$

with *E* a Hilbert *B*-module, $\phi \rightarrow \mathcal{L}_B(E)$ a *-homomorphism and *T* a "generalized" Fredholm operator.

 $KK_1(A,B) = KK_0(C_0(\mathbb{R}) \otimes A, B) = KK_0(A, C_0(\mathbb{R}) \otimes B)$

 $K_*(A) = KK_*(\mathbb{C}, A)$ $K^*(A) = KK_*(A, \mathbb{C})$ (K-homology).

KK-theory:

$$KK_0(A,B) = \{(E,\phi,T)\} / \sim$$

with *E* a Hilbert *B*-module, $\phi \rightarrow \mathcal{L}_B(E)$ a *-homomorphism and *T* a "generalized" Fredholm operator.

 $KK_1(A,B) = KK_0(C_0(\mathbb{R}) \otimes A, B) = KK_0(A, C_0(\mathbb{R}) \otimes B)$

 $K_*(A) = KK_*(\mathbb{C}, A)$ $K^*(A) = KK_*(A, \mathbb{C})$ (K-homology).

If $\varphi : A \to B$ is a *-homomon, then $[\varphi] = [B, \varphi, 0] \in KK(A, B)$. Composition: $KK_i(A, B) \times KK_j(B, C) \to KK_{i+j}(A, C)$

KK-theory:

$$KK_0(A,B) = \{(E,\phi,T)\} / \sim$$

with *E* a Hilbert *B*-module, $\phi \rightarrow \mathcal{L}_B(E)$ a *-homomorphism and *T* a "generalized" Fredholm operator.

$$KK_1(A,B) = KK_0(C_0(\mathbb{R}) \otimes A, B) = KK_0(A, C_0(\mathbb{R}) \otimes B)$$

 $K_*(A) = KK_*(\mathbb{C}, A)$ $K^*(A) = KK_*(A, \mathbb{C})$ (K-homology).

If $\varphi : A \to B$ is a *-homomom, then $[\varphi] = [B, \varphi, 0] \in KK(A, B)$. Composition: $KK_i(A, B) \times KK_j(B, C) \to KK_{i+j}(A, C)$ A and B are KK-equivalent if $\exists x \in KK(A, B), y \in KK(B, A)$ such that $x \otimes y = [\operatorname{id}_A]$ and $y \otimes x = [\operatorname{id}_B]$.

KK-theory:

$$KK_0(A,B) = \{(E,\phi,T)\} / \sim$$

with *E* a Hilbert *B*-module, $\phi \rightarrow \mathcal{L}_B(E)$ a *-homomorphism and *T* a "generalized" Fredholm operator.

 $\mathcal{R}KK$ -Theory: Suppose A(X) and B(X) are C*-algebra bundles over X. Then

$$\mathcal{R}KK(X;A(X),B(X)) = \{(E,\phi,T)\}/\sim$$

such that the left and right actions of $C_0(X)$ on E coincide. Kasparov product over X:

 $\mathcal{R}KK(X; A(X), B(X)) \times \mathcal{R}KK(X; B(X), D(X)) \to \mathcal{R}KK(X; A(X), D(X))$

Let A(X) be a C*-algebra bundle over X and let $f : Z \to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

 $f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$

 $f^*A(Z)$ is a C^{*}-algebra bundle over Z with fibres $f^*A_z = A_{f(z)}$.

Let A(X) be a C*-algebra bundle over X and let $f : Z \to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

$$f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$$

 $f^*A(Z)$ is a C*-algebra bundle over Z with fibres $f^*A_z = A_{f(z)}$.

Definition

A(X) is a *K*-fibration if for every compact contractible space Δ the evaluation map $ev_v : f^*A(\Delta) \to A_{f(v)}$ induces an isomorphism $K_*(f^*A(\Delta)) \cong K_*(A_{f(v)}).$

Let A(X) be a C*-algebra bundle over X and let $f : Z \to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

$$f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$$

 $f^*A(Z)$ is a C*-algebra bundle over Z with fibres $f^*A_z = A_{f(z)}$.

Definition

A(X) is a *K*-fibration if for every compact contractible space Δ the evaluation map $ev_v : f^*A(\Delta) \to A_{f(v)}$ induces an isomorphism $K_*(f^*A(\Delta)) \cong K_*(A_{f(v)}).$

A(X) is a *KK*-fibration if $ev_v : f^*A(\Delta) \to A_{f(v)}$ is a *KK*-equiv.

Let A(X) be a C*-algebra bundle over X and let $f : Z \to X$ be a continuous map. Then we define the pull-back $f^*A(Z)$ of A(X) along f as

$$f^*A(Z) = C_0(Z) \otimes_{C_0(X)} A(X)$$

 $f^*A(Z)$ is a C*-algebra bundle over Z with fibres $f^*A_z = A_{f(z)}$.

Definition

A(X) is a *K*-fibration if for every compact contractible space Δ the evaluation map $ev_v : f^*A(\Delta) \to A_{f(v)}$ induces an isomorphism $K_*(f^*A(\Delta)) \cong K_*(A_{f(v)}).$

A(X) is a *KK*-fibration if $ev_v : f^*A(\Delta) \to A_{f(v)}$ is a *KK*-equiv.

A(X) is an $\mathcal{R}KK$ -fibration, if $f^*A(\Delta) \sim_{\mathcal{R}KK} C(\Delta, A_{f(v)})$.

We have: $\mathcal{R}KK$ -fibration $\Rightarrow KK$ -fibration $\Rightarrow K$ -fibration.

We have: $\mathcal{R}KK$ -fibration $\Rightarrow KK$ -fibration $\Rightarrow K$ -fibration.

We also have the following theorem, which follows from some deep result of Dadarlat:

Theorem If A(X) is a continuous and nuclear C*-algebra bundle. Then

A(X) is a *KK*-fibration $\iff A(X)$ is an *RKK*-fibration.

We have: $\mathcal{R}KK$ -fibration $\Rightarrow KK$ -fibration $\Rightarrow K$ -fibration.

We also have the following theorem, which follows from some deep result of Dadarlat:

Theorem If A(X) is a continuous and nuclear C*-algebra bundle. Then

A(X) is a *KK*-fibration $\iff A(X)$ is an *RKK*-fibration.

Idea: Let $X = \Delta$ and consider

 $KK(A_x, A(\Delta)) \xrightarrow{\otimes C(\Delta)} \mathcal{R}KK(\Delta; C(\Delta, A_x), C(\Delta, A(\Delta))) \rightarrow \mathcal{R}KK(\Delta; C(\Delta, A_x), A(\Delta)),$

where the last map is given by restriction on the diagonal.

• Locally trivial bundles are $\mathcal{R}KK$ -fibrations.

- Locally trivial bundles are $\mathcal{R}KK$ -fibrations.
- Theorem. (E-Oyono-Nest) Suppose *G* is an amenable group which acts fibre-wise on the C*-algebra bundle A(X). Then: If $A(X) \rtimes K$ is a *K*-fibration (resp. *KK*-fibration) for all compact subgroups *K* of *G*, then $A(X) \rtimes G$ is a *K*-fibration (resp. *KK*-fibration).

(The proof uses the Baum-Connes conjecture for G.)

- Locally trivial bundles are $\mathcal{R}KK$ -fibrations.
- Theorem. (E-Oyono-Nest) Suppose *G* is an amenable group which acts fibre-wise on the C*-algebra bundle *A*(*X*). Then: If *A*(*X*) ⋊ *K* is a *K*-fibration (resp. *KK*-fibration) for all compact subgroups *K* of *G*, then *A*(*X*) ⋊ *G* is a *K*-fibration (resp. *KK*-fibration). (The proof uses the Baum-Connes conjecture for *G*.)
- Corollary. If A(X) is a *K*-fibration (resp. *KK*-fibration) then the same is true for $A(X) \rtimes \mathbb{Z}^n$ or $A(X) \rtimes \mathbb{R}^n$ for every fibre-wise action $\alpha : \mathbb{Z}^n, \mathbb{R}^n \to \operatorname{Aut}(A(X))$.

- Locally trivial bundles are $\mathcal{R}KK$ -fibrations.
- Theorem. (E-Oyono-Nest) Suppose *G* is an amenable group which acts fibre-wise on the C*-algebra bundle *A*(*X*). Then: If *A*(*X*) ⋊ *K* is a *K*-fibration (resp. *KK*-fibration) for all compact subgroups *K* of *G*, then *A*(*X*) ⋊ *G* is a *K*-fibration (resp. *KK*-fibration).
 - (The proof uses the Baum-Connes conjecture for G.)
- Corollary. If A(X) is a *K*-fibration (resp. *KK*-fibration) then the same is true for $A(X) \rtimes \mathbb{Z}^n$ or $A(X) \rtimes \mathbb{R}^n$ for every fibre-wise action $\alpha : \mathbb{Z}^n, \mathbb{R}^n \to \operatorname{Aut}(A(X))$.
- Corollary. If A(X) is a continuous-trace algebra over Xand if G is an amenable group acting fibre-wise on A(X), then $A(X) \rtimes G$ is an $\mathcal{R}KK$ -fibration.

 The Heisenberg group algebra C*(H₂)(T) = C*(U, V, W)(T) is an *RKK*-fibration: There is a fibre-wise action of T² on C*(H₂) given by

$$\alpha_{(z,w)}(U) = zU, \ \alpha_{(z,w)}(V) = wV, \ \alpha_{(z,w)}(W) = W.$$

With crossed-product $C^*(H_2) \rtimes \mathbb{T}^2 \cong C(\mathbb{T}, \mathcal{K})$. It follows then from Takesaki-Takai duality that

 $C^*(H_2) \otimes \mathcal{K} \cong C(\mathbb{T}, \mathcal{K}) \rtimes \mathbb{Z}^2$

 The Heisenberg group algebra C*(H₂)(T) = C*(U, V, W)(T) is an *RKK*-fibration: There is a fibre-wise action of T² on C*(H₂) given by

$$\alpha_{(z,w)}(U) = zU, \ \alpha_{(z,w)}(V) = wV, \ \alpha_{(z,w)}(W) = W.$$

With crossed-product $C^*(H_2) \rtimes \mathbb{T}^2 \cong C(\mathbb{T}, \mathcal{K})$. It follows then from Takesaki-Takai duality that

 $C^*(H_2) \otimes \mathcal{K} \cong C(\mathbb{T}, \mathcal{K}) \rtimes \mathbb{Z}^2$

If 1 → Z → H → G → 1 is a central extension with G amenable, then C*(H)(Â) is an RKK-fibration.
(Since C*(H) ⊗ K ≅ C₀(Â, K) ⋊ G for some fibre-wise action of G)

• The C*-algebra bundle

$$A([0,1]) = \{ f : [0,1] \to M_2(\mathbb{C}) : f(0) = \begin{pmatrix} f_{11}(0) & 0\\ 0 & f_{22}(0) \end{pmatrix} \}$$

is NOT a *K*-fibration.

The K-theory group bundle

Suppose A(X) is a *K*-fibration. Then the *K*-theory group bundle consists of the collection

$$\mathcal{K}_*(A(X)) := \{K_*(A_x) : x \in X\}$$

together with isomorphisms $c_{\gamma} : K_*(A_x) \to K_*(A_y)$ for every continuous path $\gamma : [0, 1] \to X$ from x to y given by the composition

$$c_{\gamma}: K_*(A_x) \stackrel{ev_{0,*}^{-1}}{\to} K_*(\gamma^* A[0,1]) \stackrel{\operatorname{ev}_{1,*}}{\to} K_*(A_y).$$

We then have $c_{\gamma \circ \gamma'} = c_{\gamma} \circ c_{\gamma'}$ and c_{γ} only depends on the homotopy class of γ .

The K-theory group bundle

Suppose A(X) is a *K*-fibration. Then the *K*-theory group bundle consists of the collection

$$\mathcal{K}_*(A(X)) := \{K_*(A_x) : x \in X\}$$

together with isomorphisms $c_{\gamma} : K_*(A_x) \to K_*(A_y)$ for every continuous path $\gamma : [0, 1] \to X$ from x to y given by the composition

$$c_{\gamma}: K_*(A_x) \stackrel{ev_{0,*}^{-1}}{\to} K_*(\gamma^* A[0,1]) \stackrel{\operatorname{ev}_{1,*}}{\to} K_*(A_y).$$

We then have $c_{\gamma \circ \gamma'} = c_{\gamma} \circ c_{\gamma'}$ and c_{γ} only depends on the homotopy class of γ . **Proof.** If $\Gamma : [0,1]^2 \to X$ is a homotopy for γ and γ' , then show that both maps coincide with

$$K_*(A_x) \stackrel{ev_{0,0,*}^{-1}}{\longrightarrow} K_*(\Gamma^*A([0,1]^2)) \stackrel{\operatorname{ev}_{1,1*}}{\longrightarrow} K_*(A_y).$$
The K-theory group bundle

Observations.

 If X is simply connected and path connected, and if A(X) is a K-fibration, then K_{*}(A(X)) is the trivial bundle X × K_{*}(A_x). The trivialization map is given by

$$(y, K_*(A_y)) \to (y, K_*(A_x)); (y, \mu) \mapsto (y, c_{y,x}(\mu))$$

where $c_{y,x} = c_{\gamma}$ for any chosen path γ from x to y.

The K-theory group bundle

Observations.

 If X is simply connected and path connected, and if A(X) is a K-fibration, then K_{*}(A(X)) is the trivial bundle X × K_{*}(A_x). The trivialization map is given by

 $(y, K_*(A_y)) \to (y, K_*(A_x)); (y, \mu) \mapsto (y, c_{y,x}(\mu))$

where $c_{y,x} = c_{\gamma}$ for any chosen path γ from x to y.

 In general, if X is path connected, there is an action of π₁(X) on K_{*}(A_x), and K_{*}(A(X)) is the trivial bundle if and only if this action is trivial.

Let $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n = X$ be the sceleton of a finite simplicial complex X. Put $A_p := A(X_p)$, $A_{p,p-1} = A(X_p \setminus X_{p-1})$. We then have short exact sequences

$$0 \to A_{p,p_1} \to A_p \to A_{p-1} \to 0$$

which gives the long exact sequences

$$K_q(A_{p,p-1}) \xrightarrow{\iota} K_q(A_p) \xrightarrow{j} K_q(A_{p-1}) \xrightarrow{\partial} K_{q+1}(A_{p,p-1}) \to$$

Now put $\mathcal{A}^{p,q} = K_q(A_p)$ and $E_1^{p,q} = K_q(A_{p,p-1})$. Then we get the exact couple

Let $\{E_r^{p,q}, dr: E_r^{p,q} \rightarrow E_r^{p+r,q+1}\}$ be the spectral sequence derived from the above exact couple. We have

$$d_1: E_1^{pq} = K_q(A_{p,p-1}) \xrightarrow{\iota} K_q(A_p) \xrightarrow{\partial} K_{q+1}(A_{p+1,p}) = E_1^{p+1,q+1}$$

The higher terms are derived from this iterative by

$$E_{r+1}^{p,q} = (\operatorname{kernel} dr / \operatorname{image} dr)_{p,q}.$$

This process stabilizes eventually with

 $E^{p,p-q}_{\infty} := F^q_p / F^q_{p+1}, \quad \text{for } F^q_p := \text{kernel}\left(K_q(A(X)) \to K_q(A_p)\right)$

Since $X_n = X$ we obtain a filtration

$$\{0\} = F_n^q \subseteq F_{n-1}^q \subseteq \cdots \subseteq F_{-1}^q = K_q(A(X)).$$

Theorem (E-Nest-Oyono) Suppose A(X) is a *K*-fibration over the finite simplicial complex *X*. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of *X* with coefficients in the *K*-theory group bundle $\mathcal{K}_*(A(X))$.

Theorem (E-Nest-Oyono) Suppose A(X) is a *K*-fibration over the finite simplicial complex *X*. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of *X* with coefficients in the *K*-theory group bundle $\mathcal{K}_*(A(X))$.

• The case A(X) = C(X) is the classical Atiyah-Hirzebruch spectral sequence for the *K*-theory of *X*.

Theorem (E-Nest-Oyono) Suppose A(X) is a *K*-fibration over the finite simplicial complex *X*. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of *X* with coefficients in the *K*-theory group bundle $\mathcal{K}_*(A(X))$.

- The case A(X) = C(X) is the classical Atiyah-Hirzebruch spectral sequence for the *K*-theory of *X*.
- If *A*(*X*) is a *KK*-fibration, then a similar result holds for the *K*-homology of *A*(*X*).

Theorem (E-Nest-Oyono) Suppose A(X) is a *K*-fibration over the finite simplicial complex *X*. Then the E_2 -term of the above described spectral sequence is given by $E_2^{p,q} \cong H^p(X, \mathcal{K}_q(A))$, the cohomology of *X* with coefficients in the *K*-theory group bundle $\mathcal{K}_*(A(X))$.

- The case A(X) = C(X) is the classical Atiyah-Hirzebruch spectral sequence for the *K*-theory of *X*.
- If *A*(*X*) is a *KK*-fibration, then a similar result holds for the *K*-homology of *A*(*X*).
- If A(X) ~_{RKK} B(X), then the spectral sequences of A(X) and B(X) coincide, i.e., the spectral sequence is an invariant for RKK-equivalence.

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

 $C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

$$C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$$

Definition. A C*-algebra bundle A(X) is a non-commutative principal \mathbb{T}^n -bundle (or NCP \mathbb{T}^n -bundle), if it is equipped with a fibre-wise action $\alpha : \mathbb{T}^n \to \operatorname{Aut}(A(X))$ such that

 $A(X) \rtimes_{\alpha} \mathbb{T}^n \sim_M C(X, \mathcal{K}).$

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

$$C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$$

Definition. A C*-algebra bundle A(X) is a non-commutative principal \mathbb{T}^n -bundle (or NCP \mathbb{T}^n -bundle), if it is equipped with a fibre-wise action $\alpha : \mathbb{T}^n \to \operatorname{Aut}(A(X))$ such that

$$A(X) \rtimes_{\alpha} \mathbb{T}^n \sim_M C(X, \mathcal{K}).$$

Example. The Heisenberg-algebra $C^*(H_2)(\mathbb{T}) = C^*(U, V, W)$ with respect to the canonical \mathbb{T}^2 -action.

Let $p: Y \to X$ be a principal \mathbb{T}^n -bundle. Then by Phil Green:

$$C_0(Y) \rtimes \mathbb{T}^n \cong C_0(X, \mathcal{K}) \qquad \mathcal{K} := \mathcal{K}(L^2(\mathbb{T}^n))$$

Definition. A C*-algebra bundle A(X) is a non-commutative principal \mathbb{T}^n -bundle (or NCP \mathbb{T}^n -bundle), if it is equipped with a fibre-wise action $\alpha : \mathbb{T}^n \to \operatorname{Aut}(A(X))$ such that

$$A(X) \rtimes_{\alpha} \mathbb{T}^n \sim_M C(X, \mathcal{K}).$$

Example. The Heisenberg-algebra $C^*(H_2)(\mathbb{T}) = C^*(U, V, W)$ with respect to the canonical \mathbb{T}^2 -action.

By Takesaki-Takai duality we get $A(X) \sim_M C_0(X, \mathcal{K}) \rtimes_{\widehat{\alpha}} \mathbb{Z}^n$ and vice versa, so that NCP-bundles are up to $C_0(X)$ -linear Morita equivalence precisely the crossed products $C_0(X, \mathcal{K}) \rtimes \mathbb{Z}^n$ for fibre-wise actions of \mathbb{Z}^n .

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \ldots, U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \ldots, U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha : \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \ldots, U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha : \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

One checks that $C^*(H_n) \rtimes_{\alpha} \mathbb{T}^n \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}, \mathcal{K}).$

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \ldots, U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha : \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

One checks that $C^*(H_n) \rtimes_{\alpha} \mathbb{T}^n \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}, \mathcal{K}).$ Thus $C^*(H_n)$ is a NCP \mathbb{T}^n -bundle with base $\mathbb{T}^{\frac{n(n-1)}{2}}$.

Let H_n be the group generated by $\{f_1, \ldots, f_n, g_{ij}, 1 \le i < j \le n\}$ with relations $f_i f_j = g_{ij} f_j f_i$ and g_{ij} is central for all ij.

Then $C^*(H_n) = C^*(U_1, \ldots, U_n, W_{ij})$, where $U_i = \delta_{f_i}, W_{ij} = \delta_{g_{ij}}$. It has the centre

$$C^*(\{W_{ij} : 1 \le i < j \le n\}) \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}).$$

Consider the action $\alpha : \mathbb{T}^n \to \operatorname{Aut}(C^*(H_n))$ given by

$$\alpha_{(z_1,...,z_n)}(U_i) = z_i U_i, \quad \alpha_{(z_1,...,z_n)}(W_{ij}) = W_{ij}.$$

One checks that $C^*(H_n) \rtimes_{\alpha} \mathbb{T}^n \cong C(\mathbb{T}^{\frac{n(n-1)}{2}}, \mathcal{K})$. Thus $C^*(H_n)$ is a NCP \mathbb{T}^n -bundle with base $\mathbb{T}^{\frac{n(n-1)}{2}}$. Notice that $C^*(H_2)$ is the Heisenberg group algebra.

Theorem (E-Williams, 1996) Every NCP \mathbb{T}^n -bundle over a given space *X* is stably isomorphic to one of the form

 $Y * (f^*C^*(H_n))(X)$

where $f: X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ is a continuous map and $p: Y \to X$ is a (commutative) principal bundle over X.

Theorem (E-Williams, 1996) Every NCP \mathbb{T}^n -bundle over a given space *X* is stably isomorphic to one of the form

 $Y * (f^*C^*(H_n))(X)$

where $f: X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ is a continuous map and $p: Y \to X$ is a (commutative) principal bundle over X.

If A(X) is any NCP \mathbb{T}^n -bundle, we can twist it by a commutative bundle $p: Y \to X$ by defining

$$Y * A(X) = (C_0(Y) \otimes_{C_0(X)} A(X))^{\mathbb{T}^n}$$

where \mathbb{T}^n acts diagonally on the balanced tensor product.

Problems

Question 1 When are two given NCP \mathbb{T}^n -bundles A(X) and $B(X) \mathcal{R}KK$ -equivalent?

Problems

Question 1 When are two given NCP \mathbb{T}^n -bundles A(X) and $B(X) \mathcal{R}KK$ -equivalent?

Question2 When is a given NCP \mathbb{T}^n -bundles $A(X) \mathcal{R}KK$ -trivial (i.e., $\mathcal{R}KK$ -equivalent to a trivial bundle)?

Problems

Question 1 When are two given NCP \mathbb{T}^n -bundles A(X) and $B(X) \mathcal{R}KK$ -equivalent?

Question2 When is a given NCP \mathbb{T}^n -bundles $A(X) \mathcal{R}KK$ -trivial (i.e., $\mathcal{R}KK$ -equivalent to a trivial bundle)?

Question2 When is a given NCP \mathbb{T}^n -bundles A(X) $\mathcal{R}KK$ -equivalent to a commutative principle bundle?

We can explicitly compute the action of $\pi_1(X)$ on the fibre

 $K_*(A_x) \cong K_*(C(\mathbb{T}^n)) \cong \Lambda^*(\mathbb{Z}^n).$

The key-result is the computation for the Heisenberg-bundle over \mathbb{T} . The fibre at $1 \in \mathbb{T}$ is $C(\mathbb{T}^2)$ and we get

We can explicitly compute the action of $\pi_1(X)$ on the fibre

 $K_*(A_x) \cong K_*(C(\mathbb{T}^n)) \cong \Lambda^*(\mathbb{Z}^n).$

The key-result is the computation for the Heisenberg-bundle over \mathbb{T} . The fibre at $1 \in \mathbb{T}$ is $C(\mathbb{T}^2)$ and we get

Lemma. (E-Nest-Oyono) Let γ be the positive generator of $\pi_1(\mathbb{T})$. Then $c_{\gamma} : K_1(C(\mathbb{T}^2)) \to K_1(C(\mathbb{T}^2))$ is trivial and $c_{\gamma} : K_0(C(\mathbb{T}^2)) \to K_0(C(\mathbb{T}^2))$ is given by the matrix

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

with respect to the generators $\{[1], \beta\}$ of $K_0(C(\mathbb{T}^2)) \cong \mathbb{Z}^2$.

Scetch of proof. We have $\gamma : [0,1] \to \mathbb{T}; \gamma(t) = e^{2\pi i t}$. Recall that $\gamma^*(C^*(H_2)) = C[0,1] \otimes_{\gamma} C^*(H_2)$.

Scetch of proof. We have $\gamma : [0,1] \to \mathbb{T}; \gamma(t) = e^{2\pi i t}$. Recall that $\gamma^*(C^*(H_2)) = C[0,1] \otimes_{\gamma} C^*(H_2)$. Let

 $U' = 1 \otimes_{\gamma} U$ and $V' = 1 \otimes_{\gamma} V \in C[0,1] \otimes_{\gamma} C^*(H_2)$

Then [U'], [V'] are elements of $K_1(\gamma^*(C^*(H_2)))$ which restrict to the standard generators [u], [v] of $K^1(C(\mathbb{T}^2))$ at 0 and 1.

Scetch of proof. We have $\gamma : [0,1] \to \mathbb{T}; \gamma(t) = e^{2\pi i t}$. Recall that $\gamma^*(C^*(H_2)) = C[0,1] \otimes_{\gamma} C^*(H_2)$. Let

 $U' = 1 \otimes_{\gamma} U$ and $V' = 1 \otimes_{\gamma} V \in C[0,1] \otimes_{\gamma} C^*(H_2)$

Then [U'], [V'] are elements of $K_1(\gamma^*(C^*(H_2)))$ which restrict to the standard generators [u], [v] of $K^1(C(\mathbb{T}^2))$ at 0 and 1.

This implies that $c_{\gamma}([u]) = [u]$ and $c_{\gamma}([v]) = [v]$.

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0, 1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0, 1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Rieffel computes $\tau([E_{\theta}]) = \theta + 1$, from which we conclude that $[E_{\theta+1}] = [E_{\theta}] + [1]$ for all irrational θ , and hence for all θ . Thus

$$c_{\gamma}([E_0]) = [E_1] = [E_0] + [1]$$

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0, 1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Rieffel computes $\tau([E_{\theta}]) = \theta + 1$, from which we conclude that $[E_{\theta+1}] = [E_{\theta}] + [1]$ for all irrational θ , and hence for all θ . Thus

$$c_{\gamma}([E_0]) = [E_1] = [E_0] + [1]$$

Action on $K_0(C(\mathbb{T}^2))$

For each $\theta \in [0, 1]$ the generators of $K_0(A_\theta)$ are given by [1] and the projective module E_θ which is a closure of $C_c(\mathbb{R})$ with respect to a certain A_θ -valued inner product and with right action of A_θ given by

$$(\xi \cdot U_{\theta})(x) = \xi(x + \theta + 1), \quad (\xi \cdot V_{\theta})(x) = e^{2\pi i x} \xi(x).$$

Rieffel computes $\tau([E_{\theta}]) = \theta + 1$, from which we conclude that $[E_{\theta+1}] = [E_{\theta}] + [1]$ for all irrational θ , and hence for all θ . Thus

$$c_{\gamma}([E_0]) = [E_1] = [E_0] + [1]$$

One can check that $[E_0] = -[\beta] + [1]$ and the result then follows from the obvious fact $c_{\gamma}([1]) = [1]$.

Lemma (E-Nest-Oyon) Let $A(X) = Y * f^*(C^*(H_2))(X)$ for some function $f: X \to \mathbb{T}$ and some principal \mathbb{T}^2 -bundle $p: Y \to X$. Assume that $x \in X$ with f(x) = 1. Then the action of $\gamma \in \pi_1(X)$ on $K_1(C(\mathbb{T}^2))$ is trivial and the action on $K_0(C(\mathbb{T}^2))$ is given on the generators [1], [β] by the matrix

$$egin{pmatrix} 1 & - < f, \gamma > \ 0 & 1 \end{pmatrix},$$

where $\langle f, \gamma \rangle$ is the winding number of $f \circ \gamma : \mathbb{T} \to \mathbb{T}$.

Lemma (E-Nest-Oyon) Let $A(X) = Y * f^*(C^*(H_2))(X)$ for some function $f: X \to \mathbb{T}$ and some principal \mathbb{T}^2 -bundle $p: Y \to X$. Assume that $x \in X$ with f(x) = 1. Then the action of $\gamma \in \pi_1(X)$ on $K_1(C(\mathbb{T}^2))$ is trivial and the action on $K_0(C(\mathbb{T}^2))$ is given on the generators [1], [β] by the matrix

$$\begin{pmatrix} 1 & - < f, \gamma > \\ 0 & 1 \end{pmatrix},$$

where $\langle f, \gamma \rangle$ is the winding number of $f \circ \gamma : \mathbb{T} \to \mathbb{T}$.

A similar (but more technical) result also holds for higher dimensional NCP torus bundles.

Lemma (E-Nest-Oyon) Let $A(X) = Y * f^*(C^*(H_2))(X)$ for some function $f: X \to \mathbb{T}$ and some principal \mathbb{T}^2 -bundle $p: Y \to X$. Assume that $x \in X$ with f(x) = 1. Then the action of $\gamma \in \pi_1(X)$ on $K_1(C(\mathbb{T}^2))$ is trivial and the action on $K_0(C(\mathbb{T}^2))$ is given on the generators [1], [β] by the matrix

$$\begin{pmatrix} 1 & - < f, \gamma > \\ 0 & 1 \end{pmatrix},$$

where $\langle f, \gamma \rangle$ is the winding number of $f \circ \gamma : \mathbb{T} \to \mathbb{T}$.

A similar (but more technical) result also holds for higher dimensional NCP torus bundles.

Corollary. The *K*-theory group bundle of A(X) is trivial if and only if *f* is homotopic to a constant map.

$\mathcal{R}KK$ -triviality for NCP torus bundles

Theorem (E-Nest-Oyono) Let A(X) be any NCP \mathbb{T}^n -bundle. Then A(X) is $\mathcal{R}KK$ -equivalent to a commutative bundle $p: Y \to X$ (or rather $C_0(Y)(X)$) if and only if the *K*-theory bundle of A(X) is trivial.
$\mathcal{R}KK$ -triviality for NCP torus bundles

Theorem (E-Nest-Oyono) Let A(X) be any NCP \mathbb{T}^n -bundle. Then A(X) is $\mathcal{R}KK$ -equivalent to a commutative bundle $p: Y \to X$ (or rather $C_0(Y)(X)$) if and only if the *K*-theory bundle of A(X) is trivial.

Proof. If two maps $f_1, f_2 : X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ are homotopic, then one can show directly that $f_1^*(C^*(H_n))(X) \sim_{\mathcal{R}KK} f_2^*(C^*(H_n))$. The result then follows from the above and the classification of NCP-bundles.

$\mathcal{R}KK$ -triviality for NCP torus bundles

Theorem (E-Nest-Oyono) Let A(X) be any NCP \mathbb{T}^n -bundle. Then A(X) is $\mathcal{R}KK$ -equivalent to a commutative bundle $p: Y \to X$ (or rather $C_0(Y)(X)$) if and only if the *K*-theory bundle of A(X) is trivial.

Proof. If two maps $f_1, f_2 : X \to \mathbb{T}^{\frac{n(n-1)}{2}}$ are homotopic, then one can show directly that $f_1^*(C^*(H_n))(X) \sim_{\mathcal{R}KK} f_2^*(C^*(H_n))$. The result then follows from the above and the classification of NCP-bundles.

Theorem (E-Nest-Oyono) The NCP-bundle A(X) is $\mathcal{R}KK$ -equivalent to the trivial bundle $X \times \mathbb{T}^n$ if and only if the *K*-theory group bundle is trivial and the map

 $d_2: H^0(X, K_1(A_x)) \to H^2(X, K_0(A_x))$

in the Larey-Serre spectral sequence is the trivial map.